WO2011148970A1 - Positive electrode for secondary battery, and secondary battery - Google Patents

Positive electrode for secondary battery, and secondary battery Download PDF

Info

Publication number
WO2011148970A1
WO2011148970A1 PCT/JP2011/061963 JP2011061963W WO2011148970A1 WO 2011148970 A1 WO2011148970 A1 WO 2011148970A1 JP 2011061963 W JP2011061963 W JP 2011061963W WO 2011148970 A1 WO2011148970 A1 WO 2011148970A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
binder
active material
electrode active
Prior art date
Application number
PCT/JP2011/061963
Other languages
French (fr)
Japanese (ja)
Inventor
康尋 脇坂
庸介 薮内
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2012517293A priority Critical patent/JP5783172B2/en
Priority to CN201180036571.5A priority patent/CN103026535B/en
Publication of WO2011148970A1 publication Critical patent/WO2011148970A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery, and more particularly to a positive electrode for a secondary battery having high rate characteristics and cycle characteristics used for a lithium ion secondary battery and the like.
  • the present invention also relates to a secondary battery having such an electrode.
  • lithium ion secondary batteries exhibit the highest energy density, and are often used especially for small electronics. In addition to small-sized applications, it is also expected to expand to automotive applications. Among them, there is a demand for higher output of lithium ion secondary batteries and further improvement in reliability such as cycle characteristics.
  • the positive electrode active material which is a constituent material of lithium ion secondary batteries, has become a cheap active material containing manganese and nickel because the price of cobalt-based active materials used as the mainstream and the reserves are limited. The transition is progressing. However, in manganese-based active materials that are expected to become mainstream in the future, repeated charge and discharge at high temperatures, particularly 40 ° C or higher, may elute manganese ions into the electrolyte, resulting in a decrease in battery capacity. It has become a big issue.
  • an electrode used in a lithium ion secondary battery usually has a structure in which an electrode active material layer is laminated on a current collector, and the electrode active material layer includes an electrode active material in addition to the electrode active material.
  • a binder is used to bind each other and the electrode active material and the current collector.
  • Patent Document 1 describes a positive electrode containing LiFePO 4 having an olivine structure as a positive electrode active material, carbon and a copolymer of (meth) acrylic acid ester and an ⁇ , ⁇ -unsaturated nitrile compound as a binder. .
  • Patent Document 2 describes a positive electrode containing LiFePO 4 having an olivine crystal structure as a positive electrode active material, carbon fiber, and polyvinylidene fluoride (PVDF) as a binder.
  • PVDF polyvinylidene fluoride
  • LiFePO 4 having an olivine structure used as the positive electrode active material has a small particle size as the positive electrode active material, and thus the positive electrode active material layer is formed as a thick film. It has been found that there is a problem that cracks occur when it is converted. Further, in the positive electrode of Patent Document 2, as in the case where a manganese-based active material is used as the positive electrode active material described above, when charging / discharging is repeated at a high temperature, iron ions are eluted into the electrolytic solution, resulting in a decrease in battery capacity. It has been found that there is a problem that the safety of the battery is reduced due to the problem that the eluted iron ions are dendritically deposited on the negative electrode surface.
  • the present invention can increase the film thickness, prevent the occurrence of cracks, and improve the cycle characteristics (especially high temperature cycle characteristics) and safety of the obtained secondary battery.
  • the purpose is to provide a positive electrode for use.
  • this invention aims at providing a secondary battery provided with this positive electrode for secondary batteries.
  • the gist of the present invention aimed at solving such problems is as follows.
  • the binder comprises a polymer comprising a polymer unit of a (meth) acrylic acid ester monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an ⁇ , ⁇ -unsaturated nitrile monomer,
  • a positive electrode for a secondary battery wherein a content ratio of polymer units of the vinyl monomer having an acid component is 1.0 to 3.0% by mass in all polymer units of the polymer.
  • a secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolytic solution, wherein the positive electrode is the positive electrode for a secondary battery according to any one of (1) to (6).
  • the toughness of the positive electrode active material layer can be improved, so that the generation of cracks in the positive electrode active material layer is prevented, and the positive electrode active material layer Can be thickened.
  • the binder contained in the positive electrode active material layer includes a polymer comprising a polymer unit of a (meth) acrylate monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an ⁇ , ⁇ -unsaturated nitrile monomer.
  • the metal ion (manganese ion or iron ion) eluted from the positive electrode active material can be captured by setting the content ratio of the polymerization unit of the vinyl monomer having an acid component to a predetermined ratio, the secondary battery Cycle characteristics (especially high-temperature cycle characteristics) and safety are improved.
  • the positive electrode for secondary batteries of the present invention has a positive electrode active material layer containing a positive electrode active material containing manganese or iron, fibrous carbon, and a binder on a current collector.
  • the positive electrode active material used in the present invention is not particularly limited as long as it contains manganese or iron and can reversibly insert and release lithium ions. Among them, a lithium-containing transition metal oxide is preferable.
  • lithium-containing transition metal oxide containing manganese examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • LiMnO 2 having a layered structure that easily undergoes cycle deterioration due to elution of Mn ions and its substitute
  • LiMn 2 O 4 having a spinel structure and its substitute
  • the substitution thereof has a great effect of improving the cycle characteristics of the secondary battery of the present invention.
  • two or more positive electrode active materials may be used, or a mixture of a positive electrode active material containing manganese and a positive electrode active material not containing manganese may be used.
  • the manganese content in the positive electrode active material is preferably 10 to 80% by mass, more preferably 15 to 65% by mass.
  • lithium-containing transition metal oxide containing iron examples include Li y FeXO 4 (where X is at least one element selected from elements of Groups 4 to 7 and Groups 14 to 17 of the periodic table). Y represents 0 ⁇ y ⁇ 2.).
  • the lithium-containing transition metal oxide containing iron usually has a structure in which the element X is located at a tetrahedral site and lithium is located at an octahedral site together with iron.
  • the structure of the positive electrode active material is represented as ⁇ X ⁇ ⁇ [Li y Fe] O 4 when expressed up to the site (where ⁇ indicates a tetrahedral site and [] indicates an octahedral site).
  • the element X which gives such a structure, for example, a Group 5 element such as vanadium or a Group 15 element such as phosphorus, arsenic, antimony, or bismuth is preferable.
  • the lithium-containing transition metal oxide containing iron preferably has an olivine structure having a hexagonal close-packed oxygen skeleton or a spinel or inverse spinel structure having a cubic close-packed oxygen skeleton, and particularly preferably an olivine-type structure. preferable.
  • the difference between the olivine structure and the spinel structure including the reverse spinel is whether the oxygen ions are hexagonal close packed or cubic close packed, and the stable structure varies depending on the type of element of X.
  • LiFePO 4 has a stable olivine structure
  • LiFeVO 4 has a reverse spinel structure as a stable phase.
  • Li y FeXO 4 having an olivine type structure or a spinel structure is prepared by mixing a lithium compound, a divalent iron compound and an ammonium salt of element (X), and then firing in an inert gas atmosphere or a reducing atmosphere.
  • a lithium compound examples include Li 2 CO 3 , LiOH, LiNO 3 and the like.
  • divalent iron compound examples include FeC 2 O 4 .2H 2 O, Fe (CH 3 COO) 2 , FeCl 2 and the like.
  • ammonium salt of element (X) include phosphates such as (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , (NH 4 ) 3 PO 4 ; NH 4 HSO 4 , (NH 4 ) 2 sulfates such as SO 4 ; and the like.
  • an iron compound having a NASICON structure can also be used as the positive electrode active material.
  • the NASICON type iron compound is specifically represented by Li 2 Fe 2-n V n (XO 4 ) 3 (where 0 ⁇ n ⁇ 2, preferably 0 ⁇ n ⁇ 1). Compounds.
  • an olivine-type iron compound is more preferable in terms of manifesting the effect of the invention that an electrode using a positive electrode active material having a small particle diameter can be produced with good yield.
  • the amount of the positive electrode active material contained in the positive electrode active material layer of the positive electrode for a secondary battery of the present invention is preferably 80 to 99.5% by mass, more preferably 90 to 99% by mass.
  • the amount of the positive electrode active material exceeds 99.5% by mass, the ratio of the binder and the conductivity-imparting agent in the positive electrode active material layer becomes small. While the binding property with an electric body falls, the output characteristic of a battery may fall. Further, when the amount of the positive electrode active material is less than 80% by mass, the battery capacity may be reduced.
  • the particle size (average particle size) of the positive electrode active material contained in the positive electrode active material layer of the positive electrode for secondary battery of the present invention is preferably 0.01 to 10 ⁇ m, more preferably 0.02 to 5 ⁇ m.
  • the particle diameter of the positive electrode active material exceeds 10 ⁇ m, the dispersibility in the slurry is lowered, and it becomes difficult to produce a good slurry.
  • the particle size of the positive electrode active material is less than 0.01 ⁇ m, the conductivity of the active material may be reduced, and the internal resistance of the battery may be increased.
  • fibrous carbon In the present invention, fibrous carbon is used. By using fibrous carbon, the toughness of the positive electrode active material layer can be improved, so that the generation of cracks in the positive electrode active material layer can be prevented and the positive electrode active material layer can be thickened. As a result, the safety of the secondary battery using the positive electrode for secondary battery of the present invention can be improved. If the fibrous carbon used in the present invention is fibrous, the effect of the present invention can be achieved. However, if the fiber diameter of the fibrous carbon is too large, voids in the electrode become large and the electrode density cannot be increased, which is not preferable. .
  • the average fiber diameter of the fibrous carbon that can be used in the positive electrode for secondary battery of the present invention is preferably 0.01 to 1.0 ⁇ m, more preferably 0.01 to 0.2 ⁇ m.
  • boron or Si which is a graphitization cocatalyst that works to promote the degree of graphitization, before the heat treatment.
  • the addition amount of the cocatalyst is not particularly limited, but if the addition amount is too small, the effect is not obtained, and if it is too much, it remains as an impurity, which is not preferable.
  • a preferable addition amount is 0.1 to 100,000 ppm, and more preferably 10 to 50,000 ppm.
  • the degree of crystallinity of these fibrous carbons is not particularly limited, but the average interplanar distance d 002 by X-ray diffraction method is preferably 0.344 nm or less, more preferably 0.339 nm or less, and the crystallinity in the C-axis direction of the crystal
  • the thickness Lc is 40 nm or less.
  • the range of the average fiber length varies depending on the type of fibrous carbon used and the fiber diameter, but is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • a preferred range of this average fiber length is expressed in terms of an average aspect ratio (ratio of average fiber length to average fiber diameter), which is in the range of 5 to 50000, and more preferably in the range of 10 to 15000.
  • the dispersion stability of a slurry for a secondary battery positive electrode which will be described later, is improved, and the effect of suppressing cracks in the positive electrode active material layer and the positive electrode active The effect as a conductive path in the material layer can be further enhanced.
  • the fibrous carbon is branched (branched) because the conductivity of the whole electrode, the strength of the electrode, and the electrolyte solution retention are further increased.
  • the dispersibility in the electrode is impaired as in the fiber length.
  • the proportion of these branched fibers can be controlled to some extent by the production method and the subsequent pulverization treatment.
  • the method for producing fibrous carbon is not particularly limited.
  • the content of fibrous carbon is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass with respect to the total amount of the positive electrode active material, the binder and the thickener to be blended as necessary. Particularly preferred is 0.5 to 10% by mass.
  • the content exceeds 20% by mass, the active material ratio in the electrode becomes small, so that the battery capacity becomes small. If the content is less than 0.05% by mass, it is difficult to suppress the generation of cracks in the electrode. In order to adjust the content to the above range, it can be carried out by adding the same ratio in the production method.
  • Fibrous carbon that has been surface-treated to control the dispersion state in the electrode can also be used.
  • the surface treatment method is not particularly limited, and examples thereof include those made hydrophilic by introducing an oxygen-containing functional group by oxidation treatment, and those made hydrophobic by fluorination treatment or silicon treatment.
  • a phenol resin coating or a mechanochemical treatment may be used. If the surface treatment is too much, the conductivity and strength of the fibrous carbon will be remarkably impaired, and appropriate treatment is required.
  • the oxidation treatment can be performed, for example, by heating fibrous carbon in air at 500 ° C. for about 1 hour. This treatment improves the hydrophilicity of the fibrous carbon.
  • the positive electrode for a secondary battery of the present invention comprises, in a binder, a polymer unit of a (meth) acrylate monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an ⁇ , ⁇ -unsaturated nitrile monomer.
  • a polymer unit of a (meth) acrylate monomer a polymer unit of a vinyl monomer having an acid component
  • a polymer unit of an ⁇ , ⁇ -unsaturated nitrile monomer Including.
  • the polymer as the binder includes the respective polymer units.
  • polymerization units of (meth) acrylic acid ester monomer include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl Acrylic acid alkyl esters such as acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl meta Relate,
  • non-carbonyl oxygen is shown because it exhibits lithium ion conductivity by moderate swelling into the electrolyte without eluting into the electrolyte, and in addition, it is difficult to cause bridging aggregation by the polymer in the dispersion of the active material.
  • Heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate and lauryl acrylate which are alkyl acrylates having 7 to 13 carbon atoms in the alkyl group bonded to the atom, are preferred, and bonded to a non-carbonyl oxygen atom More preferred are octyl acrylate, 2-ethylhexyl acrylate, and nonyl acrylate having 8 to 10 carbon atoms in the alkyl group.
  • a polymerization unit of a vinyl monomer having an acid component is a monomer having a —COOH group (carboxylic acid group), a monomer having an —OH group (hydroxyl group), a —SO 3 H group ( A monomer having a sulfonic acid group), a monomer having a —PO 3 H 2 group, a monomer having a —PO (OH) (OR) group (R represents a hydrocarbon group), and a lower polyoxy Examples include monomers having an alkylene group.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and derivatives thereof, dicarboxylic acid, acid anhydrides thereof, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, and the like.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid and the like methyl allyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
  • Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2 Ethylenic acid such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate Alkanol esters of unsaturated carboxylic acids; general formula CH 2 ⁇ CR 1 —COO— (C n H 2n O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4, R 1 is hydrogen Or an ester of a polyalkylene glycol represented by (meth) acrylic acid represented by 2-hydro; Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as cyethyl
  • Examples of monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • Monomers having a —PO 3 H 2 group and / or —PO (OH) (OR) group include 2- (meth) acryloyloxyethyl phosphate, methyl phosphate -2- (Meth) acryloyloxyethyl, ethyl phosphate- (meth) acryloyloxyethyl, and the like.
  • Examples of the monomer having a lower polyoxyalkylene group include poly (alkylene oxide) such as poly (ethylene oxide).
  • a monomer having a carboxylic acid group is preferable because of excellent adhesion to the current collector described later and for efficiently capturing manganese ions or iron ions eluted from the positive electrode active material.
  • a monocarboxylic acid having a carboxylic acid group having 5 or less carbon atoms such as acrylic acid or methacrylic acid, or a dicarboxylic acid having two carboxylic acid groups having 5 or less carbon atoms such as maleic acid or itaconic acid is preferred.
  • acrylic acid and methacrylic acid are preferable from the viewpoint that the prepared binder has high storage stability.
  • the polymerization unit of the ⁇ , ⁇ -unsaturated nitrile monomer is preferably acrylonitrile or methacrylonitrile from the viewpoint of improving the mechanical strength and the binding force.
  • the content ratio of the polymerization units of the (meth) acrylic acid ester monomer in the binder is preferably 50 to 95% by mass, more preferably 60 to 90% by mass. It is.
  • the content of polymerized units of the ⁇ , ⁇ -unsaturated nitrile monomer (hereinafter sometimes referred to as “component B”) is preferably 3 to 40% by mass, more preferably 5 to 30% by mass.
  • the content ratio of the polymerization unit of the vinyl monomer having an acid component (hereinafter sometimes referred to as “component C”) is 1.0 to 3.0% by mass, preferably 1.5 to 2.5% by mass. It is.
  • the mechanical strength of the binder decreases. Moreover, since the softness
  • the content ratio of Component B exceeds 40% by mass, the flexibility of the binder is lowered and the electrode becomes hard, so that it is difficult to prevent the occurrence of cracks.
  • the mechanical strength of a binder falls that the content rate of the component B is less than 3 mass%, and the adhesiveness of an electrode falls.
  • the content of Component C exceeds 3.0% by mass, the production stability and storage stability of the binder are lowered. On the other hand, when the content ratio of Component C is less than 1.0% by mass, the binding property as a binder is insufficient, and the battery life characteristics are deteriorated.
  • the binder to be used further contains a polymerized unit having crosslinkability in addition to the above components A, B and C.
  • the method for introducing a crosslinkable polymer unit into the binder include a method for introducing a photocrosslinkable crosslinkable group into the binder and a method for introducing a heat crosslinkable crosslinkable group.
  • the method of introducing a heat-crosslinkable crosslinkable group into the binder can crosslink the binder by applying heat treatment to the electrode plate after coating, and can further suppress dissolution in the electrolyte. It is preferable because a tough and flexible electrode plate can be obtained and the life characteristics of the battery are improved.
  • a method of using a monofunctional monomer having one olefinic double bond having a heat-crosslinkable crosslinkable group when introducing a heat-crosslinkable crosslinkable group into the binder, and at least two olefinic properties There is a method using a polyfunctional monomer having a double bond.
  • the thermally crosslinkable group contained in the monofunctional monomer having one olefinic double bond is at least selected from the group consisting of an epoxy group, an N-methylolamide group, an oxetanyl group, and an oxazoline group.
  • One type is preferred, and an epoxy group is more preferred in terms of easy crosslinking and adjustment of the crosslinking density.
  • Examples of the monomer containing an epoxy group include a monomer containing a carbon-carbon double bond and an epoxy group, and a monomer containing a halogen atom and an epoxy group.
  • Examples of the monomer containing a carbon-carbon double bond and an epoxy group include unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl ether; butadiene monoepoxide, Diene or polyene monoepoxides such as chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene; -Alkenyl epoxides such as epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; glycidyl acrylate, glycidyl methacrylate, glycidyl crotonate, glycidyl
  • Examples of the monomer having a halogen atom and an epoxy group include epihalohydrins such as epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin, ⁇ -methylepichlorohydrin; p-chlorostyrene oxide; dibromo Phenyl glycidyl ether;
  • Examples of the monomer containing an N-methylolamide group include (meth) acrylamides having a methylol group such as N-methylol (meth) acrylamide.
  • Monomers containing an oxetanyl group include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) acryloyloxymethyl) -2-trifluoromethyloxetane, and 3-((meth) acryloyloxymethyl). ) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, 2-((meth) acryloyloxymethyl) -4-trifluoromethyloxetane, and the like.
  • Monomers containing an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- Examples thereof include oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like.
  • Polyfunctional monomers having at least two olefinic double bonds include allyl acrylate or allyl methacrylate, trimethylolpropane-triacrylate, trimethylolpropane-methacrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene Glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, or other allyl or vinyl ethers of polyfunctional alcohols, tetraethylene glycol diacrylate, triallylamine, trimethylolpropane-diallyl ether, methylenebisacrylamide and / or divinylbenzene preferable.
  • allyl acrylate, allyl methacrylate, trimethylolpropane-triacrylate and / or trimethylolpropane-methacrylate and the like can be mentioned.
  • polyfunctional monomers having at least two olefinic double bonds are preferred because the crosslinking density is likely to be improved, and allyl acrylate is also preferred because of improved crosslinking density and high copolymerizability.
  • acrylate or methacrylate having an allyl group such as allyl methacrylate is preferable.
  • the content ratio of the heat-crosslinkable crosslinkable group in the binder is preferably 0.01 with respect to 100% by mass of the total amount of monomers as the amount of the monomer containing the heat-crosslinkable crosslinkable group at the time of polymerization. It is in the range of -0.5% by mass, more preferably 0.3-0.05% by mass.
  • the content ratio of the heat-crosslinkable crosslinkable group in the binder can be controlled by the monomer charge ratio when the binder is produced. When the content ratio of the heat-crosslinkable crosslinking group in the binder is within the above range, the swelling property with respect to an appropriate electrolytic solution can be exhibited, and excellent rate characteristics and cycle characteristics can be exhibited.
  • the binder used in the present invention may contain other polymerization units in addition to the above components.
  • the other polymerized unit is a polymerized unit derived from another vinyl monomer.
  • two or more carbon atoms such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, etc.
  • Carboxylic acid esters having a carbon double bond such as vinyl chloride and vinylidene chloride
  • vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate
  • Vinyl ethers such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone and the like; heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole; It is.
  • the binder used in the present invention is used in the state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium. Among these, it is preferable that it is dispersed in the dispersion medium in the form of particles because the swelling property of the electrolytic solution is suppressed.
  • the average particle size (dispersed particle size) of the binder dispersed in the form of particles is preferably 50 to 500 nm, more preferably 70 to 400 nm, and most preferably. 100 to 250 nm.
  • the average particle size of the binder is within this range, the strength and flexibility of the obtained electrode are improved.
  • an organic solvent or water is used as the dispersion medium, but it is preferable to use water as the dispersion medium because of the high drying speed.
  • the solid content concentration of the dispersion is usually 15 to 70% by mass, preferably 20 to 65% by mass, and more preferably 30 to 60% by mass.
  • the solid content concentration is within this range, workability when producing a slurry for a secondary battery positive electrode, which will be described later, is good.
  • the glass transition temperature (Tg) of the binder used in the present invention is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 to 15 ° C., and particularly preferably ⁇ 40 to 5 ° C.
  • Tg of the binder is in the above range, a secondary battery electrode having excellent strength and flexibility and high output characteristics can be obtained.
  • the glass transition temperature of the binder can be adjusted by combining various monomers.
  • the production method of the polymer which is a binder used in the present invention is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the dispersant used in these polymerization methods may be those used in ordinary synthesis. Specific examples thereof include benzene such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate.
  • alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecyl sulfate; sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate; fatty acid salts such as sodium laurate; polyoxyethylene lauryl ether sulfate sodium salt; Ethoxy sulfate salts such as polyoxyethylene nonylphenyl ether sulfate sodium salt; alkane sulfonate salt; alkyl ether phosphate sodium salt; Nonionic emulsifiers such as oxyethylene nonylphenyl ether, polyoxyethylene sorbitan lauryl ester, polyoxyethylene-polyoxypropylene block copolymer; gelatin, maleic anhydride-styrene copolymer, polyvinylpyrrolidone, sodium polyacrylate, Examples thereof include water
  • benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate
  • alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate
  • oxidation resistance is more preferable.
  • it is a benzenesulfonate such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate.
  • the addition amount of the dispersant can be arbitrarily set, and is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the pH when the binder used in the present invention is dispersed in the dispersion medium is preferably 5 to 13, more preferably 5 to 12, and most preferably 10 to 12.
  • the pH of the binder is in the above range, the storage stability of the binder is improved, and further, the mechanical stability is improved.
  • PH adjusting agents for adjusting the pH of the binder include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal oxides such as calcium hydroxide, magnesium hydroxide and barium hydroxide, Hydroxides such as hydroxides of metals belonging to Group IIIA in a long periodic table such as aluminum hydroxide; carbonates such as alkali metal carbonates such as sodium carbonate and potassium carbonate, alkaline earth metal carbonates such as magnesium carbonate
  • organic amines include alkylamines such as ethylamine, diethylamine and propylamine; alcohol amines such as monomethanolamine, monoethanolamine and monopropanolamine; ammonia such as ammonia water; Can be mentioned.
  • alkali metal hydroxides are preferable from the viewpoints of binding properties and operability, and sodium hydroxide, potassium hydroxide, and lithium hydroxide are particularly preferable.
  • the content of the binder in the positive electrode active material layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the content of the binder in the positive electrode of the secondary battery is in the above range, so that the positive electrode active materials and the positive electrode active material and the current collector are excellent in binding properties while maintaining flexibility and the movement of lithium ions. Does not inhibit the resistance.
  • the positive electrode active material layer used in the present invention further has electroconductivity imparting material, reinforcing material, dispersing agent, leveling agent, antioxidant, thickener, electrolytic solution having functions such as inhibiting decomposition of the electrolyte.
  • electroconductivity imparting material reinforcing material, dispersing agent, leveling agent, antioxidant, thickener, electrolytic solution having functions such as inhibiting decomposition of the electrolyte.
  • Other components such as a liquid additive and other binders may be contained, and may be contained in a slurry for a secondary battery positive electrode described later. These are not particularly limited as long as they do not affect the battery reaction.
  • conductive carbon such as acetylene black, ketjen black, carbon black and graphite can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals.
  • the reinforcing material various inorganic and organic spherical, plate-like, or rod-like fillers can be used. By using a reinforcing material, a tough and flexible electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
  • the amount of the conductivity-imparting material and reinforcing agent used is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material. By being included in the said range, a high capacity
  • the dispersant examples include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds.
  • a dispersing agent is selected according to the positive electrode active material and electroconductivity imparting material to be used.
  • the content ratio of the dispersant in the positive electrode active material layer is preferably 0.01 to 10% by mass.
  • the leveling agent examples include surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when applying a slurry for a secondary battery positive electrode, which will be described later, to the current collector, or to improve the smoothness of the electrode.
  • the content of the leveling agent in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the leveling agent is within the above range, the productivity, smoothness, and battery characteristics during electrode production are excellent.
  • the antioxidant examples include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound.
  • the polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of 200 to 1000, preferably 600 to 700 is preferably used.
  • the content of the antioxidant in the positive electrode active material layer is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. When the antioxidant is within the above range, the positive electrode slurry described later is excellent in stability, battery capacity, and cycle characteristics.
  • thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, and the like.
  • cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof
  • (modified) poly means “unmodified poly” or “modified poly”
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the content of the thickener in the positive electrode active material layer is preferably 0.01 to 10% by mass.
  • the thickener is in the above range, the coating property of the secondary battery positive electrode slurry, which will be described later, to the current collector is improved.
  • the electrolytic solution additive vinylene carbonate used in a slurry for a secondary battery positive electrode and an electrolytic solution described later can be used.
  • the content ratio of the electrolytic solution additive in the positive electrode active material layer is preferably 0.01 to 10% by mass.
  • the electrolytic solution additive is in the above range, the cycle characteristics and the high temperature characteristics are excellent.
  • Other examples include nano-particles such as fumed silica and fumed alumina: surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants.
  • the content ratio of the nanoparticles in the positive electrode active material layer is preferably 0.01 to 10% by mass.
  • the slurry stability and productivity are excellent, and high battery characteristics are exhibited.
  • the content ratio of the surfactant in the positive electrode active material layer is preferably 0.01 to 10% by mass.
  • the current collector used in the present invention is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but from the viewpoint of heat resistance, for example, iron, copper, etc.
  • Metal materials such as aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable.
  • aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the positive electrode active material layer.
  • any method may be used as long as the positive electrode active material layer is bound in layers on at least one surface, preferably both surfaces of the current collector.
  • a positive electrode slurry described later is applied to a current collector and dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode.
  • the method for applying the positive electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the porosity of the electrode it is preferable to lower the porosity of the electrode by pressure treatment using a mold press or a roll press.
  • a preferable range of the porosity is 5 to 15%, more preferably 7 to 13%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, it is difficult to obtain a high volume capacity, which causes a problem that the electrode is easily peeled off and a defect is likely to occur. Further, when a curable polymer is used, it is preferably cured.
  • the thickness of the positive electrode for secondary battery of the present invention is usually 5 to 150 ⁇ m, preferably 10 to 100 ⁇ m. When the electrode thickness is in the above range, both load characteristics and energy density are high.
  • the slurry for secondary battery positive electrode used in the present invention is a positive electrode active material containing manganese or iron, fibrous carbon, (meth) acrylic acid ester monomer polymerization units, vinyl monomer polymerization units having an acid component, and ⁇ , A binder comprising a polymer containing polymerized units of ⁇ -unsaturated nitrile monomer and a solvent are included.
  • a binder containing the positive electrode active material fibrous carbon, polymer unit of (meth) acrylate monomer, polymer unit of vinyl monomer having an acid component, and polymer unit of ⁇ , ⁇ -unsaturated nitrile monomer, those described above are used. Use.
  • the solvent is not particularly limited as long as it can uniformly dissolve or disperse the binder used in the present invention.
  • the solvent used for the positive electrode slurry either water or an organic solvent can be used.
  • organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; ketones such as acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
  • Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Tetrahydrofuran and Ethylene Ethers such as glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N-methyl Amides such as pyrrolidone and N, N-dimethylformamide are exemplified.
  • the binder used in the present invention is excellent in dispersibility
  • the electrode active material and the conductivity imparting agent are excellent in dispersibility
  • the solvent having a low boiling point and high volatility can be removed in a short time and at a low temperature.
  • Acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable.
  • water is particularly preferable as a solvent.
  • the solid content concentration of the secondary battery positive electrode slurry used in the present invention is not particularly limited as long as it can be applied and immersed and has a fluid viscosity, but is generally about 10 to 80% by mass. It is.
  • the secondary battery positive electrode slurry includes a positive electrode active material containing manganese or iron, fibrous carbon, a polymerization unit of a (meth) acrylate monomer, a polymerization unit of a vinyl monomer having an acid component, and ⁇ , ⁇ -In addition to a binder comprising a polymer comprising polymerized units of an unsaturated nitrile monomer and a solvent, the electrolytic agent having functions such as a dispersant used in the above-mentioned positive electrode for a secondary battery and an electrolytic solution decomposition suppression Other components such as a liquid additive may be contained. These are not particularly limited as long as they do not affect the battery reaction.
  • the method for producing the slurry for the secondary battery positive electrode is not particularly limited, and can be obtained by mixing the positive electrode active material, fibrous carbon, binder, and solvent and other components added as necessary. .
  • a positive electrode slurry in which the positive electrode active material and the fibrous carbon are highly dispersed can be obtained by using the above components regardless of the mixing method and the mixing order.
  • the mixing device is not particularly limited as long as it can uniformly mix the above components, and bead mill, ball mill, roll mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, fill mix, etc. Among them, it is particularly preferable to use a ball mill, a roll mill, a pigment disperser, a crusher, or a planetary mixer because dispersion at a high concentration is possible.
  • the viscosity of the positive electrode slurry is preferably 10 to 100,000 mPa ⁇ s, more preferably 100 to 50,000 mPa ⁇ s, from the viewpoints of uniform coatability and slurry aging stability.
  • the said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using a B-type viscometer.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution.
  • the positive electrode includes a positive electrode active material containing manganese or iron, fibrous carbon, and the binder on a current collector. It has a positive electrode active material layer formed.
  • Examples of the secondary battery include a lithium ion secondary battery and a nickel hydride secondary battery.
  • a lithium ion secondary battery is used as applications. Secondary batteries are preferred. Hereinafter, the case where it uses for a lithium ion secondary battery is demonstrated.
  • Electrode for lithium ion secondary battery As the electrolytic solution for the lithium ion secondary battery, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is used. A lithium salt is used as the supporting electrolyte.
  • the lithium salt is not particularly limited, LiPF 6, LiAsF 6, LiBF 4, LiSbF 6, LiAlCl 4, LiClO 4, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. Two or more of these may be used in combination. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolyte for the lithium ion secondary battery is not particularly limited as long as it can dissolve the supporting electrolyte, but dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene Carbonates such as carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, dimethyl sulfoxide Sulfur-containing compounds such as are preferably used. Moreover, you may use the liquid mixture of these solvents.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC butylene carbonate
  • MEC methyl ethyl carbonate
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-dime
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Since the lithium ion conductivity increases as the viscosity of the solvent used decreases, the lithium ion conductivity can be adjusted depending on the type of the solvent.
  • the electrolyte solution by adding an additive.
  • the additive include carbonate compounds such as vinylene carbonate (VC) used in the slurry for a secondary battery positive electrode.
  • the concentration of the supporting electrolyte in the electrolytic solution for a lithium ion secondary battery is usually 1 to 30% by mass, preferably 5 to 20% by mass.
  • the concentration is usually 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity tends to decrease.
  • a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, a gel polymer electrolyte obtained by impregnating the polymer electrolyte with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
  • separator for lithium ion secondary battery
  • known ones such as a microporous film or non-woven fabric made of polyolefin such as polyethylene and polypropylene; a porous resin coat containing inorganic ceramic powder; and the like can be used.
  • a separator for a lithium ion secondary battery a known one such as a microporous film or non-woven fabric containing a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Can do.
  • a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin
  • a porous resin coat containing an inorganic ceramic powder can do.
  • a polyolefin film polyethylene, polypropylene, polybutene, polyvinyl chloride
  • a microporous film made of a resin such as a mixture or copolymer thereof, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide
  • a microporous membrane made of a resin such as polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene, or a woven fabric of polyolefin fibers, a nonwoven fabric thereof, an aggregate of insulating substance particles, or the like.
  • a microporous film made of a polyolefin-based resin is preferable because the thickness of the entire separator can be reduced and the active material ratio in the battery can be increased to increase the capacity per volume.
  • the thickness of the separator is usually 0.5 to 40 ⁇ m, preferably 1 to 30 ⁇ m, and more preferably 1 to 10 ⁇ m. Within this range, the resistance due to the separator in the battery is reduced, and the workability during battery production is excellent.
  • the negative electrode for a lithium ion secondary battery is formed by laminating a negative electrode active material layer containing a negative electrode active material and a binder on a current collector.
  • Examples of the binder and the current collector are the same as those described for the positive electrode for the secondary battery.
  • Electrode active material for lithium ion secondary battery examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and high conductivity such as polyacene. Examples include molecules. Further, as the negative electrode active material, metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used.
  • the negative electrode active material a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can also be used.
  • the particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass.
  • the negative electrode for a lithium ion secondary battery further includes other components such as a dispersant used in the above-described positive electrode for a secondary battery and an electrolyte additive having a function of inhibiting decomposition of the electrolyte. May be included. These are not particularly limited as long as they do not affect the battery reaction.
  • the binder for the negative electrode of the lithium ion secondary battery is not particularly limited and a known binder can be used.
  • resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • polyacrylic acid derivatives polyacrylonitrile derivatives
  • acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.
  • the current collector used for the positive electrode for the secondary battery described above can be used, and is not particularly limited as long as it is an electrically conductive and electrochemically durable material. Copper is particularly preferable for the negative electrode of a lithium ion secondary battery.
  • the thickness of the lithium ion secondary battery negative electrode is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m. When the electrode thickness is in the above range, both load characteristics and energy density are high.
  • the lithium ion secondary battery negative electrode can be produced in the same manner as the above-described lithium ion secondary battery positive electrode.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery.
  • the method of injecting and sealing is mentioned. If necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • High-temperature cycle characteristics> A 10-cell full-cell coin-type battery was charged to 4.3 V by a constant current method of 0.2 C in an atmosphere of 60 ° C., and was repeatedly charged and discharged to 3.0 V, and the electric capacity was measured. Using the average value of 10 cells as the measured value, the charge / discharge capacity retention ratio represented by the ratio (%) of the electric capacity at the end of 50 cycles and the electric capacity at the end of 5 cycles is obtained, and this is used as an evaluation criterion for cycle characteristics. Evaluation is based on the following criteria. The higher this value, the better the high-temperature cycle characteristics. A: 80% or more B: 70% or more and less than 80% C: 50% or more and less than 70% D: 30% or more and less than 50% E: Less than 30%
  • ⁇ Binder properties storage stability> The obtained polymer aqueous dispersion is stored for 50 days in a cool dark place (the weight of the aqueous dispersion before storage is a). The polymer aqueous dispersion after the lapse of 50 days was filtered through 200 mesh, the dry weight of the solid matter remaining on the mesh was determined (the weight of the residue is b), and the weight of the aqueous dispersion before storage (a ) And the dry weight (b) of the solid matter remaining on the mesh, the ratio (%) is determined, and this is used as an evaluation criterion for the storage stability of the binder, and is evaluated according to the following criteria. The smaller this value, the better the storage stability of the binder. A: Less than 0.001% B: 0.001% or more and less than 0.01% C: 0.01% or more and less than 0.1% D: 0.1% or more
  • Example 1 Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, 0 parts of sodium lauryl sulfate were added to another polymerization vessel B.
  • the content of polymer units of (meth) acrylic acid ester monomer in binder A is 78%, the content of polymer units of vinyl monomer having an acid component is 2.0%, and the content of polymer units of ⁇ , ⁇ -unsaturated nitrile monomer The ratio was 20%, and the content ratio of the polymerized units having crosslinkability was 0%.
  • the positive electrode slurry is applied on an aluminum foil having a thickness of 20 ⁇ m with a comma coater so that the film thickness after drying becomes about 70 ⁇ m, dried at 60 ° C. for 20 minutes, and then heat-treated at 150 ° C. for 2 hours to form an electrode substrate.
  • This electrode original fabric was rolled with a roll press to produce a positive electrode plate with a density of 2.1 g / cm 3 and a thickness of aluminum foil and an electrode active material layer controlled to 65 ⁇ m. The occurrence of cracks was measured using the produced electrode plate. The results are shown in Table 1.
  • the positive electrode plate was cut into a disk shape with a diameter of 16 mm, a separator made of a disk-shaped porous polypropylene film with a diameter of 18 mm and a thickness of 25 ⁇ m on the active material layer side of the positive electrode, and metallic lithium used as the negative electrode
  • the expanded metal was laminated in order, and this was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A lithium ion coin battery having a thickness of 20 mm and a thickness of about 2 mm was produced.
  • Example 2 (A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, 0.
  • the obtained binder B had a glass transition temperature of ⁇ 32 ° C., a dispersed particle size of 0.15 ⁇ m, and an aqueous dispersion of binder B having a pH of 10.1.
  • Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion.
  • the content of polymer units of (meth) acrylic acid ester monomer is 78%
  • the content of polymer units of vinyl monomer having an acid component is 2.0%
  • the content of polymer units of ⁇ , ⁇ -unsaturated nitrile monomer The ratio was 20%
  • the content ratio of the polymerized units having crosslinkability was 0.2%.
  • a positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder B was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 3 As carbon fiber, instead of carbon fiber 1, 1 part of carbon fiber having an average fiber diameter of 50 nm, an average fiber length of 1 ⁇ m, and an average aspect ratio of 20 (hereinafter sometimes referred to as “carbon fiber 2”). A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that they were used. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 4 As carbon fiber, instead of carbon fiber 1, 1 part of carbon fiber having an average fiber diameter of 500 nm, an average fiber length of 100 ⁇ m, and an average aspect ratio of 200 (hereinafter sometimes referred to as “carbon fiber 3”). A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that they were used. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 5 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the number of parts used of the carbon fiber 1 was 5 parts. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 6 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the number of parts used of the carbon fiber 1 was 8 parts. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 7 As in the case of Example 1, except that 100 parts of spinel manganese (LiMn 2 O 4 ; Mn content 60%, average particle diameter 8 ⁇ m) was used in place of LiFePO 4 having an olivine type crystal structure as the positive electrode active material. A positive electrode plate and a lithium ion coin battery were prepared. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1. At this time, the density of the positive electrode active material layer was set to 2.5 g / cm 3 .
  • Example 8 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 7, except that the aqueous dispersion of binder B was used instead of the aqueous dispersion of binder A as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 9 (A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C.
  • Another polymerization vessel B was charged with 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, allyl glycidyl ether 0
  • the emulsion prepared by adding 2 parts, 0.7 parts of sodium lauryl sulfate and 46 parts of ion-exchanged water and stirring was sequentially added from polymerization vessel B to polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes.
  • the reaction is terminated by cooling, and then the pH is adjusted with 4% NaOH aqueous solution. An aqueous dispersion of -E was obtained.
  • the obtained binder E had a glass transition temperature of ⁇ 32 ° C., a dispersed particle size of 0.15 ⁇ m, and an aqueous dispersion of binder E having a pH of 10.1.
  • Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion.
  • binder E the content of polymer units of (meth) acrylic acid ester monomer is 78%, the content of polymer units of vinyl monomer having an acid component is 2.0%, the content of polymer units of ⁇ , ⁇ -unsaturated nitrile monomer The ratio was 20%, and the content ratio of the polymerized units having crosslinkability was 0.2%.
  • a positive electrode plate and a lithium ion coin battery were prepared in the same manner as in Example 1 except that the aqueous dispersion of binder E was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • the obtained binder F had a glass transition temperature of ⁇ 32 ° C., a dispersed particle size of 0.15 ⁇ m, and an aqueous dispersion of binder F having a pH of 10.1.
  • Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion.
  • the content of polymer units of (meth) acrylic acid ester monomer is 78%
  • the content of polymer units of vinyl monomer having an acid component is 2.0%
  • the content of polymer units of ⁇ , ⁇ -unsaturated nitrile monomer The proportion was 20%
  • the content of other polymerized units was 0.2%.
  • a positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder F was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 1 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 2 except that no carbon fiber was used. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • Example 2 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 8 except that no carbon fiber was used. And the high temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • the obtained binder C had a glass transition temperature of ⁇ 32 ° C., a dispersed particle size of 0.15 ⁇ m, and an aqueous dispersion of binder C having a pH of 10.1.
  • Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion.
  • the content of polymer units of (meth) acrylic acid ester monomer is 79%
  • the content of polymer units of vinyl monomer having an acid component is 0.8%
  • the content of polymer units of ⁇ , ⁇ -unsaturated nitrile monomer The ratio was 20%
  • the content ratio of the polymerized units having crosslinkability was 0.2%.
  • a positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder C was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • the emulsion prepared by adding 0.2 part, 0.7 part of sodium lauryl sulfate and 46 parts of ion-exchanged water and stirring the mixture was sequentially added from the polymerization vessel B to the polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes.
  • the reaction is terminated by cooling, and then the pH is adjusted with a 4% NaOH aqueous solution.
  • An aqueous dispersion of -D was obtained.
  • the obtained binder D had a glass transition temperature of ⁇ 32 ° C., a dispersed particle size of 0.15 ⁇ m, and an aqueous dispersion of binder D having a pH of 10.1.
  • Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion.
  • the content ratio of polymer units of (meth) acrylic acid ester monomer in binder D is 76.3%, polymer units of vinyl monomer having an acid component is 3.5%, polymer units of ⁇ , ⁇ -unsaturated nitrile monomer The content ratio of was 20%, and the content ratio of the crosslinkable polymer units was 0.2%.
  • a positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder D was used as the positive electrode binder. And the high temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
  • the positive electrode active materials containing manganese or iron, fibrous carbon, polymerized units of (meth) acrylic acid ester monomers, polymerized units of vinyl monomers having an acid component, and ⁇ in Examples 1 to 10 In a positive electrode for a secondary battery having a positive electrode active material layer containing a binder composed of a polymer containing polymerized units of ⁇ , unsaturated nitrile monomer, the occurrence of cracks in the positive electrode active material layer can be prevented That is, it can be seen that the safety is improved and the high-temperature cycle characteristics of the battery are good.
  • the binder has good storage stability.
  • the comparative example using what the content rate of the polymerization unit of the vinyl monomer which has the acid component in the positive electrode for secondary batteries and binder of the comparative examples 1 and 2 which does not contain fibrous carbon is less than 1.0 mass%.
  • the positive electrode for secondary battery of Comparative Example 4 using 3 or more than 3.0% by mass it was difficult to prevent the occurrence of cracks in the positive electrode active material layer, and the high-temperature cycle characteristics of the battery were deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a positive electrode for a secondary battery, which can be formed into a thick film and is capable of preventing occurrence of cracks. The positive electrode for a secondary battery is capable of providing a secondary battery that has improved cycle characteristics (especially high-temperature cycle characteristics) and improved safety. Specifically disclosed is a positive electrode for a secondary battery, which is characterized by being composed of a collector and a positive electrode active material layer that is arranged on the collector and contains fibrous carbon, a binder and a positive electrode active material containing manganese or iron. The positive electrode for a secondary battery is also characterized in that the binder is composed of a polymer that contains a (meth)acrylate monomer polymerization unit, a vinyl monomer polymerization unit having an acid component and an α,β-unsaturated nitrile monomer polymerization unit, and the content of the vinyl monomer polymerization unit having an acid component is 1.0-3.0% by mass of the total polymerization units of the polymer.

Description

二次電池用正極及び二次電池Positive electrode for secondary battery and secondary battery
 本発明は、二次電池用正極に関し、さらに詳しくはリチウムイオン二次電池などに用いられる、高いレート特性とサイクル特性を有する二次電池用正極に関する。また本発明は、かかる電極を有する二次電池に関する。 The present invention relates to a positive electrode for a secondary battery, and more particularly to a positive electrode for a secondary battery having high rate characteristics and cycle characteristics used for a lithium ion secondary battery and the like. The present invention also relates to a secondary battery having such an electrode.
 実用化されている電池の中でも、リチウムイオン二次電池は最も高いエネルギー密度を示し、特に小型エレクトロニクス用に多く使用されている。また、小型用途に加えて自動車用途への展開も期待されている。その中で、リチウムイオン二次電池の高出力化や、サイクル特性などの信頼性のさらなる向上が要望されている。 Among the batteries in practical use, lithium ion secondary batteries exhibit the highest energy density, and are often used especially for small electronics. In addition to small-sized applications, it is also expected to expand to automotive applications. Among them, there is a demand for higher output of lithium ion secondary batteries and further improvement in reliability such as cycle characteristics.
 リチウムイオン二次電池の構成材料である正極活物質は、主流として用いられているコバルト系活物質の価格高騰及び埋蔵量に限りがあるといった点から、安価なマンガン、ニッケルを含有する活物質への移行が進んでいる。しかし、今後主流となることが予想されるマンガン系活物質においては、高温、特に40℃以上において、充放電を繰り返すとマンガンイオンが電解液中に溶出し、結果として電池容量が低下することが大きな課題となっている。 The positive electrode active material, which is a constituent material of lithium ion secondary batteries, has become a cheap active material containing manganese and nickel because the price of cobalt-based active materials used as the mainstream and the reserves are limited. The transition is progressing. However, in manganese-based active materials that are expected to become mainstream in the future, repeated charge and discharge at high temperatures, particularly 40 ° C or higher, may elute manganese ions into the electrolyte, resulting in a decrease in battery capacity. It has become a big issue.
 また、正極から溶出したマンガンイオンが負極表面において還元され析出することにより、樹状の金属析出物を形成し、これがセパレーターを破損することで、電池としての安全性が低下することも大きな問題とされている。 In addition, manganese ions eluted from the positive electrode are reduced and deposited on the negative electrode surface, thereby forming a dendritic metal precipitate, which damages the separator and lowers the safety as a battery. Has been.
 また、リチウムイオン二次電池に用いられる電極は、通常、電極活物質層が集電体に積層された構造を有しており、電極活物質層には、電極活物質の他に電極活物質同士及び電極活物質と集電体とを結着させるためバインダーが用いられている。 In addition, an electrode used in a lithium ion secondary battery usually has a structure in which an electrode active material layer is laminated on a current collector, and the electrode active material layer includes an electrode active material in addition to the electrode active material. A binder is used to bind each other and the electrode active material and the current collector.
 特許文献1には、正極活物質としてオリビン型構造を有するLiFePO、炭素及びバインダーとして(メタ)アクリル酸エステルとα,β-不飽和ニトリル化合物との共重合体を含む正極が記載されている。 Patent Document 1 describes a positive electrode containing LiFePO 4 having an olivine structure as a positive electrode active material, carbon and a copolymer of (meth) acrylic acid ester and an α, β-unsaturated nitrile compound as a binder. .
 また、特許文献2には、正極活物質としてオリビン型結晶構造を有するLiFePO、炭素繊維、バインダーとしてポリビニリデンフルオライド(PVDF)を含む正極が記載されている。 Patent Document 2 describes a positive electrode containing LiFePO 4 having an olivine crystal structure as a positive electrode active material, carbon fiber, and polyvinylidene fluoride (PVDF) as a binder.
WO2006/038652号公報(対応米国公報:米国特許出願公開第2008/096109号明細書)WO 2006/038652 (corresponding US publication: US Patent Application Publication No. 2008/096109) 特開2005-222933号公報(対応米国公報:米国特許出願第2007/275302号明細書)JP 2005-222933 A (corresponding US publication: US Patent Application No. 2007/275302)
 しかしながら、本発明者らの検討により、特許文献1において、正極活物質として使用されているオリビン型構造を有するLiFePOは、正極活物質としては粒径が小さいため、正極活物質層を厚膜化すると、クラックが発生するという問題があることがわかった。また、特許文献2の正極では、上述した正極活物質にマンガン系活物質を用いる場合と同様に、高温下で充放電を繰り返すと鉄イオンが電解液中に溶出し、結果として電池容量が低下するという問題があること、並びに、溶出した鉄イオンが負極表面に樹状析出することにより、電池の安全性が低下するという問題があることがわかった。 However, according to the study by the present inventors, in Patent Document 1, LiFePO 4 having an olivine structure used as the positive electrode active material has a small particle size as the positive electrode active material, and thus the positive electrode active material layer is formed as a thick film. It has been found that there is a problem that cracks occur when it is converted. Further, in the positive electrode of Patent Document 2, as in the case where a manganese-based active material is used as the positive electrode active material described above, when charging / discharging is repeated at a high temperature, iron ions are eluted into the electrolytic solution, resulting in a decrease in battery capacity. It has been found that there is a problem that the safety of the battery is reduced due to the problem that the eluted iron ions are dendritically deposited on the negative electrode surface.
 したがって、本発明は、厚膜化が可能であり、クラックの発生を防止することができ、得られる二次電池のサイクル特性(特に高温サイクル特性)及び安全性を向上させることができる二次電池用正極を提供することを目的としている。また、本発明は、該二次電池用正極を備える二次電池を提供することを目的としている。 Therefore, the present invention can increase the film thickness, prevent the occurrence of cracks, and improve the cycle characteristics (especially high temperature cycle characteristics) and safety of the obtained secondary battery. The purpose is to provide a positive electrode for use. Moreover, this invention aims at providing a secondary battery provided with this positive electrode for secondary batteries.
 このような課題の解決を目的とした本発明の要旨は以下のとおりである。
(1)集電体と、前記集電体上に積層され、マンガンまたは鉄を含む正極活物質、繊維状炭素、およびバインダーを含有してなる正極活物質層とからなり、
 前記バインダーが、(メタ)アクリル酸エステルモノマーの重合単位と、酸成分を有するビニルモノマーの重合単位と、α,β-不飽和ニトリルモノマーの重合単位とを含んでなる重合体からなり、
 前記酸成分を有するビニルモノマーの重合単位の含有割合が、重合体の全重合単位中1.0~3.0質量%である二次電池用正極。
The gist of the present invention aimed at solving such problems is as follows.
(1) A current collector and a positive electrode active material layer that is laminated on the current collector and contains manganese or iron, fibrous carbon, and a binder.
The binder comprises a polymer comprising a polymer unit of a (meth) acrylic acid ester monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an α, β-unsaturated nitrile monomer,
A positive electrode for a secondary battery, wherein a content ratio of polymer units of the vinyl monomer having an acid component is 1.0 to 3.0% by mass in all polymer units of the polymer.
(2)前記正極活物質が、鉄を含み、更にオリビン型構造を有する(1)に記載の二次電池用正極。 (2) The positive electrode for a secondary battery according to (1), wherein the positive electrode active material contains iron and further has an olivine structure.
(3)前記繊維状炭素の平均繊維径が、0.01~1.0μmである(1)または(2)に記載の二次電池用正極。 (3) The positive electrode for a secondary battery according to (1) or (2), wherein the fibrous carbon has an average fiber diameter of 0.01 to 1.0 μm.
(4)前記繊維状炭素の平均アスペクト比が、5~50000である(1)~(3)のいずれかに記載の二次電池用正極。 (4) The positive electrode for a secondary battery according to any one of (1) to (3), wherein the fibrous carbon has an average aspect ratio of 5 to 50000.
(5)前記酸成分を有するビニルモノマーが、カルボン酸基を有する単量体である(1)~(4)のいずれかに記載の二次電池用正極。 (5) The positive electrode for a secondary battery according to any one of (1) to (4), wherein the vinyl monomer having an acid component is a monomer having a carboxylic acid group.
(6)前記バインダーが、さらに架橋性を有する重合単位を含む(1)~(5)のいずれかに記載の二次電池用正極。 (6) The positive electrode for a secondary battery according to any one of (1) to (5), wherein the binder further contains a polymer unit having crosslinkability.
(7)正極、負極、セパレーター及び電解液を備えてなり、前記正極が、(1)~(6)のいずれかに記載の二次電池用正極である二次電池。 (7) A secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolytic solution, wherein the positive electrode is the positive electrode for a secondary battery according to any one of (1) to (6).
 本発明によれば、正極活物質層に繊維状炭素を含有させることによって、正極活物質層の靱性を向上させることができるため、正極活物質層のクラックの発生を防止し、正極活物質層を厚くすることができる。また、正極活物質層に含有させるバインダーが、(メタ)アクリル酸エステルモノマーの重合単位、酸成分を有するビニルモノマーの重合単位及びα,β-不飽和ニトリルモノマーの重合単位を含んでなる重合体であり、酸成分を有するビニルモノマーの重合単位の含有割合を所定の割合とすることで、正極活物質より溶出した金属イオン(マンガンイオンまたは鉄イオン)を捕捉することができるため、二次電池のサイクル特性(特に高温サイクル特性)及び安全性が向上する。 According to the present invention, by including fibrous carbon in the positive electrode active material layer, the toughness of the positive electrode active material layer can be improved, so that the generation of cracks in the positive electrode active material layer is prevented, and the positive electrode active material layer Can be thickened. In addition, the binder contained in the positive electrode active material layer includes a polymer comprising a polymer unit of a (meth) acrylate monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an α, β-unsaturated nitrile monomer. Since the metal ion (manganese ion or iron ion) eluted from the positive electrode active material can be captured by setting the content ratio of the polymerization unit of the vinyl monomer having an acid component to a predetermined ratio, the secondary battery Cycle characteristics (especially high-temperature cycle characteristics) and safety are improved.
 以下に本発明を詳述する。本発明の二次電池用正極は、集電体上に、マンガンまたは鉄を含む正極活物質と、繊維状炭素と、バインダーとを含有してなる正極活物質層を有する。 The present invention is described in detail below. The positive electrode for secondary batteries of the present invention has a positive electrode active material layer containing a positive electrode active material containing manganese or iron, fibrous carbon, and a binder on a current collector.
(正極活物質)
 本発明で用いられる正極活物質としては、マンガンまたは鉄を含み可逆的にリチウムイオンを挿入・放出できれば特に制限されないが、中でもリチウム含有遷移金属酸化物が好ましい。
(Positive electrode active material)
The positive electrode active material used in the present invention is not particularly limited as long as it contains manganese or iron and can reversibly insert and release lithium ions. Among them, a lithium-containing transition metal oxide is preferable.
 マンガンを含むリチウム含有遷移金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。 Examples of the lithium-containing transition metal oxide containing manganese include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
 層状構造を有するリチウム含有複合金属酸化物としては、LiMnOやMnの一部を他の遷移金属で置換したLi[Mn1-y]O(ここでx=0.02~1.2、0<y<1、Mは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。 The lithium-containing composite metal oxide having a layered structure, Li X obtained by replacing a part of LiMnO 2 and Mn in other transition metals [Mn y M 1-y] O 2 ( where x = 0.02 ~ 1 .2, 0 <y <1, M is Cr, Fe, Co, Ni, Cu, etc.).
 スピネル構造を有するリチウム含有複合金属酸化物としては、LiMnやMnの一部を他の遷移金属で置換したLi[Mn2-y]O(ここでx=0.02~1.2、0<y<2、Mは、Cr、Fe、Co、Ni、Cu、V等)等が挙げられる。 The lithium-containing composite metal oxide having a spinel structure, Li X [Mn y M 2 -y] O 4 ( where x = 0.02 obtained by substituting a part of LiMn 2 O 4 and Mn in other transition metals -1.2, 0 <y <2, M is Cr, Fe, Co, Ni, Cu, V, etc.).
 オリビン型構造を有するリチウム含有複合金属酸化物としてはLiMnPOやMnの一部を他の遷移金属で置換したLiMn1-yPO(ここでx=0.02~1.2、0<y<1、Mは、Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種)であらわされるオリビン型燐酸リチウム化合物が挙げられる。 Examples of the lithium-containing composite metal oxide having an olivine structure include Li x MnPO 4 and Li x Mn y M 1-y PO 4 in which a part of Mn is substituted with another transition metal (where x = 0.02 to 1 .2, 0 <y <1, M is at least one selected from Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo) Olivine type lithium phosphate compound.
 これらの中でも特にMnイオンの溶出によるサイクル劣化が起こりやすい層状構造を有するLiMnOとその置換物、スピネル構造を有するLiMnとその置換物が、最も好ましくはスピネル構造を有するLiMnとその置換物が、本発明の二次電池のサイクル特性の向上効果が大きい。本発明においては、上記正極活物質を2種以上使用してもよく、またマンガンを含有する正極活物質とマンガンを含有しない正極活物質の混合であっても構わない。更にはマンガンの含有量が多いほどMnイオンの溶出によるサイクル劣化が起こりやすいため、本発明の二次電池用正極によるサイクル特性の向上効果が大きい。本発明において、正極活物質中のマンガン含有量は、好ましくは10~80質量%であり、更に好ましくは15~65質量%である。正極活物質中のマンガン含有量を、前記範囲にすることにより、本発明におけるバインダーの酸成分によるマンガンイオンの捕捉効果が顕著に現れる。 Among these, LiMnO 2 having a layered structure that easily undergoes cycle deterioration due to elution of Mn ions and its substitute, LiMn 2 O 4 having a spinel structure and its substitute, most preferably LiMn 2 O 4 having a spinel structure. And the substitution thereof has a great effect of improving the cycle characteristics of the secondary battery of the present invention. In the present invention, two or more positive electrode active materials may be used, or a mixture of a positive electrode active material containing manganese and a positive electrode active material not containing manganese may be used. Furthermore, since the cycle deterioration due to elution of Mn ions is more likely to occur as the manganese content increases, the effect of improving the cycle characteristics by the positive electrode for secondary batteries of the present invention is greater. In the present invention, the manganese content in the positive electrode active material is preferably 10 to 80% by mass, more preferably 15 to 65% by mass. By setting the manganese content in the positive electrode active material within the above range, the manganese ion scavenging effect by the acid component of the binder in the present invention remarkably appears.
 鉄を含むリチウム含有遷移金属酸化物としては、LiFeXO(ここでXは、周期表の第4族~第7族、及び第14族~第17族の元素から選ばれる少なくとも一種の元素を表す。yは、0<y<2である。)が挙げられる。 Examples of the lithium-containing transition metal oxide containing iron include Li y FeXO 4 (where X is at least one element selected from elements of Groups 4 to 7 and Groups 14 to 17 of the periodic table). Y represents 0 <y <2.).
 上記の鉄を含むリチウム含有遷移金属酸化物は、通常、四面体サイトに元素Xが位置し、リチウムは、鉄と共に八面体サイトに位置する構造を有する。上記正極活物質の構造は、サイトまで表記すると{X}・[LiFe]Oと示される(ここで{}内は四面体サイト、[]内は八面体サイトを示す)が、このような構造を与える元素Xとしては、例えば、バナジウムなどの第5族元素や、リン、ヒ素、アンチモン、ビスマスなどの第15族元素が好ましい。 The lithium-containing transition metal oxide containing iron usually has a structure in which the element X is located at a tetrahedral site and lithium is located at an octahedral site together with iron. The structure of the positive electrode active material is represented as {X} · [Li y Fe] O 4 when expressed up to the site (where {} indicates a tetrahedral site and [] indicates an octahedral site). As the element X which gives such a structure, for example, a Group 5 element such as vanadium or a Group 15 element such as phosphorus, arsenic, antimony, or bismuth is preferable.
 上記の鉄を含むリチウム含有遷移金属酸化物は、六方密充填酸素骨格を持つオリビン型構造または立方密充填酸素骨格を持つスピネルもしくは逆スピネル構造であることが好ましく、オリビン型構造であることが特に好ましい。オリビン型構造と逆スピネルを含めたスピネル構造との違いは酸素イオンが六方密充填か立方密充填かであり、Xの元素の種類によってその安定構造が変わる。例えば、LiFePOではオリビン型構造が安定で、LiFeVOでは逆スピネル構造が安定相となる。 The lithium-containing transition metal oxide containing iron preferably has an olivine structure having a hexagonal close-packed oxygen skeleton or a spinel or inverse spinel structure having a cubic close-packed oxygen skeleton, and particularly preferably an olivine-type structure. preferable. The difference between the olivine structure and the spinel structure including the reverse spinel is whether the oxygen ions are hexagonal close packed or cubic close packed, and the stable structure varies depending on the type of element of X. For example, LiFePO 4 has a stable olivine structure, and LiFeVO 4 has a reverse spinel structure as a stable phase.
 オリビン型構造またはスピネル構造を有するLiFeXOは、リチウム化合物、2価の鉄化合物及び元素(X)のアンモニウム塩を混合し、次いで不活性ガス雰囲気下、または還元雰囲気下に焼成することにより製造することができる。リチウム化合物としては、LiCO、LiOH、LiNOなどを挙げることができる。 Li y FeXO 4 having an olivine type structure or a spinel structure is prepared by mixing a lithium compound, a divalent iron compound and an ammonium salt of element (X), and then firing in an inert gas atmosphere or a reducing atmosphere. Can be manufactured. Examples of the lithium compound include Li 2 CO 3 , LiOH, LiNO 3 and the like.
 2価の鉄化合物の具体例としては、FeC・2HO、Fe(CHCOO)、FeClなどが挙げられる。元素(X)のアンモニウム塩の具体例としては、(NHHPO、NHPO、(NHPOなどのリン酸塩;NHHSO、(NHSOなどの硫酸塩;などが挙げられる。 Specific examples of the divalent iron compound include FeC 2 O 4 .2H 2 O, Fe (CH 3 COO) 2 , FeCl 2 and the like. Specific examples of the ammonium salt of element (X) include phosphates such as (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , (NH 4 ) 3 PO 4 ; NH 4 HSO 4 , (NH 4 ) 2 sulfates such as SO 4 ; and the like.
 また、上記の他に、ナシコン型構造を有する鉄化合物も正極活物質として用いることができる。ナシコン型鉄化合物としては、具体的には、LiFe2-n(XO(式中、0≦n<2、好ましくは0≦n≦1である。)で表される化合物が挙げられる。 In addition to the above, an iron compound having a NASICON structure can also be used as the positive electrode active material. The NASICON type iron compound is specifically represented by Li 2 Fe 2-n V n (XO 4 ) 3 (where 0 ≦ n <2, preferably 0 ≦ n ≦ 1). Compounds.
 これらの中でも特に、小粒径の正極活物質を用いた電極を歩留まり良く作製できるという発明の効果の発現という点においては、オリビン型構造の鉄化合物がより好ましい。 Among these, an olivine-type iron compound is more preferable in terms of manifesting the effect of the invention that an electrode using a positive electrode active material having a small particle diameter can be produced with good yield.
  本発明の二次電池用正極の正極活物質層中に含まれる正極活物質の量は、好ましくは80~99.5質量%であり、より好ましくは90~99質量%である。正極活物質の量が99.5質量%を超えると、正極活物質層中のバインダー及び導電性付与剤の比率が小さくなるため、正極活物質同士の結着性や正極活物質と後述する集電体との結着性が低下すると共に、電池の出力特性が低下する場合がある。また、正極活物質の量が80質量%未満であると、電池容量が低下する場合がある。 The amount of the positive electrode active material contained in the positive electrode active material layer of the positive electrode for a secondary battery of the present invention is preferably 80 to 99.5% by mass, more preferably 90 to 99% by mass. When the amount of the positive electrode active material exceeds 99.5% by mass, the ratio of the binder and the conductivity-imparting agent in the positive electrode active material layer becomes small. While the binding property with an electric body falls, the output characteristic of a battery may fall. Further, when the amount of the positive electrode active material is less than 80% by mass, the battery capacity may be reduced.
  本発明の二次電池用正極の正極活物質層中に含まれる正極活物質の粒径(平均粒子径)は、好ましくは0.01~10μm、より好ましくは0.02~5μmである。正極活物質の粒径が10μmを超えると、スラリー中での分散性が低下し、良好なスラリーを製造することが困難となる。また、正極活物質の粒径が0.01μm未満であると、活物質の導電性が低下し、電池の内部抵抗が大きくなる場合がある。 粒径 The particle size (average particle size) of the positive electrode active material contained in the positive electrode active material layer of the positive electrode for secondary battery of the present invention is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm. When the particle diameter of the positive electrode active material exceeds 10 μm, the dispersibility in the slurry is lowered, and it becomes difficult to produce a good slurry. Moreover, when the particle size of the positive electrode active material is less than 0.01 μm, the conductivity of the active material may be reduced, and the internal resistance of the battery may be increased.
(繊維状炭素)
 本発明では、繊維状炭素を用いる。繊維状炭素を用いることにより、正極活物質層の靱性を向上させることができるため、正極活物質層のクラックの発生を防止し、正極活物質層を厚くすることができる。その結果、本発明の二次電池用正極を用いた二次電池の安全性を向上させることができる。
 本発明で用いられる繊維状炭素は繊維状であれば本発明の効果を奏することができるが、繊維状炭素の繊維径が大きすぎると電極内の空隙が大きくなり電極密度を高くできないため好ましくない。また繊維径が小さすぎると活物質粒子間に埋没し、電極内のネットワークを形成できず、また活物質間の空隙生成が不能となるため好ましくない。以上の理由から本発明の二次電池用正極に使用することのできる繊維状炭素の平均繊維径は、好ましくは0.01~1.0μm、より好ましくは0.01~0.2μmである。繊維状炭素の平均繊維経が上記範囲のものを使用することにより、後述する二次電池正極用スラリーの分散安定性が向上すると共に、高容量の二次電池を作製することができる。
(Fibrous carbon)
In the present invention, fibrous carbon is used. By using fibrous carbon, the toughness of the positive electrode active material layer can be improved, so that the generation of cracks in the positive electrode active material layer can be prevented and the positive electrode active material layer can be thickened. As a result, the safety of the secondary battery using the positive electrode for secondary battery of the present invention can be improved.
If the fibrous carbon used in the present invention is fibrous, the effect of the present invention can be achieved. However, if the fiber diameter of the fibrous carbon is too large, voids in the electrode become large and the electrode density cannot be increased, which is not preferable. . On the other hand, if the fiber diameter is too small, it is not preferable because it is buried between the active material particles, a network in the electrode cannot be formed, and void formation between the active materials becomes impossible. For the above reasons, the average fiber diameter of the fibrous carbon that can be used in the positive electrode for secondary battery of the present invention is preferably 0.01 to 1.0 μm, more preferably 0.01 to 0.2 μm. By using a fiber carbon having an average fiber diameter in the above range, the dispersion stability of the secondary battery positive electrode slurry described later can be improved, and a high-capacity secondary battery can be produced.
 繊維状炭素の結晶化度(いわゆる黒鉛化度)は、高い方が好ましい。一般的に炭素材料の黒鉛化度が高いほど、層状構造が発達し、より硬くなり、また導電性も向上するため、二次電池用正極の使用に適している。炭素材料を黒鉛化するには一般的に高温で処理すればよく、その場合の処理温度としては、用いる繊維状炭素によっても異なるが、2000℃以上が好ましく、2500℃以上がさらに好ましい。また、この場合、黒鉛化度を促進させる働きのある黒鉛化助触媒であるホウ素やSiなどを熱処理前に添加しておくことが有効である。助触媒の添加量は特に限定されないが、添加量が少なすぎると効果がでず、多すぎると不純物として残るため好ましくない。好ましい添加量は0.1~100000ppmであり、さらに好ましくは10~50000ppmである。 The higher the degree of crystallinity (so-called graphitization) of fibrous carbon is preferable. In general, the higher the degree of graphitization of the carbon material, the more the layered structure develops, the harder the carbon material is, and the higher the conductivity is. Therefore, it is suitable for use as a positive electrode for a secondary battery. In order to graphitize the carbon material, it is generally sufficient to treat it at a high temperature. In this case, the treatment temperature varies depending on the fibrous carbon used, but is preferably 2000 ° C. or higher, and more preferably 2500 ° C. or higher. In this case, it is effective to add boron or Si, which is a graphitization cocatalyst that works to promote the degree of graphitization, before the heat treatment. The addition amount of the cocatalyst is not particularly limited, but if the addition amount is too small, the effect is not obtained, and if it is too much, it remains as an impurity, which is not preferable. A preferable addition amount is 0.1 to 100,000 ppm, and more preferably 10 to 50,000 ppm.
 これら繊維状炭素の結晶化度は特に限定されないが、X線回折法による平均面間隔d002が、好ましくは0.344nm以下、より好ましくは0.339nm以下であって、結晶のC軸方向の厚さLcが40nm以下のものである。 The degree of crystallinity of these fibrous carbons is not particularly limited, but the average interplanar distance d 002 by X-ray diffraction method is preferably 0.344 nm or less, more preferably 0.339 nm or less, and the crystallinity in the C-axis direction of the crystal The thickness Lc is 40 nm or less.
 繊維状炭素の繊維長は、長いほど電極内の導電性、電極の強度、電解液保液性が増して好ましいが、長すぎると、電極内の繊維分散性が損なわれるため好ましくない。平均繊維長の範囲は、用いる繊維状炭素の種類や繊維径によっても異なるが、好ましくは0.5~100μm、より好ましくは1~50μmである。この平均繊維長の好ましい範囲を平均アスペクト比(平均繊維径に対する平均繊維長の割合)で示すと、5~50000の範囲であり、10~15000の範囲がさらに好ましい。繊維状炭素の平均繊維長及び平均アスペクト比が上記範囲のものを使用することにより、後述する二次電池正極用スラリーの分散安定性が向上すると共に、正極活物質層のクラック抑制効果及び正極活物質層における導電パスとしての効果をより高めることができる。 The longer the fiber length of the fibrous carbon, the better the conductivity in the electrode, the strength of the electrode, and the electrolyte solution retention, but if it is too long, the fiber dispersibility in the electrode is impaired. The range of the average fiber length varies depending on the type of fibrous carbon used and the fiber diameter, but is preferably 0.5 to 100 μm, more preferably 1 to 50 μm. A preferred range of this average fiber length is expressed in terms of an average aspect ratio (ratio of average fiber length to average fiber diameter), which is in the range of 5 to 50000, and more preferably in the range of 10 to 15000. By using a fiber carbon having an average fiber length and an average aspect ratio within the above ranges, the dispersion stability of a slurry for a secondary battery positive electrode, which will be described later, is improved, and the effect of suppressing cracks in the positive electrode active material layer and the positive electrode active The effect as a conductive path in the material layer can be further enhanced.
 繊維状炭素に枝分かれ(分岐状)したものが含まれていると、電極全体の導電性、電極の強度、電解液保液性がさらに増すため好ましい。但し、分岐状繊維が多すぎると繊維長と同様に、電極内の分散性が損なわれるため、適度な割合で含まれていることが好ましい。これらの分岐状繊維の割合は製造方法やその後の粉砕処理である程度制御できる。 It is preferable that the fibrous carbon is branched (branched) because the conductivity of the whole electrode, the strength of the electrode, and the electrolyte solution retention are further increased. However, if there are too many branched fibers, the dispersibility in the electrode is impaired as in the fiber length. The proportion of these branched fibers can be controlled to some extent by the production method and the subsequent pulverization treatment.
 繊維状炭素の製造方法は特に限定されず、例えば、繊維状に紡糸させた高分子やピッチからなるプリカーサーを熱処理する方法や、ベンゼン等の有機物蒸気を1000℃程度の基板上に直接流し、鉄微粒子等を触媒として炭素結晶を成長させる方法(気相成長法)などが挙げられる。 The method for producing fibrous carbon is not particularly limited. For example, a method of heat-treating a precursor made of a polymer or pitch spun into a fiber, an organic vapor such as benzene is directly flowed on a substrate at about 1000 ° C., and iron Examples thereof include a method of growing carbon crystals using fine particles as a catalyst (vapor phase growth method).
 繊維状炭素の含有量は、正極活物質、バインダー及び必要に応じて配合する増粘剤の合計量に対して、好ましくは0.05~20質量%、より好ましくは0.1~15質量%、特に好ましくは0.5~10質量%である。含有量が20質量%を超えると、電極中の活物質比率が小さくなるため、電池容量が小さくなる。含有量が0.05質量%未満では電極のクラック発生を抑制することが困難である。含有量を上記範囲に調整するには、製法において同比率となるように添加することにより行うことができる。 The content of fibrous carbon is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass with respect to the total amount of the positive electrode active material, the binder and the thickener to be blended as necessary. Particularly preferred is 0.5 to 10% by mass. When the content exceeds 20% by mass, the active material ratio in the electrode becomes small, so that the battery capacity becomes small. If the content is less than 0.05% by mass, it is difficult to suppress the generation of cracks in the electrode. In order to adjust the content to the above range, it can be carried out by adding the same ratio in the production method.
 繊維状炭素は、電極中での分散状態を制御するために表面処理したものも用いることができる。表面処理の方法は特に限定されないが、酸化処理により含酸素官能基を導入し親水性にしたものや、フッ化処理やシリコン処理により疎水性にしたものが挙げられる。また、フェノール樹脂等のコーティングやメカノケミカル処理等も挙げられる。表面処理しすぎると、繊維状炭素の導電性や強度を著しく損なうことになるため、適度な処理が必要である。酸化処理は、例えば、繊維状炭素を空気中で、500℃、1時間程度加熱することにより行うことができる。この処理により繊維状炭素の親水性度が向上する。 Fibrous carbon that has been surface-treated to control the dispersion state in the electrode can also be used. The surface treatment method is not particularly limited, and examples thereof include those made hydrophilic by introducing an oxygen-containing functional group by oxidation treatment, and those made hydrophobic by fluorination treatment or silicon treatment. In addition, a phenol resin coating or a mechanochemical treatment may be used. If the surface treatment is too much, the conductivity and strength of the fibrous carbon will be remarkably impaired, and appropriate treatment is required. The oxidation treatment can be performed, for example, by heating fibrous carbon in air at 500 ° C. for about 1 hour. This treatment improves the hydrophilicity of the fibrous carbon.
(バインダー)
 本発明の二次電池用正極は、バインダー中に、(メタ)アクリル酸エステルモノマーの重合単位と、酸成分を有するビニルモノマーの重合単位と、α,β-不飽和ニトリルモノマーの重合単位とを含む。具体的には、前記バインダーとしての重合体中に、前記各重合単位を含むことを特徴とする。
(binder)
The positive electrode for a secondary battery of the present invention comprises, in a binder, a polymer unit of a (meth) acrylate monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an α, β-unsaturated nitrile monomer. Including. Specifically, the polymer as the binder includes the respective polymer units.
 本発明において(メタ)アクリル酸エステルモノマーの重合単位としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステルが挙げられる。これらの中でも、電解液に溶出せずに電解液への適度な膨潤によるリチウムイオンの伝導性を示すこと、加えて活物質の分散においてポリマーによる橋架け凝集を起こしにくいことから、非カルボニル性酸素原子に結合するアルキル基の炭素数が7~13のアクリル酸アルキルエステルである、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレートが好ましく、非カルボニル性酸素原子に結合するアルキル基の炭素数が8~10のオクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレートがより好ましい。 In the present invention, polymerization units of (meth) acrylic acid ester monomer include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl Acrylic acid alkyl esters such as acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl meta Relate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, methacrylic acid alkyl esters such as stearyl methacrylate. Among these, non-carbonyl oxygen is shown because it exhibits lithium ion conductivity by moderate swelling into the electrolyte without eluting into the electrolyte, and in addition, it is difficult to cause bridging aggregation by the polymer in the dispersion of the active material. Heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate and lauryl acrylate, which are alkyl acrylates having 7 to 13 carbon atoms in the alkyl group bonded to the atom, are preferred, and bonded to a non-carbonyl oxygen atom More preferred are octyl acrylate, 2-ethylhexyl acrylate, and nonyl acrylate having 8 to 10 carbon atoms in the alkyl group.
 本発明において酸成分を有するビニルモノマーの重合単位として好ましいものとしては、-COOH基(カルボン酸基)を有する単量体、-OH基(水酸基)を有する単量体、-SOH基(スルホン酸基)を有する単量体、-PO基を有する単量体、-PO(OH)(OR)基(Rは炭化水素基を表す)を有する単量体、及び低級ポリオキシアルキレン基を有する単量体が挙げられる。 In the present invention, preferred as a polymerization unit of a vinyl monomer having an acid component is a monomer having a —COOH group (carboxylic acid group), a monomer having an —OH group (hydroxyl group), a —SO 3 H group ( A monomer having a sulfonic acid group), a monomer having a —PO 3 H 2 group, a monomer having a —PO (OH) (OR) group (R represents a hydrocarbon group), and a lower polyoxy Examples include monomers having an alkylene group.
 カルボン酸基を有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、その酸無水物、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。 Examples of the monomer having a carboxylic acid group include monocarboxylic acid and derivatives thereof, dicarboxylic acid, acid anhydrides thereof, and derivatives thereof. Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid. Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, β-diaminoacrylic acid, and the like. Can be mentioned. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like. Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride. Dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid and the like methyl allyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
 水酸基を有する単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-(C2nO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。 Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2 Ethylenic acid such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate Alkanol esters of unsaturated carboxylic acids; general formula CH 2 ═CR 1 —COO— (C n H 2n O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4, R 1 is hydrogen Or an ester of a polyalkylene glycol represented by (meth) acrylic acid represented by 2-hydro; Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as cyethyl-2 ′-(meth) acryloyloxyphthalate, 2-hydroxyethyl-2 ′-(meth) acryloyloxysuccinate; 2-hydroxyethyl vinyl ether; Vinyl ethers such as 2-hydroxypropyl vinyl ether; (meth) allyl-2-hydroxyethyl ether, (meth) allyl-2-hydroxypropyl ether, (meth) allyl-3-hydroxypropyl ether, (meth) allyl-2- Mono (meth) allyl ethers of alkylene glycols such as hydroxybutyl ether, (meth) allyl-3-hydroxybutyl ether, (meth) allyl-4-hydroxybutyl ether, (meth) allyl-6-hydroxyhexyl ether Polyoxyalkylene glycol (meth) monoallyl ethers such as diethylene glycol mono (meth) allyl ether and dipropylene glycol mono (meth) allyl ether; glycerin mono (meth) allyl ether, (meth) allyl-2-chloro -3-Hydroxypropyl ether, (meth) allyl-2-hydroxy-3-chloropropyl ether and the like (poly) alkylene glycol halogen and hydroxy-substituted mono (meth) allyl ethers; Eugenol, isoeugenol and many others Mono (meth) allyl ether of monohydric phenol and its halogen-substituted product; (meth) allyl of alkylene glycol such as (meth) allyl-2-hydroxyethylthioether, (meth) allyl-2-hydroxypropylthioether Thioether compounds; and the like.
 スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。 Examples of monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
 -PO基及び/又は-PO(OH)(OR)基(Rは炭化水素基を表す)を有する単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。 Monomers having a —PO 3 H 2 group and / or —PO (OH) (OR) group (R represents a hydrocarbon group) include 2- (meth) acryloyloxyethyl phosphate, methyl phosphate -2- (Meth) acryloyloxyethyl, ethyl phosphate- (meth) acryloyloxyethyl, and the like.
 低級ポリオキシアルキレン基を有する単量体としては、ポリ(エチレンオキシド)等のポリ(アルキレンオキシド)などが挙げられる。 Examples of the monomer having a lower polyoxyalkylene group include poly (alkylene oxide) such as poly (ethylene oxide).
 これらの中でも、後述する集電体への密着性に優れること及び、正極活物質から溶出したマンガンイオンまたは鉄イオンを効率良く捕捉するという理由からカルボン酸基を有する単量体が好ましく、中でも、アクリル酸、メタクリル酸などの炭素数5以下のカルボン酸基を有するモノカルボン酸や、マレイン酸、イタコン酸などの炭素数5以下のカルボン酸基を2つ有するジカルボン酸が好ましい。さらには、作製したバインダーの保存安定性が高いという観点から、アクリル酸やメタクリル酸が好ましい。 Among these, a monomer having a carboxylic acid group is preferable because of excellent adhesion to the current collector described later and for efficiently capturing manganese ions or iron ions eluted from the positive electrode active material. A monocarboxylic acid having a carboxylic acid group having 5 or less carbon atoms such as acrylic acid or methacrylic acid, or a dicarboxylic acid having two carboxylic acid groups having 5 or less carbon atoms such as maleic acid or itaconic acid is preferred. Furthermore, acrylic acid and methacrylic acid are preferable from the viewpoint that the prepared binder has high storage stability.
 本発明においてα,β-不飽和ニトリルモノマーの重合単位としては、機械的強度及び結着力の向上という観点から、アクリロニトリルやメタクリロニトリルが好ましい。 In the present invention, the polymerization unit of the α, β-unsaturated nitrile monomer is preferably acrylonitrile or methacrylonitrile from the viewpoint of improving the mechanical strength and the binding force.
 本発明において、バインダーにおける(メタ)アクリル酸エステルモノマーの重合単位(以下「成分A」と表すことがある。)の含有割合は、好ましくは50~95質量%、より好ましくは60~90質量%である。また、α,β-不飽和ニトリルモノマーの重合単位(以下、「成分B」と表すことがある。)の含有割合は、好ましくは3~40質量%、より好ましくは5~30質量%である。また、酸成分を有するビニルモノマーの重合単位(以下、「成分C」と表すことがある。)の含有割合は1.0~3.0質量%、好ましくは1.5~2.5質量%である。成分Aの含有割合が95質量%を超えると、バインダーの機械的強度が低下する。また、成分Aの含有割合が50質量%未満であると、バインダーの柔軟性が低下し電極が硬くなるため、クラックの発生を防止することが困難となる。成分Bの含有割合が40質量%を超えると、バインダーの柔軟性が低下し電極が硬くなるため、クラックの発生を防止することが困難となる。また、成分Bの含有割合が3質量%未満であると、バインダーの機械的強度が低下し、電極の密着性が低下する。成分Cの含有量が3.0質量%を超えると、バインダーの製造安定性及び保存安定性が低下する。また、成分Cの含有割合が1.0質量%未満であると、バインダーとしての結着性が不足すると共に、電池の寿命特性が低下する。 In the present invention, the content ratio of the polymerization units of the (meth) acrylic acid ester monomer in the binder (hereinafter sometimes referred to as “component A”) is preferably 50 to 95% by mass, more preferably 60 to 90% by mass. It is. The content of polymerized units of the α, β-unsaturated nitrile monomer (hereinafter sometimes referred to as “component B”) is preferably 3 to 40% by mass, more preferably 5 to 30% by mass. . Further, the content ratio of the polymerization unit of the vinyl monomer having an acid component (hereinafter sometimes referred to as “component C”) is 1.0 to 3.0% by mass, preferably 1.5 to 2.5% by mass. It is. When the content ratio of component A exceeds 95% by mass, the mechanical strength of the binder decreases. Moreover, since the softness | flexibility of a binder falls that the content rate of the component A is less than 50 mass%, and an electrode becomes hard, it becomes difficult to prevent generation | occurrence | production of a crack. When the content ratio of Component B exceeds 40% by mass, the flexibility of the binder is lowered and the electrode becomes hard, so that it is difficult to prevent the occurrence of cracks. Moreover, the mechanical strength of a binder falls that the content rate of the component B is less than 3 mass%, and the adhesiveness of an electrode falls. When the content of Component C exceeds 3.0% by mass, the production stability and storage stability of the binder are lowered. On the other hand, when the content ratio of Component C is less than 1.0% by mass, the binding property as a binder is insufficient, and the battery life characteristics are deteriorated.
 本発明において、使用するバインダーが、上記の成分A,成分B,成分C以外に、更に架橋性を有する重合単位を含んでいることが好ましい。前記バインダー中に架橋性を有する重合単位を導入する方法としては、バインダー中に光架橋性の架橋性基を導入する方法や熱架橋性の架橋性基を導入する方法が挙げられる。これら中でも、バインダー中に熱架橋性の架橋性基を導入する方法は、極板塗布後に極板に加熱処理を行うことにより、バインダーを架橋させることができ、さらに電解液への溶解を抑制でき、強靱で柔軟な極板を得ることができると共に電池の寿命特性を向上させるため好ましい。バインダー中に熱架橋性の架橋性基を導入する場合において、熱架橋性の架橋性基を有する1つのオレフィン性二重結合を持つ単官能性単量体を用いる方法と、少なくとも2つのオレフィン性二重結合を持つ多官能性単量体を用いる方法がある。1つのオレフィン性二重結合を持つ単官能性単量体に含まれる熱架橋性の架橋性基としては、エポキシ基、N-メチロールアミド基、オキセタニル基、及びオキサゾリン基からなる群から選ばれる少なくとも1種が好ましく、エポキシ基が架橋及び架橋密度の調節が容易な点でより好ましい。 In the present invention, it is preferable that the binder to be used further contains a polymerized unit having crosslinkability in addition to the above components A, B and C. Examples of the method for introducing a crosslinkable polymer unit into the binder include a method for introducing a photocrosslinkable crosslinkable group into the binder and a method for introducing a heat crosslinkable crosslinkable group. Among these, the method of introducing a heat-crosslinkable crosslinkable group into the binder can crosslink the binder by applying heat treatment to the electrode plate after coating, and can further suppress dissolution in the electrolyte. It is preferable because a tough and flexible electrode plate can be obtained and the life characteristics of the battery are improved. A method of using a monofunctional monomer having one olefinic double bond having a heat-crosslinkable crosslinkable group when introducing a heat-crosslinkable crosslinkable group into the binder, and at least two olefinic properties There is a method using a polyfunctional monomer having a double bond. The thermally crosslinkable group contained in the monofunctional monomer having one olefinic double bond is at least selected from the group consisting of an epoxy group, an N-methylolamide group, an oxetanyl group, and an oxazoline group. One type is preferred, and an epoxy group is more preferred in terms of easy crosslinking and adjustment of the crosslinking density.
 エポキシ基を含有する単量体としては、炭素-炭素二重結合およびエポキシ基を含有する単量体とハロゲン原子およびエポキシ基を含有する単量体が挙げられる。 Examples of the monomer containing an epoxy group include a monomer containing a carbon-carbon double bond and an epoxy group, and a monomer containing a halogen atom and an epoxy group.
 炭素-炭素二重結合およびエポキシ基を含有する単量体としては、たとえば、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類;が挙げられる。 Examples of the monomer containing a carbon-carbon double bond and an epoxy group include unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl ether; butadiene monoepoxide, Diene or polyene monoepoxides such as chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene; -Alkenyl epoxides such as epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; glycidyl acrylate, glycidyl methacrylate, glycidyl crotonate, glycidyl-4-heptenoate, glycidyl Glycidyl esters of unsaturated carboxylic acids such as disorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexene carboxylic acid, glycidyl ester of 4-methyl-3-cyclohexene carboxylic acid; It is done.
 ハロゲン原子およびエポキシ基を有する単量体としては、たとえば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリン、β-メチルエピクロルヒドリンなどのエピハロヒドリン;p-クロロスチレンオキシド;ジブロモフェニルグリシジルエーテル;が挙げられる。 Examples of the monomer having a halogen atom and an epoxy group include epihalohydrins such as epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin, β-methylepichlorohydrin; p-chlorostyrene oxide; dibromo Phenyl glycidyl ether;
 N-メチロールアミド基を含有する単量体としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。 Examples of the monomer containing an N-methylolamide group include (meth) acrylamides having a methylol group such as N-methylol (meth) acrylamide.
 オキセタニル基を含有する単量体としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンなどが挙げられる。 Monomers containing an oxetanyl group include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) acryloyloxymethyl) -2-trifluoromethyloxetane, and 3-((meth) acryloyloxymethyl). ) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, 2-((meth) acryloyloxymethyl) -4-trifluoromethyloxetane, and the like.
 オキサゾリン基を含有する単量体としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等が挙げられる。 Monomers containing an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2- Examples thereof include oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like.
 少なくとも2つのオレフィン性二重結合を持つ多官能性単量体としてはアリルアクリレートまたはアリルメタクリレート、トリメチロールプロパン-トリアクリレート、トリメチロールプロパン-メタクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、または多官能性アルコールの他のアリルまたはビニルエーテル、テトラエチレングリコールジアクリレート、トリアリルアミン、トリメチロールプロパン-ジアリルエーテル、メチレンビスアクリルアミドおよび/またはジビニルベンゼンが好ましい。特にアリルアクリレート、アリルメタクリレート、トリメチロールプロパン-トリアクリレートおよび/またはトリメチロールプロパン-メタクリレート等が挙げられる。
 これらの中でも、架橋密度が向上しやすいことから、少なくとも2つのオレフィン性二重結合を有する多官能性単量体が好ましく、更に架橋密度の向上および共重合性が高いという観点の理由でアリルアクリレートまたはアリルメタクリレート等のアリル基を有するアクリレート又はメタアクリレートが好ましい。
Polyfunctional monomers having at least two olefinic double bonds include allyl acrylate or allyl methacrylate, trimethylolpropane-triacrylate, trimethylolpropane-methacrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene Glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, or other allyl or vinyl ethers of polyfunctional alcohols, tetraethylene glycol diacrylate, triallylamine, trimethylolpropane-diallyl ether, methylenebisacrylamide and / or divinylbenzene preferable. In particular, allyl acrylate, allyl methacrylate, trimethylolpropane-triacrylate and / or trimethylolpropane-methacrylate and the like can be mentioned.
Of these, polyfunctional monomers having at least two olefinic double bonds are preferred because the crosslinking density is likely to be improved, and allyl acrylate is also preferred because of improved crosslinking density and high copolymerizability. Or acrylate or methacrylate having an allyl group such as allyl methacrylate is preferable.
 バインダー中の熱架橋性の架橋性基の含有割合は、重合時の熱架橋性の架橋性基を含有する単量体量として、単量体全量100質量%に対して、好ましくは0.01~0.5質量%、更に好ましくは0.3~0.05質量%の範囲である。バインダー中の熱架橋性の架橋性基の含有割合は、バインダーを製造する時の単量体仕込み比により制御できる。バインダー中の熱架橋性の架橋基の含有割合が、上記範囲内にあることで適度な電解液に対する膨潤性を示すことができ、優れたレート特性及びサイクル特性を示すことができる。 The content ratio of the heat-crosslinkable crosslinkable group in the binder is preferably 0.01 with respect to 100% by mass of the total amount of monomers as the amount of the monomer containing the heat-crosslinkable crosslinkable group at the time of polymerization. It is in the range of -0.5% by mass, more preferably 0.3-0.05% by mass. The content ratio of the heat-crosslinkable crosslinkable group in the binder can be controlled by the monomer charge ratio when the binder is produced. When the content ratio of the heat-crosslinkable crosslinking group in the binder is within the above range, the swelling property with respect to an appropriate electrolytic solution can be exhibited, and excellent rate characteristics and cycle characteristics can be exhibited.
 本発明に用いるバインダーは、上記の成分以外に他の重合単位を含んでいてもよい。他の重合単位とは、他のビニルモノマーに由来する重合単位であり、例えば、これらと共重合可能な単量体としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、などの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;が挙げられる。 The binder used in the present invention may contain other polymerization units in addition to the above components. The other polymerized unit is a polymerized unit derived from another vinyl monomer. For example, as a monomer copolymerizable with these, two or more carbon atoms such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, etc. Carboxylic acid esters having a carbon double bond; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate; methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, etc. Vinyl ethers such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone and the like; heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole; It is.
 本発明に用いるバインダーは、分散媒に分散された分散液または溶解された溶液の状態で使用される。その中でも分散媒に粒子状で分散していることが電解液の膨潤性を抑制するという理由から好ましい。 The binder used in the present invention is used in the state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium. Among these, it is preferable that it is dispersed in the dispersion medium in the form of particles because the swelling property of the electrolytic solution is suppressed.
 バインダーが分散媒に粒子状で分散している場合において、粒子状で分散しているバインダーの平均粒径(分散粒子径)は、50~500nmが好ましく、70~400nmがさらに好ましく、最も好ましくは100~250nmである。バインダーの平均粒径がこの範囲であると得られる電極の強度および柔軟性が良好となる。また、分散媒としては有機溶媒や水が用いられるが、中でも乾燥速度が速いという理由から分散媒として水を利用することが好ましい。 When the binder is dispersed in the form of particles in the dispersion medium, the average particle size (dispersed particle size) of the binder dispersed in the form of particles is preferably 50 to 500 nm, more preferably 70 to 400 nm, and most preferably. 100 to 250 nm. When the average particle size of the binder is within this range, the strength and flexibility of the obtained electrode are improved. In addition, an organic solvent or water is used as the dispersion medium, but it is preferable to use water as the dispersion medium because of the high drying speed.
 バインダーが分散媒に粒子状で分散している場合において、分散液の固形分濃度は、通常15~70質量%であり、20~65質量%が好ましく、30~60質量%がさらに好ましい。固形分濃度がこの範囲であると、後述する二次電池正極用スラリーを製造する際における作業性が良好である。 When the binder is dispersed in the dispersion medium in the form of particles, the solid content concentration of the dispersion is usually 15 to 70% by mass, preferably 20 to 65% by mass, and more preferably 30 to 60% by mass. When the solid content concentration is within this range, workability when producing a slurry for a secondary battery positive electrode, which will be described later, is good.
 本発明に用いるバインダーのガラス転移温度(Tg)は、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。バインダーのTgが上記範囲にあることにより、優れた強度と柔軟性を有し、高い出力特性の二次電池用電極を得ることができる。なお、バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。 The glass transition temperature (Tg) of the binder used in the present invention is preferably −50 to 25 ° C., more preferably −45 to 15 ° C., and particularly preferably −40 to 5 ° C. When the Tg of the binder is in the above range, a secondary battery electrode having excellent strength and flexibility and high output characteristics can be obtained. The glass transition temperature of the binder can be adjusted by combining various monomers.
 本発明に用いるバインダーである重合体の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。 The production method of the polymer which is a binder used in the present invention is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. Examples of the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Organic peroxides, azo compounds such as α, α′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
 本発明に用いるバインダーにおいては、これらの重合法において用いられる分散剤は、通常の合成で使用されるものでよく、具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエ-テルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸-スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性高分子などが例示され、これらは単独でも2種類以上を併用して用いても良い。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩であり、更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩である。分散剤の添加量は任意に設定でき、モノマー総量100質量部に対して通常0.01~10質量部程度である。 In the binder used in the present invention, the dispersant used in these polymerization methods may be those used in ordinary synthesis. Specific examples thereof include benzene such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate. Sulfonates; alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecyl sulfate; sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate; fatty acid salts such as sodium laurate; polyoxyethylene lauryl ether sulfate sodium salt; Ethoxy sulfate salts such as polyoxyethylene nonylphenyl ether sulfate sodium salt; alkane sulfonate salt; alkyl ether phosphate sodium salt; Nonionic emulsifiers such as oxyethylene nonylphenyl ether, polyoxyethylene sorbitan lauryl ester, polyoxyethylene-polyoxypropylene block copolymer; gelatin, maleic anhydride-styrene copolymer, polyvinylpyrrolidone, sodium polyacrylate, Examples thereof include water-soluble polymers such as polyvinyl alcohol having a polymerization degree of 700 or more and a saponification degree of 75% or more, and these may be used alone or in combination of two or more. Among these, benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate; alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate are preferable, and oxidation resistance is more preferable. From this point, it is a benzenesulfonate such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate. The addition amount of the dispersant can be arbitrarily set, and is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers.
 本発明に用いるバインダーが分散媒に分散している時のpHは、5~13が好ましく、更には5~12、最も好ましくは10~12である。バインダーのpHが上記範囲にあることにより、バインダーの保存安定性が向上し、さらには、機械的安定性が向上する。 The pH when the binder used in the present invention is dispersed in the dispersion medium is preferably 5 to 13, more preferably 5 to 12, and most preferably 10 to 12. When the pH of the binder is in the above range, the storage stability of the binder is improved, and further, the mechanical stability is improved.
 バインダーのpHを調整するpH調整剤は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化バリウムなどのアルカリ土類金属酸化物、水酸化アルミニウムなどの長周期律表でIIIA属に属する金属の水酸化物などの水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸マグネシウムなどのアルカリ土類金属炭酸塩などの炭酸塩;などが例示され、有機アミンとしては、エチルアミン、ジエチルアミン、プロピルアミンなどのアルキルアミン類;モノメタノールアミン、モノエタノールアミン、モノプロパノールアミンなどのアルコールアミン類;アンモニア水などのアンモニア類;などが挙げられる。これらのなかでも、結着性や操作性の観点からアルカリ金属水酸化物が好ましく、特に水酸化ナトリウム、水酸化カリウム、水酸化リチウムが好ましい。 PH adjusting agents for adjusting the pH of the binder include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal oxides such as calcium hydroxide, magnesium hydroxide and barium hydroxide, Hydroxides such as hydroxides of metals belonging to Group IIIA in a long periodic table such as aluminum hydroxide; carbonates such as alkali metal carbonates such as sodium carbonate and potassium carbonate, alkaline earth metal carbonates such as magnesium carbonate Examples of organic amines include alkylamines such as ethylamine, diethylamine and propylamine; alcohol amines such as monomethanolamine, monoethanolamine and monopropanolamine; ammonia such as ammonia water; Can be mentioned. Among these, alkali metal hydroxides are preferable from the viewpoints of binding properties and operability, and sodium hydroxide, potassium hydroxide, and lithium hydroxide are particularly preferable.
 正極活物質層中のバインダーの含有量は、正極活物質100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~5質量部である。二次電池正極中のバインダーの含有量が上記範囲にあることで、正極活物質同士及び正極活物質と集電体との結着性に優れ更に柔軟性を維持しながらも、リチウムイオンの移動を阻害せず抵抗が増大することがない。 The content of the binder in the positive electrode active material layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material. The content of the binder in the positive electrode of the secondary battery is in the above range, so that the positive electrode active materials and the positive electrode active material and the current collector are excellent in binding properties while maintaining flexibility and the movement of lithium ions. Does not inhibit the resistance.
 本発明に用いる正極活物質層には、上記成分のほかに、さらに導電性付与材、補強材、分散剤、レベリング剤、酸化防止剤、増粘剤、電解液分解抑制等の機能を有する電解液添加剤、その他結着剤等の、他の成分が含まれていてもよく、後述の二次電池正極用スラリー中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。 In addition to the above components, the positive electrode active material layer used in the present invention further has electroconductivity imparting material, reinforcing material, dispersing agent, leveling agent, antioxidant, thickener, electrolytic solution having functions such as inhibiting decomposition of the electrolyte. Other components such as a liquid additive and other binders may be contained, and may be contained in a slurry for a secondary battery positive electrode described later. These are not particularly limited as long as they do not affect the battery reaction.
 導電性付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合に放電負荷特性を改善したりすることができる。 As the conductivity imparting material, conductive carbon such as acetylene black, ketjen black, carbon black and graphite can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals. By using the conductivity imparting material, the electrical contact between the electrode active materials can be improved. In particular, when used in a lithium ion secondary battery, the discharge load characteristics can be improved.
 補強材としては、各種の無機および有機の球状、板状、又は棒状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な電極を得ることができ、優れた長期サイクル特性を示すことができる。導電性付与材や補強剤の使用量は、正極活物質100質量部に対して通常0.01~20質量部、好ましくは1~10質量部である。上記範囲に含まれることにより、高い容量と高い負荷特性を示すことができる。 As the reinforcing material, various inorganic and organic spherical, plate-like, or rod-like fillers can be used. By using a reinforcing material, a tough and flexible electrode can be obtained, and excellent long-term cycle characteristics can be exhibited. The amount of the conductivity-imparting material and reinforcing agent used is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material. By being included in the said range, a high capacity | capacitance and a high load characteristic can be shown.
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は用いる正極活物質や導電性付与材に応じて選択される。正極活物質層中の分散剤の含有割合は、好ましくは0.01~10質量%である。分散剤量が上記範囲であることにより後述する正極用スラリーの安定性に優れ、平滑な電極を得ることができ、高い電池容量を示すことができる。 Examples of the dispersant include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds. A dispersing agent is selected according to the positive electrode active material and electroconductivity imparting material to be used. The content ratio of the dispersant in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the amount of the dispersant is in the above range, the positive electrode slurry described later is excellent in stability, a smooth electrode can be obtained, and a high battery capacity can be exhibited.
 レベリング剤としてはアルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記界面活性剤を混合することにより、後述の二次電池正極用スラリーを集電体に塗工する際に発生するはじきを防止したり、電極の平滑性を向上させることができる。正極活物質層中のレベリング剤の含有割合は、好ましくは0.01~10質量%である。レベリング剤が上記範囲であることにより電極作製時の生産性、平滑性及び電池特性に優れる。 Examples of the leveling agent include surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when applying a slurry for a secondary battery positive electrode, which will be described later, to the current collector, or to improve the smoothness of the electrode. The content of the leveling agent in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the leveling agent is within the above range, the productivity, smoothness, and battery characteristics during electrode production are excellent.
 酸化防止剤としてはフェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が200~1000、好ましくは600~700のポリマー型フェノール化合物が好ましく用いられる。正極活物質層中の酸化防止剤の含有割合は、好ましくは0.01~10質量%、更に好ましくは0.05~5質量%である。酸化防止剤が上記範囲であることにより後述する正極用スラリーの安定性、電池容量及びサイクル特性に優れる。 Examples of the antioxidant include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound. The polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of 200 to 1000, preferably 600 to 700 is preferably used. The content of the antioxidant in the positive electrode active material layer is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. When the antioxidant is within the above range, the positive electrode slurry described later is excellent in stability, battery capacity, and cycle characteristics.
 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル-ブタジエン共重合体水素化物などが挙げられる。本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。正極活物質層中の増粘剤の含有割合は、好ましくは0.01~10質量%である。増粘剤が上記範囲であることにより、後述する二次電池正極用スラリーの集電体への塗工性が良好になる。また、後述する正極用スラリー中の活物質等の分散性に優れ、平滑な電極を得ることができ、優れた負荷特性及びサイクル特性を示す。 Examples of thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, and the like. In the present invention, “(modified) poly” means “unmodified poly” or “modified poly”, and “(meth) acryl” means “acryl” or “methacryl”. The content of the thickener in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the thickener is in the above range, the coating property of the secondary battery positive electrode slurry, which will be described later, to the current collector is improved. Moreover, it is excellent in the dispersibility of the active material etc. in the positive electrode slurry mentioned later, a smooth electrode can be obtained, and the outstanding load characteristic and cycling characteristics are shown.
 電解液添加剤は、後述する二次電池正極用スラリー中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。正極活物質層中の電解液添加剤の含有割合は、好ましくは0.01~10質量%である。電解液添加剤が上記範囲であることによりサイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子:アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記ナノ微粒子を混合することにより電極形成用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる電極のレベリング性を向上させることができる。正極活物質層中のナノ微粒子の含有割合は、好ましくは0.01~10質量%である。ナノ微粒子が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。前記界面活性剤を混合することにより二次電池正極用スラリー中の活物質等の分散性を向上させることができ、さらにそれにより得られる電極の平滑性を向上させることができる。正極活物質層中の界面活性剤の含有割合は、好ましくは0.01~10質量%である。界面活性剤が上記範囲であることにより後述する二次電池正極用スラリーの安定性、電極平滑性に優れ、高い生産性を示す。 As the electrolytic solution additive, vinylene carbonate used in a slurry for a secondary battery positive electrode and an electrolytic solution described later can be used. The content ratio of the electrolytic solution additive in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the electrolytic solution additive is in the above range, the cycle characteristics and the high temperature characteristics are excellent. Other examples include nano-particles such as fumed silica and fumed alumina: surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants. By mixing the nanoparticles, the thixotropy of the electrode forming slurry can be controlled, and the leveling property of the resulting electrode can be improved. The content ratio of the nanoparticles in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the nanoparticles are in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited. By mixing the surfactant, the dispersibility of the active material and the like in the slurry for the secondary battery positive electrode can be improved, and the smoothness of the electrode obtained thereby can be improved. The content ratio of the surfactant in the positive electrode active material layer is preferably 0.01 to 10% by mass. When the surfactant is in the above range, the slurry for a secondary battery positive electrode described later is excellent in stability and electrode smoothness, and exhibits high productivity.
(集電体)
 本発明に用いられる集電体は、電気導電性を有し、かつ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、正極活物質層の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、正極活物質層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
(Current collector)
The current collector used in the present invention is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but from the viewpoint of heat resistance, for example, iron, copper, etc. Metal materials such as aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength of the positive electrode active material layer, the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the positive electrode active material layer.
 本発明の二次電池用正極を製造する方法としては、上記集電体の少なくとも片面、好ましくは両面に正極活物質層を層状に結着させる方法であればよい。例えば、後述する正極用スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極を形成する。正極用スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ジップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。 As a method for producing the positive electrode for a secondary battery of the present invention, any method may be used as long as the positive electrode active material layer is bound in layers on at least one surface, preferably both surfaces of the current collector. For example, a positive electrode slurry described later is applied to a current collector and dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode. The method for applying the positive electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
 次いで、金型プレスやロールプレスなどを用い、加圧処理により電極の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5~15%、より好ましくは7~13%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量を得ることが困難であり、電極が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。 Next, it is preferable to lower the porosity of the electrode by pressure treatment using a mold press or a roll press. A preferable range of the porosity is 5 to 15%, more preferably 7 to 13%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, it is difficult to obtain a high volume capacity, which causes a problem that the electrode is easily peeled off and a defect is likely to occur. Further, when a curable polymer is used, it is preferably cured.
 本発明の二次電池用正極の厚みは、通常5~150μmであり、好ましくは10~100μmである。電極厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。 The thickness of the positive electrode for secondary battery of the present invention is usually 5 to 150 μm, preferably 10 to 100 μm. When the electrode thickness is in the above range, both load characteristics and energy density are high.
(二次電池正極用スラリー)
 本発明に用いる二次電池正極用スラリーは、マンガンまたは鉄を含む正極活物質と、繊維状炭素と、(メタ)アクリル酸エステルモノマーの重合単位、酸成分を有するビニルモノマーの重合単位及びα,β-不飽和ニトリルモノマーの重合単位を含む重合体からなるバインダーと、溶媒とを含む。正極活物質、繊維状炭素、(メタ)アクリル酸エステルモノマーの重合単位、酸成分を有するビニルモノマーの重合単位及びα,β-不飽和ニトリルモノマーの重合単位を含むバインダーとしては、上述したものを用いる。
(Slurry for secondary battery positive electrode)
The slurry for secondary battery positive electrode used in the present invention is a positive electrode active material containing manganese or iron, fibrous carbon, (meth) acrylic acid ester monomer polymerization units, vinyl monomer polymerization units having an acid component, and α, A binder comprising a polymer containing polymerized units of β-unsaturated nitrile monomer and a solvent are included. As the binder containing the positive electrode active material, fibrous carbon, polymer unit of (meth) acrylate monomer, polymer unit of vinyl monomer having an acid component, and polymer unit of α, β-unsaturated nitrile monomer, those described above are used. Use.
(溶媒)
 溶媒としては、本発明に用いるバインダーを均一に溶解または分散し得るものであれば特に制限されない。正極用スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、本発明に用いるバインダーのや分散性に優れ、電極活物質及び導電性付与剤の分散性にすぐれ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で除去できるので好ましい。アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましい。また、本発明の効果が、バインダーとして水分散型粒子状高分子を用いた時に顕著に見られることから、特に溶媒として水が好ましい。
(solvent)
The solvent is not particularly limited as long as it can uniformly dissolve or disperse the binder used in the present invention. As the solvent used for the positive electrode slurry, either water or an organic solvent can be used. Examples of organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; ketones such as acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane. Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, γ-butyrolactone and ε-caprolactone; Acylonitriles such as acetonitrile and propionitrile; Tetrahydrofuran and Ethylene Ethers such as glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N-methyl Amides such as pyrrolidone and N, N-dimethylformamide are exemplified. These solvents may be used alone, or two or more of these may be mixed and used as a mixed solvent. Among these, the binder used in the present invention is excellent in dispersibility, the electrode active material and the conductivity imparting agent are excellent in dispersibility, and the solvent having a low boiling point and high volatility can be removed in a short time and at a low temperature. preferable. Acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable. In addition, since the effect of the present invention is noticeable when a water-dispersed particulate polymer is used as a binder, water is particularly preferable as a solvent.
 本発明に用いる二次電池正極用スラリーの固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10~80質量%程度である。 The solid content concentration of the secondary battery positive electrode slurry used in the present invention is not particularly limited as long as it can be applied and immersed and has a fluid viscosity, but is generally about 10 to 80% by mass. It is.
 また、二次電池正極用スラリーには、マンガンまたは鉄を含む正極活物質と、繊維状炭素と、(メタ)アクリル酸エステルモノマーの重合単位、酸成分を有するビニルモノマーの重合単位及びα,β-不飽和ニトリルモノマーの重合単位を含んでなる重合体からなるバインダーと、溶媒のほかに、さらに前述の二次電池用正極中に使用される分散剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。 In addition, the secondary battery positive electrode slurry includes a positive electrode active material containing manganese or iron, fibrous carbon, a polymerization unit of a (meth) acrylate monomer, a polymerization unit of a vinyl monomer having an acid component, and α, β -In addition to a binder comprising a polymer comprising polymerized units of an unsaturated nitrile monomer and a solvent, the electrolytic agent having functions such as a dispersant used in the above-mentioned positive electrode for a secondary battery and an electrolytic solution decomposition suppression Other components such as a liquid additive may be contained. These are not particularly limited as long as they do not affect the battery reaction.
(二次電池正極用スラリーの製法)
 本発明においては、二次電池正極用スラリーの製法は、特に限定はされず、上記正極活物質、繊維状炭素、バインダー、及び溶媒と必要に応じ添加される他の成分を混合して得られる。本発明においては上記成分を用いることにより混合方法や混合順序にかかわらず、正極活物質と、繊維状炭素とが高度に分散された正極用スラリーを得ることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定されず、ビーズミル、ボールミル、ロールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどを使用することができるが、中でも高濃度での分散が可能なことから、ボールミル、ロールミル、顔料分散機、擂潰機、プラネタリーミキサーを使用することが特に好ましい。
(Production of slurry for secondary battery positive electrode)
In the present invention, the method for producing the slurry for the secondary battery positive electrode is not particularly limited, and can be obtained by mixing the positive electrode active material, fibrous carbon, binder, and solvent and other components added as necessary. . In the present invention, a positive electrode slurry in which the positive electrode active material and the fibrous carbon are highly dispersed can be obtained by using the above components regardless of the mixing method and the mixing order. The mixing device is not particularly limited as long as it can uniformly mix the above components, and bead mill, ball mill, roll mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, fill mix, etc. Among them, it is particularly preferable to use a ball mill, a roll mill, a pigment disperser, a crusher, or a planetary mixer because dispersion at a high concentration is possible.
 正極用スラリーの粘度は、均一塗工性、スラリー経時安定性の観点から、好ましくは10~100000mPa・s、より好ましくは100~50000mPa・sである。上記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。 The viscosity of the positive electrode slurry is preferably 10 to 100,000 mPa · s, more preferably 100 to 50,000 mPa · s, from the viewpoints of uniform coatability and slurry aging stability. The said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using a B-type viscometer.
(二次電池)
 本発明の二次電池は、正極、負極、セパレーター及び電解液を備えてなり、前記正極は、集電体上に、マンガンまたは鉄を含む正極活物質と、繊維状炭素と、上記バインダーとを含有してなる正極活物質層を有する。
(Secondary battery)
The secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution. The positive electrode includes a positive electrode active material containing manganese or iron, fibrous carbon, and the binder on a current collector. It has a positive electrode active material layer formed.
 前記二次電池としては、リチウムイオン二次電池、ニッケル水素二次電池等挙げられるが、長期サイクル特性の向上・出力特性の向上等性能向上が最も求められていることから用途としてはリチウムイオン二次電池が好ましい。以下、リチウムイオン二次電池に使用する場合について説明する。 Examples of the secondary battery include a lithium ion secondary battery and a nickel hydride secondary battery. However, since the most important improvement is performance such as improvement of long-term cycle characteristics and output characteristics, lithium ion secondary batteries are used as applications. Secondary batteries are preferred. Hereinafter, the case where it uses for a lithium ion secondary battery is demonstrated.
(リチウムイオン二次電池用電解液)
 リチウムイオン二次電池用の電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
(Electrolyte for lithium ion secondary battery)
As the electrolytic solution for the lithium ion secondary battery, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is used. A lithium salt is used as the supporting electrolyte. The lithium salt is not particularly limited, LiPF 6, LiAsF 6, LiBF 4, LiSbF 6, LiAlCl 4, LiClO 4, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. Two or more of these may be used in combination. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 リチウムイオン二次電池用の電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;が好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。 The organic solvent used in the electrolyte for the lithium ion secondary battery is not particularly limited as long as it can dissolve the supporting electrolyte, but dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene Carbonates such as carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, dimethyl sulfoxide Sulfur-containing compounds such as are preferably used. Moreover, you may use the liquid mixture of these solvents. Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Since the lithium ion conductivity increases as the viscosity of the solvent used decreases, the lithium ion conductivity can be adjusted depending on the type of the solvent.
 また前記電解液には添加剤を含有させて用いることも可能である。添加剤としては前述の二次電池正極用スラリー中に使用されるビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。 Also, it is possible to use the electrolyte solution by adding an additive. Examples of the additive include carbonate compounds such as vinylene carbonate (VC) used in the slurry for a secondary battery positive electrode.
 リチウムイオン二次電池用の電解液中における支持電解質の濃度は、通常1~30質量%、好ましくは5~20質量%である。また、支持電解質の種類に応じて、通常0.5~2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。 The concentration of the supporting electrolyte in the electrolytic solution for a lithium ion secondary battery is usually 1 to 30% by mass, preferably 5 to 20% by mass. The concentration is usually 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity tends to decrease.
 また、電解液として、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質や前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を用いることもできる。 Further, as the electrolytic solution, a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, a gel polymer electrolyte obtained by impregnating the polymer electrolyte with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
(リチウムイオン二次電池用セパレーター)
 セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。
(Separator for lithium ion secondary battery)
As the separator, known ones such as a microporous film or non-woven fabric made of polyolefin such as polyethylene and polypropylene; a porous resin coat containing inorganic ceramic powder; and the like can be used.
 リチウムイオン二次電池用セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。例えばポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くし電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。 As a separator for a lithium ion secondary battery, a known one such as a microporous film or non-woven fabric containing a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Can do. For example, a polyolefin film (polyethylene, polypropylene, polybutene, polyvinyl chloride), a microporous film made of a resin such as a mixture or copolymer thereof, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, Examples thereof include a microporous membrane made of a resin such as polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene, or a woven fabric of polyolefin fibers, a nonwoven fabric thereof, an aggregate of insulating substance particles, or the like. Among these, a microporous film made of a polyolefin-based resin is preferable because the thickness of the entire separator can be reduced and the active material ratio in the battery can be increased to increase the capacity per volume.
 セパレーターの厚さは、通常0.5~40μm、好ましくは1~30μm、更に好ましくは1~10μmである。この範囲であると電池内でのセパレーターによる抵抗が小さくなり、また電池作成時の作業性に優れる。 The thickness of the separator is usually 0.5 to 40 μm, preferably 1 to 30 μm, and more preferably 1 to 10 μm. Within this range, the resistance due to the separator in the battery is reduced, and the workability during battery production is excellent.
(リチウムイオン二次電池負極)
 リチウムイオン二次電池用負極は、負極活物質及びバインダーを含む負極活物質層が、集電体上に積層されてなる。バインダー及び集電体としては、二次電池用正極で説明したものと同様のものが挙げられる。
(Lithium ion secondary battery negative electrode)
The negative electrode for a lithium ion secondary battery is formed by laminating a negative electrode active material layer containing a negative electrode active material and a binder on a current collector. Examples of the binder and the current collector are the same as those described for the positive electrode for the secondary battery.
(リチウムイオン二次電池用負極活物質)
 リチウムイオン二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などが挙げられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。負極活物質は、機械的改質法により表面に導電性付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1~50μm、好ましくは15~30μmである。
(Anode active material for lithium ion secondary battery)
Examples of electrode active materials (negative electrode active materials) for negative electrodes of lithium ion secondary batteries include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and high conductivity such as polyacene. Examples include molecules. Further, as the negative electrode active material, metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used. In addition, lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used. As the negative electrode active material, a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can also be used. The particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 μm, preferably 15 to 30 μm.
 負極活物質層中の負極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。負極活物質層中の負極活物質の含有量を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。 The content ratio of the negative electrode active material in the negative electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass. By making content of the negative electrode active material in a negative electrode active material layer into the said range, a softness | flexibility and a binding property can be shown, showing a high capacity | capacitance.
 リチウムイオン二次電池用負極には、上記成分のほかに、さらに前述の二次電池用正極中に使用される分散剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。 In addition to the above components, the negative electrode for a lithium ion secondary battery further includes other components such as a dispersant used in the above-described positive electrode for a secondary battery and an electrolyte additive having a function of inhibiting decomposition of the electrolyte. May be included. These are not particularly limited as long as they do not affect the battery reaction.
(リチウムイオン二次電池負極用バインダー)
 リチウムイオン二次電池負極用バインダーとしては特に制限されず公知のものを用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
(Binder for lithium ion secondary battery negative electrode)
The binder for the negative electrode of the lithium ion secondary battery is not particularly limited and a known binder can be used. For example, resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.
 集電体としては、前述の二次電池用正極用に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、リチウムイオン二次電池の負極用としては銅が特に好ましい。 As the current collector, the current collector used for the positive electrode for the secondary battery described above can be used, and is not particularly limited as long as it is an electrically conductive and electrochemically durable material. Copper is particularly preferable for the negative electrode of a lithium ion secondary battery.
 リチウムイオン二次電池負極の厚みは、通常5~300μmであり、好ましくは10~250μmである。電極厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。 The thickness of the lithium ion secondary battery negative electrode is usually 5 to 300 μm, preferably 10 to 250 μm. When the electrode thickness is in the above range, both load characteristics and energy density are high.
 リチウムイオン二次電池負極は、前述のリチウムイオン二次電池正極用と同様に製造することができる。 The lithium ion secondary battery negative electrode can be produced in the same manner as the above-described lithium ion secondary battery positive electrode.
 リチウムイオン二次電池の具体的な製造方法としては、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。 As a specific method for producing a lithium ion secondary battery, a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery. The method of injecting and sealing is mentioned. If necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価する。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, unless otherwise indicated, the part and% in a present Example are a mass reference | standard. In the examples and comparative examples, various physical properties are evaluated as follows.
<電池特性:高温サイクル特性>
 10セルのフルセルコイン型電池を60℃雰囲気下、0.2Cの定電流法によって4.3Vに充電し、3.0Vまで放電する充放電を繰り返し、電気容量を測定した。10セルの平均値を測定値とし、50サイクル終了時の電気容量と5サイクル終了時の電気容量の比(%)で表される充放電容量保持率を求め、これをサイクル特性の評価基準とし、以下の基準で評価する。この値が高いほど高温サイクル特性に優れている。
A:80%以上
B:70%以上80%未満
C:50%以上70%未満
D:30%以上50%未満
E:30%未満
<Battery characteristics: High-temperature cycle characteristics>
A 10-cell full-cell coin-type battery was charged to 4.3 V by a constant current method of 0.2 C in an atmosphere of 60 ° C., and was repeatedly charged and discharged to 3.0 V, and the electric capacity was measured. Using the average value of 10 cells as the measured value, the charge / discharge capacity retention ratio represented by the ratio (%) of the electric capacity at the end of 50 cycles and the electric capacity at the end of 5 cycles is obtained, and this is used as an evaluation criterion for cycle characteristics. Evaluation is based on the following criteria. The higher this value, the better the high-temperature cycle characteristics.
A: 80% or more B: 70% or more and less than 80% C: 50% or more and less than 70% D: 30% or more and less than 50% E: Less than 30%
<バインダー特性:保存安定性>
 得られたポリマーの水分散液を50日冷暗所下にて保存する(保存前の水分散液の重量をaとする)。50日経過後のポリマーの水分散液を200メッシュにて濾過し、メッシュ上に残った固形物の乾燥重量(残存物の重量をbとする)を求め、保存前の水分散液の重量(a)と、メッシュ上に残った固形物の乾燥重量(b)との比(%)を求め、これをバインダーの保存安定性の評価基準とし、以下の基準で評価する。この値が小さいほどバインダーの保存安定性に優れている。
A:0.001%未満
B:0.001%以上0.01%未満
C:0.01%以上0.1%未満
D:0.1%以上
<Binder properties: storage stability>
The obtained polymer aqueous dispersion is stored for 50 days in a cool dark place (the weight of the aqueous dispersion before storage is a). The polymer aqueous dispersion after the lapse of 50 days was filtered through 200 mesh, the dry weight of the solid matter remaining on the mesh was determined (the weight of the residue is b), and the weight of the aqueous dispersion before storage (a ) And the dry weight (b) of the solid matter remaining on the mesh, the ratio (%) is determined, and this is used as an evaluation criterion for the storage stability of the binder, and is evaluated according to the following criteria. The smaller this value, the better the storage stability of the binder.
A: Less than 0.001% B: 0.001% or more and less than 0.01% C: 0.01% or more and less than 0.1% D: 0.1% or more
<電極特性:クラック測定>
 電極を幅3cm×長さ9cmの矩形に切って試験片とする。試験片の集電体側の面を下にして机上に置き、長さ方向の中央( 端部から4.5cmの位置) 、集電体側の面に直径1mmのステンレス棒を短手方向に横たえて設置する。このステンレス棒を中心にして試験片を活物質層が外側になるように180°折り曲げた。10枚の試験片について試験し、各試験片の活物質層の折り曲げた部分について、ひび割れまたは剥がれの有無を観察し、下記の基準により判定した。ひび割れまたは剥がれが少ないほど、電極がクラックの発生が少なく、安全性に優れることを示す。
A : 10枚中全てにひび割れまたは剥がれがみられない
B : 10枚中1~3枚にひび割れまたは剥がれがみられる
C : 10枚中4~9枚にひび割れまたは剥がれがみられる
D : 10枚中全てにひび割れまたは剥がれがみられる 
<Electrode characteristics: crack measurement>
The electrode is cut into a rectangle 3 cm wide by 9 cm long to form a test piece. Place the test piece on the desk with the current collector side facing down, and lay a stainless steel rod 1 mm in diameter in the short direction on the center in the length direction (position 4.5 cm from the end). Install. The test piece was bent 180 ° around the stainless steel bar so that the active material layer was on the outside. Ten test pieces were tested, and the bent portions of the active material layer of each test piece were observed for cracking or peeling, and judged according to the following criteria. The fewer the cracks or peeling, the less the electrode is cracked and the better the safety.
A: No cracking or peeling is observed in all 10 sheets B: Cracking or peeling is observed in 1 to 3 of 10 sheets C: Cracking or peeling is observed in 4 to 9 out of 10 sheets D: 10 sheets All inside are cracked or peeled
(実施例1)
(A)バインダーの製造
 重合缶Aに、2-エチルヘキシルアクリレート10.75部、アクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート67部、アクリロニトリル19部、メタクリル酸2.0部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、バインダーAの水分散液を得た。得られたバインダーAの、ガラス転移温度は-32℃、分散粒子径は0.15μm、バインダーAの水分散液のpHは10.5であった。得られた水分散液を用いてバインダー保存安定性を評価した結果を表1に示す。
Example 1
(A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, 0 parts of sodium lauryl sulfate were added to another polymerization vessel B. 7 parts and 46 parts of ion-exchanged water were added to the emulsion prepared by stirring for about 180 minutes, and then added to the polymerization can A sequentially from the polymerization can B. After stirring for about 120 minutes, the monomer consumption was 95%. Then, the reaction was terminated by cooling, and then the pH was adjusted with a 4% NaOH aqueous solution to obtain an aqueous dispersion of binder A. The obtained binder A had a glass transition temperature of −32 ° C., a dispersed particle size of 0.15 μm, and an aqueous dispersion of binder A having a pH of 10.5. Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion.
 バインダーA中の、(メタ)アクリル酸エステルモノマーの重合単位の含有割合は78%、酸成分を有するビニルモノマーの重合単位は2.0%、α,β-不飽和ニトリルモノマーの重合単位の含有割合は20%、架橋性を有する重合単位の含有割合は0%であった。 The content of polymer units of (meth) acrylic acid ester monomer in binder A is 78%, the content of polymer units of vinyl monomer having an acid component is 2.0%, and the content of polymer units of α, β-unsaturated nitrile monomer The ratio was 20%, and the content ratio of the polymerized units having crosslinkability was 0%.
(B)正極用スラリーおよび正極の製造
 電極活物質としてオリビン型結晶構造のLiFePO(粒径:0.2μm)100部と、炭素繊維(平均繊維径:150nm、平均繊維長:8μm、平均アスペクト比:53、以下「炭素繊維1」と記すことがある。)1部と、アセチレンブラック(HS-100:電気化学工業)5部と、前記バインダーAの水分散液2.5部(固形分濃度40%)と、増粘剤としてのエーテル化度が0.8であるカルボキシメチルセルロース水溶液40部(固形分濃度2%)と、適量の水とをプラネタリーミキサーにて攪拌し、正極用スラリーを調製した。上記正極用スラリーをコンマコーターで厚さ20μmのアルミ箔上に乾燥後の膜厚が70μm程度になるように塗布し、60℃で20分間乾燥後、150℃で2時間加熱処理して電極原反を得た。この電極原反をロールプレスで圧延し、密度が2.1g/cm、アルミ箔および電極活物質層からなる厚みが65μmに制御された正極極板を作製した。作製した極板を用いてクラック発生の測定を行った。結果を表1に示す。
(B) Production of slurry for positive electrode and positive electrode As an electrode active material, 100 parts of LiFePO 4 (particle diameter: 0.2 μm) having an olivine type crystal structure, carbon fiber (average fiber diameter: 150 nm, average fiber length: 8 μm, average aspect) Ratio: 53, hereinafter referred to as “carbon fiber 1”) 1 part, 5 parts of acetylene black (HS-100: Electrochemical Industry), 2.5 parts of aqueous dispersion of binder A (solid content) 40%), 40 parts of an aqueous carboxymethyl cellulose solution having a degree of etherification of 0.8 as a thickener (solid content concentration 2%), and an appropriate amount of water are stirred with a planetary mixer to obtain a slurry for positive electrode Was prepared. The positive electrode slurry is applied on an aluminum foil having a thickness of 20 μm with a comma coater so that the film thickness after drying becomes about 70 μm, dried at 60 ° C. for 20 minutes, and then heat-treated at 150 ° C. for 2 hours to form an electrode substrate. Got anti. This electrode original fabric was rolled with a roll press to produce a positive electrode plate with a density of 2.1 g / cm 3 and a thickness of aluminum foil and an electrode active material layer controlled to 65 μm. The occurrence of cracks was measured using the produced electrode plate. The results are shown in Table 1.
(C)電池の作製
 前記正極極板を直径16mmの円盤状に切り抜き、この正極の活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、負極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのリチウムイオンコイン電池を作製した。なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。この電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(C) Production of Battery The positive electrode plate was cut into a disk shape with a diameter of 16 mm, a separator made of a disk-shaped porous polypropylene film with a diameter of 18 mm and a thickness of 25 μm on the active material layer side of the positive electrode, and metallic lithium used as the negative electrode The expanded metal was laminated in order, and this was stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing. The electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A lithium ion coin battery having a thickness of 20 mm and a thickness of about 2 mm was produced. In addition, as an electrolytic solution, LiPF 6 was added at 1 mol / liter in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 1: 2 (volume ratio at 20 ° C.). A solution dissolved at a concentration was used. Using this battery, the high-temperature cycle characteristics were evaluated. The results are shown in Table 1.
(実施例2)
(A)バインダーの製造
 重合缶Aに、2-エチルヘキシルアクリレート10.75部、アクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート67部、アクリロニトリル19部、メタクリル酸2.0部、アリルメタクリレート0.2部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、バインダーBの水分散液を得た。得られたバインダーBの、ガラス転移温度は-32℃、分散粒子径は0.15μm、バインダーBの水分散液のpHは10.1であった。得られた水分散液を用いてバインダー保存安定性を評価した結果を表1に示す。バインダーB中の、(メタ)アクリル酸エステルモノマーの重合単位の含有割合は78%、酸成分を有するビニルモノマーの重合単位は2.0%、α,β-不飽和ニトリルモノマーの重合単位の含有割合は20%、架橋性を有する重合単位の含有割合は0.2%であった。
(Example 2)
(A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, 0. 2 parts, 0.7 parts of sodium lauryl sulfate and 46 parts of ion-exchanged water were added and stirred, and the emulsion was sequentially added from polymerization vessel B to polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes. When the monomer consumption reached 95%, the reaction was terminated by cooling, and then the pH was adjusted with 4% NaOH aqueous solution. An aqueous dispersion was obtained. The obtained binder B had a glass transition temperature of −32 ° C., a dispersed particle size of 0.15 μm, and an aqueous dispersion of binder B having a pH of 10.1. Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion. In the binder B, the content of polymer units of (meth) acrylic acid ester monomer is 78%, the content of polymer units of vinyl monomer having an acid component is 2.0%, the content of polymer units of α, β-unsaturated nitrile monomer The ratio was 20%, and the content ratio of the polymerized units having crosslinkability was 0.2%.
 正極用バインダーとして、前記バインダーBの水分散液を用いたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder B was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例3)
 炭素繊維として、炭素繊維1のかわりに、平均繊維径:50nm、平均繊維長:1μm、平均アスペクト比:20である炭素繊維(以下、「炭素繊維2」と記すことがある。)を1部用いたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(Example 3)
As carbon fiber, instead of carbon fiber 1, 1 part of carbon fiber having an average fiber diameter of 50 nm, an average fiber length of 1 μm, and an average aspect ratio of 20 (hereinafter sometimes referred to as “carbon fiber 2”). A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that they were used. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例4)
 炭素繊維として、炭素繊維1のかわりに、平均繊維径:500nm、平均繊維長:100μm、平均アスペクト比:200である炭素繊維(以下、「炭素繊維3」と記すことがある。)を1部用いたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
Example 4
As carbon fiber, instead of carbon fiber 1, 1 part of carbon fiber having an average fiber diameter of 500 nm, an average fiber length of 100 μm, and an average aspect ratio of 200 (hereinafter sometimes referred to as “carbon fiber 3”). A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that they were used. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例5)
 炭素繊維1の使用部数を5部としたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(Example 5)
A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the number of parts used of the carbon fiber 1 was 5 parts. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例6)
 炭素繊維1の使用部数を8部としたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(Example 6)
A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the number of parts used of the carbon fiber 1 was 8 parts. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例7)
 正極活物質として、オリビン型結晶構造のLiFePOのかわりにスピネルマンガン(LiMn;Mn含有量60%、平均粒子径8μm)100部を用いたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。なお、この時の正極活物質層の密度は2.5g/cmとなるようにした。
(Example 7)
As in the case of Example 1, except that 100 parts of spinel manganese (LiMn 2 O 4 ; Mn content 60%, average particle diameter 8 μm) was used in place of LiFePO 4 having an olivine type crystal structure as the positive electrode active material. A positive electrode plate and a lithium ion coin battery were prepared. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1. At this time, the density of the positive electrode active material layer was set to 2.5 g / cm 3 .
(実施例8)
 正極用バインダーとして、バインダーAの水分散液のかわりにバインダーBの水分散液を用いたこと以外は、実施例7と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(Example 8)
A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 7, except that the aqueous dispersion of binder B was used instead of the aqueous dispersion of binder A as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例9)
(A)バインダーの製造
 重合缶Aに、2-エチルヘキシルアクリレート10.75部、アクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート67部、アクリロニトリル19部、メタクリル酸2.0部、アリルグリシジルエーテル0.2部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、バインダーEの水分散液を得た。得られたバインダーEの、ガラス転移温度は-32℃、分散粒子径は0.15μm、バインダーEの水分散液のpHは10.1であった。得られた水分散液を用いてバインダー保存安定性を評価した結果を表1に示す。バインダーE中の、(メタ)アクリル酸エステルモノマーの重合単位の含有割合は78%、酸成分を有するビニルモノマーの重合単位は2.0%、α,β-不飽和ニトリルモノマーの重合単位の含有割合は20%、架橋性を有する重合単位の含有割合は0.2%であった。
Example 9
(A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, another polymerization vessel B was charged with 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, allyl glycidyl ether 0 The emulsion prepared by adding 2 parts, 0.7 parts of sodium lauryl sulfate and 46 parts of ion-exchanged water and stirring was sequentially added from polymerization vessel B to polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes. When the monomer consumption reaches 95%, the reaction is terminated by cooling, and then the pH is adjusted with 4% NaOH aqueous solution. An aqueous dispersion of -E was obtained. The obtained binder E had a glass transition temperature of −32 ° C., a dispersed particle size of 0.15 μm, and an aqueous dispersion of binder E having a pH of 10.1. Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion. In binder E, the content of polymer units of (meth) acrylic acid ester monomer is 78%, the content of polymer units of vinyl monomer having an acid component is 2.0%, the content of polymer units of α, β-unsaturated nitrile monomer The ratio was 20%, and the content ratio of the polymerized units having crosslinkability was 0.2%.
 正極用バインダーとして、前記バインダーEの水分散液を用いたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。 A positive electrode plate and a lithium ion coin battery were prepared in the same manner as in Example 1 except that the aqueous dispersion of binder E was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(実施例10)
(A)バインダーの製造
 重合缶Aに、2-エチルヘキシルアクリレート10.75部、アクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート67部、アクリロニトリル19部、メタクリル酸2.0部、エチレングリコールジメタクリレート0.2部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、バインダーFの水分散液を得た。得られたバインダーFの、ガラス転移温度は-32℃、分散粒子径は0.15μm、バインダーFの水分散液のpHは10.1であった。得られた水分散液を用いてバインダー保存安定性を評価した結果を表1に示す。バインダーF中の、(メタ)アクリル酸エステルモノマーの重合単位の含有割合は78%、酸成分を有するビニルモノマーの重合単位は2.0%、α,β-不飽和ニトリルモノマーの重合単位の含有割合は20%、他の重合単位の含有割合は0.2%であった。
(Example 10)
(A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. 2 parts and 10 parts of ion-exchanged water were added and heated to 60 ° C. and stirred for 90 minutes. Then, in another polymerization vessel B, 67 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 2.0 parts of methacrylic acid, ethylene glycol dimethacrylate The emulsion prepared by adding 0.2 part, 0.7 part of sodium lauryl sulfate and 46 parts of ion-exchanged water and stirring the mixture was sequentially added from the polymerization vessel B to the polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes. When the monomer consumption reaches 95%, the reaction is terminated by cooling, and then the pH is adjusted with 4% NaOH aqueous solution. An aqueous dispersion of binder F was obtained. The obtained binder F had a glass transition temperature of −32 ° C., a dispersed particle size of 0.15 μm, and an aqueous dispersion of binder F having a pH of 10.1. Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion. In the binder F, the content of polymer units of (meth) acrylic acid ester monomer is 78%, the content of polymer units of vinyl monomer having an acid component is 2.0%, the content of polymer units of α, β-unsaturated nitrile monomer The proportion was 20%, and the content of other polymerized units was 0.2%.
 正極用バインダーとして、前記バインダーFの水分散液を用いたこと以外は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder F was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(比較例1)
 炭素繊維を使用しないこと以外は、実施例2と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(Comparative Example 1)
A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 2 except that no carbon fiber was used. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(比較例2)
 炭素繊維を使用しないこと以外は、実施例8と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。
(Comparative Example 2)
A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 8 except that no carbon fiber was used. And the high temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(比較例3)
(A)バインダーの製造
 重合缶Aに、2-エチルヘキシルアクリレート10.75部、アクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート68部、アクリロニトリル19部、メタクリル酸0.8部、アリルメタクリレート0.2部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、バインダーCの水分散液を得た。得られたバインダーCの、ガラス転移温度は-32℃、分散粒子径は0.15μm、バインダーCの水分散液のpHは10.1であった。得られた水分散液を用いてバインダー保存安定性を評価した結果を表1に示す。バインダーC中の、(メタ)アクリル酸エステルモノマーの重合単位の含有割合は79%、酸成分を有するビニルモノマーの重合単位は0.8%、α,β-不飽和ニトリルモノマーの重合単位の含有割合は20%、架橋性を有する重合単位の含有割合は0.2%であった。
(Comparative Example 3)
(A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, 68 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 0.8 part of methacrylic acid, 0. 2 parts, 0.7 parts of sodium lauryl sulfate and 46 parts of ion-exchanged water were added and stirred, and the emulsion was sequentially added from polymerization vessel B to polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes. When the monomer consumption reached 95%, the reaction was terminated by cooling, and then the pH was adjusted with 4% NaOH aqueous solution. An aqueous dispersion was obtained. The obtained binder C had a glass transition temperature of −32 ° C., a dispersed particle size of 0.15 μm, and an aqueous dispersion of binder C having a pH of 10.1. Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion. In the binder C, the content of polymer units of (meth) acrylic acid ester monomer is 79%, the content of polymer units of vinyl monomer having an acid component is 0.8%, the content of polymer units of α, β-unsaturated nitrile monomer The ratio was 20%, and the content ratio of the polymerized units having crosslinkability was 0.2%.
 正極用バインダーとして、前記バインダーCの水分散液を用いた他は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder C was used as the positive electrode binder. And the high-temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
(比較例4)
(A)バインダーの製造
 重合缶Aに、2-エチルヘキシルアクリレート10.75部、アクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート65.3部、アクリロニトリル19部、メタクリル酸3.5部、アリルメタクリレート0.2部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、バインダーDの水分散液を得た。得られたバインダーDの、ガラス転移温度は-32℃、分散粒子径は0.15μm、バインダーDの水分散液のpHは10.1であった。得られた水分散液を用いてバインダー保存安定性を評価した結果を表1に示す。バインダーD中の、(メタ)アクリル酸エステルモノマーの重合単位の含有割合は76.3%、酸成分を有するビニルモノマーの重合単位は3.5%、α,β-不飽和ニトリルモノマーの重合単位の含有割合は20%、架橋性を有する重合単位の含有割合は0.2%であった。
(Comparative Example 4)
(A) Production of Binder 10.75 parts of 2-ethylhexyl acrylate, 1.25 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added to Polymerization Can A. After 2 parts and 10 parts of ion exchange water were added and heated to 60 ° C. and stirred for 90 minutes, another polymerization vessel B was charged with 65.3 parts of 2-ethylhexyl acrylate, 19 parts of acrylonitrile, 3.5 parts of methacrylic acid, allyl methacrylate. The emulsion prepared by adding 0.2 part, 0.7 part of sodium lauryl sulfate and 46 parts of ion-exchanged water and stirring the mixture was sequentially added from the polymerization vessel B to the polymerization vessel A over about 180 minutes, and then stirred for about 120 minutes. When the monomer consumption reaches 95%, the reaction is terminated by cooling, and then the pH is adjusted with a 4% NaOH aqueous solution. An aqueous dispersion of -D was obtained. The obtained binder D had a glass transition temperature of −32 ° C., a dispersed particle size of 0.15 μm, and an aqueous dispersion of binder D having a pH of 10.1. Table 1 shows the results of evaluating the storage stability of the binder using the obtained aqueous dispersion. The content ratio of polymer units of (meth) acrylic acid ester monomer in binder D is 76.3%, polymer units of vinyl monomer having an acid component is 3.5%, polymer units of α, β-unsaturated nitrile monomer The content ratio of was 20%, and the content ratio of the crosslinkable polymer units was 0.2%.
 正極用バインダーとして、前記バインダーDの水分散液を用いた他は、実施例1と同様にして、正極極板、リチウムイオンコイン電池を作製した。そして、この極板のクラック測定並びにリチウムイオンコイン電池を用いて高温サイクル特性を評価した。その結果を表1に示す。 A positive electrode plate and a lithium ion coin battery were produced in the same manner as in Example 1 except that the aqueous dispersion of binder D was used as the positive electrode binder. And the high temperature cycling characteristic was evaluated using the crack measurement of this electrode plate, and the lithium ion coin battery. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1~10の、マンガンまたは鉄を含む正極活物質と、繊維状炭素と、(メタ)アクリル酸エステルモノマーの重合単位、酸成分を有するビニルモノマーの重合単位及びα,β-不飽和ニトリルモノマーの重合単位を含む重合体からなるバインダーとを含有してなる正極活物質層を有する二次電池用正極では、正極活物質層におけるクラックの発生を防止することができる、すなわち安全性が向上すると共に、電池の高温サイクル特性が良好であることが分かる。また、該バインダーは、その保存安定性が良好である。
 一方、繊維状炭素を含有しない比較例1,2の二次電池用正極やバインダー中の酸成分を有するビニルモノマーの重合単位の含有割合が1.0質量%未満であるものを用いた比較例3や3.0質量%を超えるものを用いた比較例4の二次電池用正極では、正極活物質層におけるクラックの発生を防止することが困難であり、電池の高温サイクル特性が低下した。
From the results shown in Table 1, the positive electrode active materials containing manganese or iron, fibrous carbon, polymerized units of (meth) acrylic acid ester monomers, polymerized units of vinyl monomers having an acid component, and α in Examples 1 to 10 In a positive electrode for a secondary battery having a positive electrode active material layer containing a binder composed of a polymer containing polymerized units of β, unsaturated nitrile monomer, the occurrence of cracks in the positive electrode active material layer can be prevented That is, it can be seen that the safety is improved and the high-temperature cycle characteristics of the battery are good. The binder has good storage stability.
On the other hand, the comparative example using what the content rate of the polymerization unit of the vinyl monomer which has the acid component in the positive electrode for secondary batteries and binder of the comparative examples 1 and 2 which does not contain fibrous carbon is less than 1.0 mass%. In the positive electrode for secondary battery of Comparative Example 4 using 3 or more than 3.0% by mass, it was difficult to prevent the occurrence of cracks in the positive electrode active material layer, and the high-temperature cycle characteristics of the battery were deteriorated.

Claims (7)

  1.  集電体と、 前記集電体上に積層され、マンガンまたは鉄を含む正極活物質、繊維状炭素、およびバインダーを含有してなる正極活物質層とからなり、
     前記バインダーが、(メタ)アクリル酸エステルモノマーの重合単位と、酸成分を有するビニルモノマーの重合単位と、α,β-不飽和ニトリルモノマーの重合単位とを含んでなる重合体からなり、
     前記酸成分を有するビニルモノマーの重合単位の含有割合が、重合体の全重合単位中1.0~3.0質量%である二次電池用正極。
    A current collector and a positive electrode active material layer laminated on the current collector and containing manganese or iron, fibrous carbon, and a binder,
    The binder comprises a polymer comprising a polymer unit of a (meth) acrylic acid ester monomer, a polymer unit of a vinyl monomer having an acid component, and a polymer unit of an α, β-unsaturated nitrile monomer,
    A positive electrode for a secondary battery, wherein a content ratio of polymer units of the vinyl monomer having an acid component is 1.0 to 3.0% by mass in all polymer units of the polymer.
  2.  前記正極活物質が、鉄を含み、更にオリビン型構造を有する請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the positive electrode active material contains iron and further has an olivine type structure.
  3.  前記繊維状炭素の平均繊維径が、0.01~1.0μmである請求項1または2に記載の二次電池用正極。 3. The positive electrode for a secondary battery according to claim 1, wherein the fibrous carbon has an average fiber diameter of 0.01 to 1.0 μm.
  4.  前記繊維状炭素の平均アスペクト比が、5~50000である請求項1~3のいずれかに記載の二次電池用正極。 The positive electrode for secondary battery according to any one of claims 1 to 3, wherein the fibrous carbon has an average aspect ratio of 5 to 50,000.
  5.  前記酸成分を有するビニルモノマーが、カルボン酸基を有する単量体である請求項1~4のいずれかに記載の二次電池用正極。 The positive electrode for a secondary battery according to any one of claims 1 to 4, wherein the vinyl monomer having an acid component is a monomer having a carboxylic acid group.
  6.  前記バインダーが、さらに架橋性を有する重合単位を含む請求項1~5のいずれかに記載の二次電池用正極。 The positive electrode for a secondary battery according to any one of claims 1 to 5, wherein the binder further contains a polymerized unit having crosslinkability.
  7.  正極、負極、セパレーター及び電解液を備えてなり、前記正極が、請求項1~6のいずれかに記載の二次電池用正極である二次電池。 A secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte, wherein the positive electrode is a positive electrode for a secondary battery according to any one of claims 1 to 6.
PCT/JP2011/061963 2010-05-25 2011-05-25 Positive electrode for secondary battery, and secondary battery WO2011148970A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012517293A JP5783172B2 (en) 2010-05-25 2011-05-25 Positive electrode for secondary battery and secondary battery
CN201180036571.5A CN103026535B (en) 2010-05-25 2011-05-25 Anode of secondary cell and secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-119693 2010-05-25
JP2010119693 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011148970A1 true WO2011148970A1 (en) 2011-12-01

Family

ID=45003959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061963 WO2011148970A1 (en) 2010-05-25 2011-05-25 Positive electrode for secondary battery, and secondary battery

Country Status (3)

Country Link
JP (1) JP5783172B2 (en)
CN (1) CN103026535B (en)
WO (1) WO2011148970A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133040A1 (en) * 2012-03-08 2013-09-12 株式会社 日立製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
WO2014119481A1 (en) * 2013-01-29 2014-08-07 ダイソー株式会社 Binder for battery electrode, and electrode and battery using same
KR20150027058A (en) * 2012-05-31 2015-03-11 다이소 가부시키가이샤 Binder for battery electrode and electrode and battery using same
JP2015056282A (en) * 2013-09-12 2015-03-23 八千代工業株式会社 Polymer solid electrolyte battery
WO2015064570A1 (en) * 2013-10-29 2015-05-07 ダイソー株式会社 Battery electrode binder and battery and electrode using same
WO2015186363A1 (en) * 2014-06-04 2015-12-10 日本ゼオン株式会社 Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
EP3007252A4 (en) * 2013-05-29 2016-12-14 Zeon Corp Slurry composition for lithium-ion secondary battery positive electrode, production method for lithium-ion secondary battery positive electrode, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
WO2016208190A1 (en) * 2015-06-24 2016-12-29 日本ゼオン株式会社 Electrochemical element electrode composition, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode composition
JP2017010822A (en) * 2015-06-24 2017-01-12 日本ゼオン株式会社 Conductive material fluid dispersion for electrochemical element, slurry for electrochemical element positive electrode, method for producing slurry for electrochemical element positive electrode, positive electrode for electrochemical element, and electrochemical element
JP2017010821A (en) * 2015-06-24 2017-01-12 日本ゼオン株式会社 Conductive material fluid dispersion for electrochemical element, slurry for electrochemical element positive electrode, method for producing slurry for electrochemical element positive electrode, positive electrode for electrochemical element, and electrochemical element
JP2017063013A (en) * 2015-06-18 2017-03-30 帝人株式会社 Electrode mixture layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017510044A (en) * 2014-04-01 2017-04-06 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Electrode binder composition for lithium ion electricity storage device
US20180062160A1 (en) * 2015-03-24 2018-03-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2020021745A (en) * 2012-04-10 2020-02-06 株式会社半導体エネルギー研究所 Manufacturing method of positive electrode
JP2020053400A (en) * 2019-12-05 2020-04-02 I&Tニューマテリアルズ株式会社 Electrode of power storage device and manufacturing method therefor
US11367576B2 (en) 2016-12-22 2022-06-21 Charles Metallic & Solar Materials Co., Ltd. Electrode for power storage devices and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129188A1 (en) * 2013-02-19 2014-08-28 日本ゼオン株式会社 Slurry composition for positive electrodes of lithium ion secondary batteries, method for producing positive electrode for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102563083B1 (en) * 2017-03-13 2023-08-02 니폰 제온 가부시키가이샤 Slurry composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
KR20210048493A (en) * 2018-08-31 2021-05-03 니폰 제온 가부시키가이샤 Binder composition for all-solid secondary battery, slurry composition for all-solid secondary battery electrode mixture layer, slurry composition for solid electrolyte layer for all-solid secondary battery, electrode for all-solid secondary battery, solid electrolyte layer for all-solid secondary battery, and all-solid secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335971A (en) * 2005-06-06 2006-12-14 Hitachi Chem Co Ltd Acrylic resin, binder composition using the same and secondary battery using the same
JP2007019108A (en) * 2005-07-05 2007-01-25 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2007067088A (en) * 2005-08-30 2007-03-15 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2009117159A (en) * 2007-11-06 2009-05-28 Sony Corp Positive electrode and lithium ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259778B2 (en) * 2001-08-02 2009-04-30 パナソニック株式会社 Method for producing positive electrode for non-aqueous secondary battery
JP4888411B2 (en) * 2008-02-13 2012-02-29 ソニー株式会社 Positive electrode and non-aqueous electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335971A (en) * 2005-06-06 2006-12-14 Hitachi Chem Co Ltd Acrylic resin, binder composition using the same and secondary battery using the same
JP2007019108A (en) * 2005-07-05 2007-01-25 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2007067088A (en) * 2005-08-30 2007-03-15 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2009117159A (en) * 2007-11-06 2009-05-28 Sony Corp Positive electrode and lithium ion secondary battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187034A (en) * 2012-03-08 2013-09-19 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
WO2013133040A1 (en) * 2012-03-08 2013-09-12 株式会社 日立製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
JP2020021745A (en) * 2012-04-10 2020-02-06 株式会社半導体エネルギー研究所 Manufacturing method of positive electrode
US9608273B2 (en) * 2012-05-31 2017-03-28 Daiso Co., Ltd. Binder for battery electrode and electrode and battery using same
KR20150027058A (en) * 2012-05-31 2015-03-11 다이소 가부시키가이샤 Binder for battery electrode and electrode and battery using same
KR102075178B1 (en) * 2012-05-31 2020-02-07 가부시키가이샤 오사카소다 Binder for battery electrode and electrode and battery using same
US20150137030A1 (en) * 2012-05-31 2015-05-21 Daiso Co., Ltd. Binder for battery electrode and electrode and battery using same
WO2014119481A1 (en) * 2013-01-29 2014-08-07 ダイソー株式会社 Binder for battery electrode, and electrode and battery using same
US10014525B2 (en) 2013-01-29 2018-07-03 Osaka Soda Co., Ltd. Binder for battery electrode, and electrode and battery using same
US20150372305A1 (en) * 2013-01-29 2015-12-24 Daiso Co., Ltd. Binder for battery electrode, and electrode and battery using same
KR101858798B1 (en) * 2013-01-29 2018-05-16 가부시키가이샤 오사카소다 Binder for battery electrode, and electrode and battery using same
EP3007252A4 (en) * 2013-05-29 2016-12-14 Zeon Corp Slurry composition for lithium-ion secondary battery positive electrode, production method for lithium-ion secondary battery positive electrode, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
JP2015056282A (en) * 2013-09-12 2015-03-23 八千代工業株式会社 Polymer solid electrolyte battery
US10003077B2 (en) 2013-10-29 2018-06-19 Osaka Soda Co., Ltd. Battery electrode binder and battery and electrode using same
JPWO2015064570A1 (en) * 2013-10-29 2017-03-09 株式会社大阪ソーダ Battery electrode binder, and electrode and battery using the same
WO2015064570A1 (en) * 2013-10-29 2015-05-07 ダイソー株式会社 Battery electrode binder and battery and electrode using same
KR101931418B1 (en) * 2013-10-29 2018-12-20 가부시키가이샤 오사카소다 Battery electrode binder and battery and electrode using same
JP2017510044A (en) * 2014-04-01 2017-04-06 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Electrode binder composition for lithium ion electricity storage device
WO2015186363A1 (en) * 2014-06-04 2015-12-10 日本ゼオン株式会社 Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
US20180062160A1 (en) * 2015-03-24 2018-03-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US10483525B2 (en) * 2015-03-24 2019-11-19 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP7308007B2 (en) 2015-06-18 2023-07-13 帝人株式会社 Electrode mixture layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7108372B2 (en) 2015-06-18 2022-07-28 帝人株式会社 Electrode mixture layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2021144954A (en) * 2015-06-18 2021-09-24 帝人株式会社 Electrode mixture layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017063013A (en) * 2015-06-18 2017-03-30 帝人株式会社 Electrode mixture layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017010822A (en) * 2015-06-24 2017-01-12 日本ゼオン株式会社 Conductive material fluid dispersion for electrochemical element, slurry for electrochemical element positive electrode, method for producing slurry for electrochemical element positive electrode, positive electrode for electrochemical element, and electrochemical element
EP3316359A4 (en) * 2015-06-24 2018-12-26 Zeon Corporation Electrochemical element electrode composition, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode composition
CN107710468A (en) * 2015-06-24 2018-02-16 日本瑞翁株式会社 The manufacture method of electro-chemical element electrode composition, electrode for electrochemical device and electrochemical element and electro-chemical element electrode composition
WO2016208190A1 (en) * 2015-06-24 2016-12-29 日本ゼオン株式会社 Electrochemical element electrode composition, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode composition
US20180301744A1 (en) * 2015-06-24 2018-10-18 Zeon Corporation Composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing composition for electrochemical device electrode
JP2017010821A (en) * 2015-06-24 2017-01-12 日本ゼオン株式会社 Conductive material fluid dispersion for electrochemical element, slurry for electrochemical element positive electrode, method for producing slurry for electrochemical element positive electrode, positive electrode for electrochemical element, and electrochemical element
CN115084525A (en) * 2015-06-24 2022-09-20 日本瑞翁株式会社 Composition for electrochemical element electrode
KR20180021698A (en) * 2015-06-24 2018-03-05 니폰 제온 가부시키가이샤 Compositions for electrochemical device electrodes, electrodes and electrochemical devices for electrochemical devices, and methods for producing compositions for electrochemical device electrodes
KR102595197B1 (en) * 2015-06-24 2023-10-26 니폰 제온 가부시키가이샤 Composition for electrochemical device electrode, electrode for electrochemical device and electrochemical device, and method for producing composition for electrochemical device electrode
US11367576B2 (en) 2016-12-22 2022-06-21 Charles Metallic & Solar Materials Co., Ltd. Electrode for power storage devices and method of manufacturing the same
JP2020053400A (en) * 2019-12-05 2020-04-02 I&Tニューマテリアルズ株式会社 Electrode of power storage device and manufacturing method therefor
JP7030766B2 (en) 2019-12-05 2022-03-07 I&Tニューマテリアルズ株式会社 Electrodes of power storage devices and their manufacturing methods

Also Published As

Publication number Publication date
JPWO2011148970A1 (en) 2013-07-25
CN103026535A (en) 2013-04-03
JP5783172B2 (en) 2015-09-24
CN103026535B (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5783172B2 (en) Positive electrode for secondary battery and secondary battery
JP5733219B2 (en) Positive electrode for secondary battery and secondary battery
JP5765228B2 (en) Porous membrane for secondary battery and secondary battery
JP5605591B2 (en) Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator, secondary battery, and method for producing secondary battery porous membrane
JP5522422B2 (en) Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator and secondary battery
JP5549739B2 (en) Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator and secondary battery
JP6375949B2 (en) Method for producing positive electrode for secondary battery, method for producing secondary battery and laminate for secondary battery
JP6168051B2 (en) Lithium ion secondary battery
JP5534245B2 (en) Positive electrode for secondary battery and secondary battery
JP6222102B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP5867731B2 (en) Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator, secondary battery and method for producing secondary battery porous membrane
KR102184050B1 (en) Lithium ion secondary battery
WO2011001848A1 (en) Electrode for secondary battery, and secondary battery
KR20120081983A (en) Electrode for secondary battery, binder for secondary battery electrode, and secondary battery
WO2012011555A1 (en) Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
WO2014014006A1 (en) Negative electrode for secondary cell, and secondary cell
WO2011078263A1 (en) Electrode for secondary battery, and secondary battery
JP6111895B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for secondary battery and secondary battery
JP2011076981A (en) Manufacturing method of secondary battery positive electrode, slurry for secondary battery positive electrode, and secondary battery
JP5682557B2 (en) Positive electrode for secondary battery and secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036571.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517293

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786669

Country of ref document: EP

Kind code of ref document: A1