JPH0238451A - Ionically conductive solid electrolyte material - Google Patents

Ionically conductive solid electrolyte material

Info

Publication number
JPH0238451A
JPH0238451A JP63189323A JP18932388A JPH0238451A JP H0238451 A JPH0238451 A JP H0238451A JP 63189323 A JP63189323 A JP 63189323A JP 18932388 A JP18932388 A JP 18932388A JP H0238451 A JPH0238451 A JP H0238451A
Authority
JP
Japan
Prior art keywords
solid electrolyte
ethylene oxide
electrolyte material
conductive solid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63189323A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sugihara
杉原 俊行
Koji Ishikawa
浩二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOTSUKAICHI GOSEI KK
Original Assignee
YOTSUKAICHI GOSEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOTSUKAICHI GOSEI KK filed Critical YOTSUKAICHI GOSEI KK
Priority to JP63189323A priority Critical patent/JPH0238451A/en
Publication of JPH0238451A publication Critical patent/JPH0238451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain the title material having sufficient ionic conductivity at or near room temperature and having an improved ionic conductivity by mixing a specified polymeric matrix with an ionic compound. CONSTITUTION:A polyglycerol (a) of an average degree of polymerization or condensation >=3 and a kinematic viscosity v at 50 deg.C>=1000cSt is reacted with a polyether (b) which is an ethylene oxide homopolymer or a random or sequential copolymer (b) of ethylene oxide with an alkylene oxide of the formula [wherein R is a (halogenated) alkyl, alkenyl or alkoxy] and has 5-2000 repeating ethylene oxide units at 50-200 deg.C under a pressure <=10kg/cm<2> in the presence of an alkali catalyst, and the obtained addition polymer composed of a main chain comprising component (a) and side chains comprising component (b) is crosslinked to obtain a polymeric matrix (A) comprising a three-dimensional crosslinked product. Component A is reacted with an ionic compound (B) (e.g., lithium perchlorate) in an oxygen to ionic metal ratio of 5-100:1.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は電池、エレクトロクロミック素子、電置針、大
容量電解コンデンサー、センサーなどに幅広い応用が期
待されるイオン導電性高分子固体電解質に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to an ion-conductive polymer solid electrolyte that is expected to have a wide range of applications in batteries, electrochromic devices, electrostatic needles, large-capacity electrolytic capacitors, sensors, etc. be.

[従来の技術] 近年、エレクトロニクス産業の進歩は目覚ましく、エレ
クトロニクス素子の高速化、高密度化の技術が急速に進
んであおり、高性能で高信頼性のエレクトロニクス材料
が要望されている。
[Background Art] In recent years, the electronics industry has made remarkable progress, and technology for increasing the speed and density of electronic elements is rapidly progressing, creating a demand for high-performance and highly reliable electronics materials.

近年報告されている固体電解質を大別すると、無機系の
固体電解質と高分子系の固体電解質がある。高分子系固
体電解質のイオン導電率は、無機系固体電解質のイオン
導電率の10−’S/cmに比べて遥かに小さいにも拘
らず、薄膜化や大面積化が可能な成形性及び柔軟性等の
点において優れているので、高分子系の固体電解質につ
いての研究開発が多くなされている。
Solid electrolytes that have been reported in recent years can be roughly divided into inorganic solid electrolytes and polymer solid electrolytes. Although the ionic conductivity of polymeric solid electrolytes is much lower than that of inorganic solid electrolytes (10-'S/cm), it has good formability and flexibility that allows it to be made thinner and larger in area. Since they are superior in terms of performance and other properties, much research and development has been conducted on polymer-based solid electrolytes.

特に、M、 B、 Armand等が1975年にポリ
エチレンオキシドに種々のアルカリ金属塩類を溶解した
固体電解質を全固体二次電池に利用する試みを発表して
以来、高分子系固体電解質について多くの研究及び提案
がなされている。
In particular, since 1975, when M., B., Armand et al. announced their attempt to use a solid electrolyte prepared by dissolving various alkali metal salts in polyethylene oxide in an all-solid-state secondary battery, much research has been conducted on polymeric solid electrolytes. and suggestions have been made.

例えば、マレイン酸やメタクリル酸ポリマーのゲルにポ
リエチレンオキシドを溶解させた固体電解質(室温での
イオン導電率:約10−55/cm)  (DR,Pa
yne et al、Polymer、 23.690
 [1982); ETsuchida et al、
 5olid 5tate Ionics、 11.2
27+19831) 、ポリエチレンオキシドグラフト
シロキサンポリマーをマトリックスとする高分子に金属
塩類をドープした固体電解質(イオン導電率・350C
で1.94x 1O−6S/cm) (S、Kohji
ya et al、 PolymerPreprint
s Japan、 35.778(19861)、  
トリオール型ポリエチレンオキシドやトリオール型プロ
ピレンオキシドのジイソシアネート架橋物ポリマーに金
属塩類をドープした固体電解質(イオン導電率=30°
Cで1O−5S/cm) (M、Watanabe e
t al、 5olidState Ionics、 
18 & 19.338(19861、特開昭6248
716号)、−単位に1個又は2個のオリゴオキシエチ
レン鎖を有する易重合性リン酸−ジビニルモノマー又は
−ビニルモノマーとアルカリ金属塩との混合物(イオン
導電率:25°Cで10−’S/cm)(A、  Ya
mada  et  al、 Polymer  Pr
eprints  Japan34.903 (198
5)、特開昭61−260557号公報及び特開昭61
−254613号公報(、ポリメタクリル酸オリゴオキ
シエチレン・メタクリル酸アルカリ金属塩共重合体の対
イオン固定固体電解質(イオン導電率゛室滝で1O−7
S/cm) (Polymer Reprints J
apan。
For example, a solid electrolyte in which polyethylene oxide is dissolved in a maleic acid or methacrylic acid polymer gel (ionic conductivity at room temperature: approximately 10-55/cm) (DR, Pa
yne et al, Polymer, 23.690
[1982); ETsuchida et al.
5olid 5tate Ionics, 11.2
27+19831), a solid electrolyte (ionic conductivity, 350C
1.94x 1O-6S/cm) (S, Kohji
ya et al, PolymerPreprint
s Japan, 35.778 (19861),
A solid electrolyte made by doping a diisocyanate crosslinked polymer of triol-type polyethylene oxide or triol-type propylene oxide with metal salts (ionic conductivity = 30°
1O-5S/cm in C) (M, Watanabe e
tal, 5solidState Ionics,
18 & 19.338 (19861, Japanese Patent Publication No. 6248
No. 716), an easily polymerizable phosphoric acid divinyl monomer having one or two oligooxyethylene chains per unit, or a mixture of a vinyl monomer and an alkali metal salt (ionic conductivity: 10-' at 25°C) S/cm) (A, Ya
mada et al, Polymer Pr
eprints Japan34.903 (198
5), JP-A-61-260557 and JP-A-61
-254613 Publication (Polymethacrylic acid oligooxyethylene/methacrylic acid alkali metal salt copolymer counterion fixed solid electrolyte (ionic conductivity 1O-7 at Murotaki)
S/cm) (Polymer Reprints J
apan.

35.583+1986+1 、ポリアルキレンカーボ
ネートと無機塩と該無機塩を溶解する有機溶媒からなる
イオン導電性高分子複合体(イオン導電率 6×10−
’S/am)  (特開昭62−30147号公報)及
びエポキシ当量80〜200の脂肪族エポキシ樹脂と環
状エーテル類、環状エステル類環状アミド類、フラン類
とエポキシ硬化剤とからなるイオン導電性架橋型樹脂組
成物(イオン導電率:室温で10−’S/cm)  (
特公昭63−6573号公報)が提案されている。しか
し、これらの固体電解質はいずれもイオン導電性が小さ
く、満足できるものではなかった。
35.583+1986+1, an ionically conductive polymer composite consisting of polyalkylene carbonate, an inorganic salt, and an organic solvent that dissolves the inorganic salt (ionic conductivity: 6×10−
'S/am) (Japanese Unexamined Patent Publication No. 62-30147) and an ionic conductive material consisting of an aliphatic epoxy resin with an epoxy equivalent of 80 to 200, cyclic ethers, cyclic esters, cyclic amides, furans, and an epoxy curing agent. Crosslinked resin composition (ionic conductivity: 10-'S/cm at room temperature) (
Japanese Patent Publication No. 63-6573) has been proposed. However, all of these solid electrolytes had low ionic conductivity and were not satisfactory.

一方、エチレンオキシドを含有するポリマーは室温より
明らかに高い温度で結晶構造を形成し易く、そのために
低い温度では急激に導電性が低下する。この欠点を改良
する目的での提案も数多く見られる。
On the other hand, polymers containing ethylene oxide tend to form crystalline structures at temperatures clearly higher than room temperature, and as a result, conductivity rapidly decreases at low temperatures. There are many proposals aimed at improving this drawback.

例えば、特開昭59−18284号公報には、イオン化
合物を含むエチレンオキシドと環状エーテルとの共重合
体は、使用温度である室温では結晶化せず、そのイオン
導電率が45℃で10−’S/cmであることが示され
ており、特開昭59−182844号公報にも、エチレ
ンオキシドと四貫環以上の置換又は無置換の環状エーテ
ルとイオン化合物を含む高分子材料が提案されている。
For example, JP-A-59-18284 states that a copolymer of ethylene oxide and cyclic ether containing an ionic compound does not crystallize at room temperature, which is the operating temperature, and its ionic conductivity is 10-' at 45°C. S/cm, and JP-A-59-182844 also proposes a polymer material containing ethylene oxide, a substituted or unsubstituted cyclic ether with four or more rings, and an ionic compound. .

また、特開昭61−83249号公報には、ポリエチレ
ンオキシドの内部にポリプロピレンオキシドやメトキシ
グリシジルエーテルをランダムに分布させてイオン化合
物を溶解した高分子材料が開示されており、そのイオン
導電率が47℃で10−’S/cmであることが示され
ている。
Furthermore, JP-A No. 61-83249 discloses a polymer material in which polypropylene oxide or methoxyglycidyl ether is randomly distributed inside polyethylene oxide to dissolve an ionic compound, and the ionic conductivity of the material is 47. 10-'S/cm at °C.

また、固体電解質を用いて電池を構成したとき、高分子
マトリックスの末端−OHが電極であるLiと反応する
ので、その−OHを封鎖したり、また、固体電解質の機
械的特性並びに結晶化挙動を改善するための各種の提案
もなされている。
In addition, when a battery is constructed using a solid electrolyte, the terminal -OH of the polymer matrix reacts with Li, which is the electrode, so the -OH can be blocked and the mechanical properties and crystallization behavior of the solid electrolyte can be improved. Various proposals have also been made to improve this.

例えば、フランス国特許第2485274号にはポリエ
チレンオキシド・金属イオン錯体をシソシアネートでウ
レタン架橋したエラストマー材料が、フランス国特許第
2493609号にはテレフタール酸ジメチルとポリグ
リコール又はジオールとの縮合によって得られるポリエ
ステル系のエラストマ重合体が開示されている。また、
特公昭62−18580号公報にはポリエチレンオキシ
ドからなる重合体で、アルミニウム、亜鉛、マグネシウ
ムのうちのつの金属を含む有機金属ポリマーに溶解する
塩類を含むイオン導電性ポリマー(イオン導電率52℃
で10−’S/cm)が、特開昭60−262852号
公報にはポリエチレンオキシドからなる重合体で、カド
ミウム、チタン、ホウ素のうちの一つの金属を含む有機
金属ポリマーに溶解する金属を含むイオン導電性ポリマ
ー(イオン導電率:65°Cで10−’S/cm)が示
されている。
For example, French Patent No. 2,485,274 discloses an elastomer material in which a polyethylene oxide/metal ion complex is cross-linked with urethane using shisocyanate, and French Patent No. 2,493,609 discloses a polyester obtained by condensing dimethyl terephthalate with polyglycol or diol. A series of elastomeric polymers are disclosed. Also,
Japanese Patent Publication No. 62-18580 describes a polymer made of polyethylene oxide, which is an ionically conductive polymer containing salts dissolved in an organometallic polymer containing one of aluminum, zinc, and magnesium (ionic conductivity: 52°C).
10-'S/cm), but JP-A-60-262852 describes a polymer made of polyethylene oxide, which contains a metal soluble in an organometallic polymer containing one of cadmium, titanium, and boron. An ionically conductive polymer (ionic conductivity: 10-'S/cm at 65°C) is shown.

[発明が解決しようとする課題] しかしながらこれらの固体電解質材料は、イオン導電率
が室温で1O−5S/cm以下であり、実用性が小さく
、また、−単位に1個又は2個のオリゴオキシエチレン
鎖を有する易重合性リン酸−ジビニルモノマー又は−ビ
ニルモノマーとアルカリ金属塩との混合物はイオン導電
率が室温で10−’S/cmと比較的高い値を示すが、
生成物の精製が複雑で、収率も十分とはいえない。
[Problems to be Solved by the Invention] However, these solid electrolyte materials have an ionic conductivity of 1O-5S/cm or less at room temperature, and are of little practical use. The easily polymerizable divinyl phosphoric acid monomer having an ethylene chain or a mixture of a vinyl monomer and an alkali metal salt exhibits a relatively high ionic conductivity of 10-'S/cm at room temperature.
Purification of the product is complicated and the yield is not sufficient.

本発明の目的は、イオン導電性が太き(、かつ、室温付
近又は室温以下でも十分なイオン導電性を有し、電池を
構成したとき、電極金属と反応せず、また、薄膜化が可
能で、大面積のフィルム状に成形したときに必要な可撓
性を有する固体電解質材料であって、工業的に製造可能
なものを提供するにある。
The purpose of the present invention is to have high ionic conductivity (and sufficient ionic conductivity even near or below room temperature, not to react with electrode metal when a battery is constructed, and to be able to be formed into a thin film. The object of the present invention is to provide a solid electrolyte material that has the necessary flexibility when formed into a large-area film and that can be manufactured industrially.

[課題を解決するための手段1 本発明は、特定のポリグリセリンを主鎖として側鎖にポ
リエーテルを付加重合させたものを架橋させて高分子マ
トリックスとすることにより上記の目的を達成したもの
である。
[Means for Solving the Problems 1] The present invention achieves the above object by crosslinking a specific polyglycerin main chain and addition polymerization of polyether to the side chain to form a polymer matrix. It is.

すなわち本発明は、主として高分子マトリックスとイオ
ン化合物とからなる固体電解質において、高分子マトリ
ックスが、その平均重合度又は平均縮合度が3以上で、
かつ、その動粘度が1000cSt以上のポリグリセリ
ンを主鎖とし、ポリエテルを側鎖とする付加重合体を架
橋させて得られた三次元架橋物からなることを特徴とす
るイオン導電性固体電解質材料である。
That is, the present invention provides a solid electrolyte mainly consisting of a polymer matrix and an ionic compound, in which the polymer matrix has an average degree of polymerization or an average degree of condensation of 3 or more,
and an ion conductive solid electrolyte material characterized in that it is made of a three-dimensionally crosslinked product obtained by crosslinking an addition polymer having a main chain of polyglycerin and a side chain of polyether having a kinematic viscosity of 1000 cSt or more. be.

[発明の詳細な説明] (1)高分子マトリックス ポリグリセリン 本発明の高分子固体電解質材料において、高分子マトリ
ックスの骨格となるポリグリセリンは、グリセリンのア
ルカリ触媒による脱水縮合、エピクロルヒドリンの苛性
ソーダによる縮合、あるいはクリシドールの付加重合触
媒、例えば苛性ソーダによる付加重合等により容易に得
られる。
[Detailed Description of the Invention] (1) Polymer Matrix Polyglycerin In the polymer solid electrolyte material of the present invention, the polyglycerin that forms the skeleton of the polymer matrix is formed by dehydration condensation of glycerin with an alkali catalyst, condensation of epichlorohydrin with caustic soda, Alternatively, it can be easily obtained by addition polymerization of chrycidol using an addition polymerization catalyst such as caustic soda.

本発明において使用されるポリグリセリンは、その平均
重合度又は平均縮合度が3以上で、かつ、その動粘度シ
ロ0’Cが1000cSt以上、好ましくはその平均重
合度又は平均縮合度が5以上で、その動粘度’l’ S
O’Cが5000cSt以上のものである。
The polyglycerin used in the present invention has an average degree of polymerization or condensation of 3 or more, and a kinematic viscosity of 0'C of 1000 cSt or more, preferably an average degree of polymerization or condensation of 5 or more. , its kinematic viscosity 'l' S
O'C is 5000 cSt or more.

平均重合度又は平均縮合度の上限は、得られる固体電解
質の性能面からは制約を受けるものではないが、通常工
業的に入手できるポリグリセリンの平均重合度又は平均
縮合度の上限は10程度である。
The upper limit of the average degree of polymerization or the average degree of condensation is not restricted from the performance standpoint of the solid electrolyte obtained, but the upper limit of the average degree of polymerization or average degree of condensation of polyglycerin that is usually commercially available is about 10. be.

但し、グリセリン単体のポリエチレンオキシド付加物で
は、室温におけるイオン導電率は前記したように1O−
5S/cm程度であり、ポリグリセリンの平均重合度又
は平均縮合度が低過ぎるとイオン導電率が低くなるので
、用いるポリグリセリンの平均重合度又は平均縮合度は
3以上が好ましく、特に5以上のものが好ましい。
However, in the polyethylene oxide adduct of glycerin alone, the ionic conductivity at room temperature is 1O-
If the average degree of polymerization or average degree of condensation of the polyglycerin is too low, the ionic conductivity will decrease, so the average degree of polymerization or average degree of condensation of the polyglycerin used is preferably 3 or more, particularly 5 or more. Preferably.

また、ポリグリセリンには、その重合条件により、一部
環状エーテルが含まれていてもよい、その場合、ポリグ
リセリンの動粘度シロ0℃が低過ぎるとイオン導電率が
低くなるので、ポリグリセリンの動粘度が100口cS
t以上、好ましくは5000cSt以上のものが選ばれ
る。
Depending on the polymerization conditions, polyglycerin may also contain some cyclic ether. In that case, if the kinematic viscosity of polyglycerin is too low at 0°C, the ionic conductivity will be low. Kinematic viscosity is 100cS
t or more, preferably 5000 cSt or more.

ポリエーテル 本発明において使用されるポリエーテルとじては、例え
ばエチレンオキシド、プロピレンオキシド等のアルキレ
ンオキシドの単独重合体又は共重合体で、繰り返し単位
の数が5〜2000、望ましくはlO〜1000のポリ
エチレングリコールエーテル、ポリプロピレングリコー
ルエーテル、 fcIH2−CH2−0−1−基と−(CH2−CH−
01−基のランダム又はブロック、若しくはシーフェン
ス共重合体(た゛だし、式中Rはアルキル基、アルケニ
ル基、ハロゲン化アルキル基、アルコキシ基である。)
でエチレンオキシドの繰り返し単位の数が5〜2000
、好ましくはlO〜1000でプロピレンオキシドの繰
り返し単位の数が1〜1000 、好ましくは1〜50
0のものを挙げることができる。これらのうち、特に好
ましいのは、エチレンオキシドの繰り返し単位の数が5
〜2000、好ましくはlO〜1000のエチレンオキ
シドを含むポリエーテルである。
Polyether The polyether used in the present invention is, for example, a homopolymer or copolymer of alkylene oxide such as ethylene oxide or propylene oxide, and polyethylene glycol having a repeating unit number of 5 to 2000, preferably 10 to 1000. Ether, polypropylene glycol ether, fcIH2-CH2-0-1- group and -(CH2-CH-
01-group random, block, or sea fence copolymer (wherein R is an alkyl group, an alkenyl group, a halogenated alkyl group, or an alkoxy group)
The number of repeating units of ethylene oxide is 5 to 2000
, preferably lO to 1000, and the number of repeating units of propylene oxide is 1 to 1000, preferably 1 to 50.
I can list 0. Among these, particularly preferred are those in which the number of repeating units of ethylene oxide is 5.
-2000, preferably lO -1000 ethylene oxide.

佳訛里丘淋 ポリグリセリンを主鎖とし、上記ポリエーテルを側鎖と
する付加重合体は、ポリグリセリンにアルキレンオキシ
ドを付加重合させることによって得られる。すなわち、
ポリグリセリンにアルカリ触媒を加え、通常のアルキレ
ンオキシド付加条件下(温度50〜200°C1好まし
くは100〜150°01反応圧力は10kg/cm2
以下)でアルキレンオキシドを反応させることによって
製造可能である。
An addition polymer having polyglycerin as a main chain and the above-mentioned polyether as a side chain can be obtained by addition polymerizing alkylene oxide to polyglycerin. That is,
An alkali catalyst is added to polyglycerin under normal alkylene oxide addition conditions (temperature 50-200°C, preferably 100-150°C, reaction pressure 10kg/cm2).
It can be produced by reacting alkylene oxide with (below).

ポリグリセリンにアルキレンオキシドを付加する付加数
が5未満では、架橋したフィルムの可撓性が不十分とな
り、固体電解質としてそのイオン導電率も低い。また、
付加数が2000以上では付加重合反応液の粘度が高く
なりすぎて、工業的に製造するのに好ましくない。
If the number of alkylene oxides added to polyglycerin is less than 5, the crosslinked film will have insufficient flexibility and its ionic conductivity as a solid electrolyte will be low. Also,
If the number of additions is 2000 or more, the viscosity of the addition polymerization reaction solution becomes too high, which is not preferable for industrial production.

ここで使用されるアルキレンオキシドは、エチレンオキ
シドを使用することが好ましいが、より低温で非晶質化
するために第二の環状エーテルを付加することができる
。第二の環状エーテルとしては、−数式 %式% で表わされ、ここでRはアルキル基、アルケニル基、ハ
ロゲン化アルキル基、アルコキシ基で、Rの炭素数は1
〜3が好ましい。これらの環状エーテルとしてはプロピ
レンオキシド、エピクロルヒドリン、メトキシグリシジ
ルエーテル等がある。この第二の環状エーテルの付加す
る量は1〜1000、好ましくは1〜500が望ましい
。付加数が1000以上になると高温におけるイオン導
電率が低くなるので好ましくない。
The alkylene oxide used here is preferably ethylene oxide, but a second cyclic ether can be added in order to make it amorphous at a lower temperature. The second cyclic ether is represented by the formula %, where R is an alkyl group, alkenyl group, halogenated alkyl group, or alkoxy group, and the number of carbon atoms in R is 1.
~3 is preferred. These cyclic ethers include propylene oxide, epichlorohydrin, methoxyglycidyl ether, and the like. The amount of the second cyclic ether added is preferably 1 to 1,000, preferably 1 to 500. If the number of additions exceeds 1000, the ionic conductivity at high temperatures will decrease, which is not preferable.

(2)イオン化合物成分 高分子固体電解質材料のイオン化合物成分に使用される
イオン化合物としては、特に限定されないが、例えば過
塩素酸リチウム、トリフルオロスルホン酸リチウム、リ
チウムテトラキス(トリメチルシロキシ)アラネート、
リチウムビストリフルオロメチルアセチル等のリチウム
化合物が利用できる。
(2) Ionic compound component The ionic compound used for the ionic compound component of the polymer solid electrolyte material is not particularly limited, but includes, for example, lithium perchlorate, lithium trifluorosulfonate, lithium tetrakis(trimethylsiloxy)alanate,
Lithium compounds such as lithium bistrifluoromethylacetyl can be used.

高分子固体電解質材料中に存在するイオン化合物の量と
しては、酸素/イオン金属、例えば酸素/リチウムの比
が5:1〜100:lであることが望ましい。酸素/イ
オン金属、例えば酸素/リチウムの比が100:l以下
であったり、5°1以上である場合はイオン導電率が低
くなる。
The amount of ionic compound present in the polymeric solid electrolyte material is preferably an oxygen/ionic metal, eg, oxygen/lithium ratio of 5:1 to 100:l. If the ratio of oxygen/ionic metal, for example oxygen/lithium, is less than 100:l or greater than 5°1, the ionic conductivity will be low.

(3)架橋 本発明で使用される高分子固体電解質材料は架橋したも
のが使用されるが、架橋は化学的又は物理化学的方法の
いずれによってもよい。例えば、イソシアネート類によ
るウレタン架橋や二価以上の金属、例えばアルミニウム
、ケイ素、ホウ素、カドミウム、チタン、亜鉛、マグネ
シウム、スズ等を用いて架橋するイオン架橋法などがあ
る。
(3) Crosslinking The solid polymer electrolyte material used in the present invention is crosslinked, and the crosslinking may be carried out by either chemical or physicochemical methods. Examples include urethane crosslinking using isocyanates, and ionic crosslinking using divalent or higher valent metals such as aluminum, silicon, boron, cadmium, titanium, zinc, magnesium, and tin.

(4)その他の成分 本発明の高分子固体電解質材料中に活性水素が存在する
と、電池の電極に用いられるリチウムと反応して電池性
能を阻害するので、高分子マトリックスの末端OHを不
活性化するために、化学的又は物理化学的方法で不活性
化させる化合物を使用することが好ましい。
(4) Other components If active hydrogen exists in the polymer solid electrolyte material of the present invention, it will react with lithium used in battery electrodes and inhibit battery performance, so the terminal OH of the polymer matrix should be inactivated. For this purpose, it is preferable to use compounds which are inactivated by chemical or physicochemical methods.

このような活性水素を不活性化させる方法としては、上
記架橋を兼ねてジイソシアネートによるウレタン架橋、
又は二価以上の金属、例えばアルミニラム、ケイ素、ホ
ウ素、カドミウム、チタン、亜鉛、マグネシライム、ス
ズ等を用いたイオン架橋方法の他に、−価のアルカリ金
属、例えばリチウム、ナトリウム等を配合する方法が利
用できる。
Methods for inactivating such active hydrogen include urethane crosslinking with diisocyanate, which also serves as the above crosslinking;
Alternatively, in addition to the ionic crosslinking method using divalent or higher valent metals such as aluminum, silicon, boron, cadmium, titanium, zinc, magnesylime, tin, etc., a method of blending -valent alkali metals such as lithium, sodium, etc. is available.

本発明で使用される高分子固体電解質材料に、活性水素
を含まない誘電率の高い有機溶媒、例えばγ−ブチロラ
クトン、プロピレンカーポネト、ポリエチレングリコー
ルジメチルエーテル等を適量混合して用いることができ
る。これらの溶媒は、固体電解質材料の可塑剤として、
膜の柔軟性を高める効果を有する。
The solid polymer electrolyte material used in the present invention may be mixed with an appropriate amount of an organic solvent containing no active hydrogen and having a high dielectric constant, such as γ-butyrolactone, propylene carbonate, polyethylene glycol dimethyl ether, and the like. These solvents act as plasticizers for solid electrolyte materials.
It has the effect of increasing the flexibility of the membrane.

本発明者らが採用したポリグリセリンにエチレンオキシ
ド又はエチレンオキシドと他の環状エテル例えばプロピ
レンオキシドを付加重合した高分子化合物にイオン化合
物例えば過塩素酸リチウムを加えて、架橋剤例えばトリ
レンジイソシアネートで架橋したフィルムは、透明で柔
軟性に冨み、薄膜化することができ、大面積化が容易に
できるイオオン導電性高分子材料である。
A film obtained by adding an ionic compound such as lithium perchlorate to a polymer compound obtained by addition polymerizing ethylene oxide or ethylene oxide and another cyclic ether such as propylene oxide to the polyglycerin employed by the present inventors, and crosslinking with a crosslinking agent such as tolylene diisocyanate. is an ionically conductive polymer material that is transparent, highly flexible, can be made into a thin film, and can easily be made into a large area.

実施例 次に具体的な実施例によって本発明を説明する。Example Next, the present invention will be explained by specific examples.

実施例1 高  マトリックスAの製造 動粘度(υso℃) 17000cStのポリグリセリ
ン(平均重合度n=10) 480gを52のオートク
レーブに仕込み、20%KOH水溶液20gを加え、撹
拌混合後、減圧にして脱水した。常温で水が留出しなく
なったら徐々に昇温し、100℃まで加熱し、完全に脱
水を行なった。続いて、温度120℃以下、圧力4kg
/cm2以下になるように流量を調節しながら2時間か
けて3343gのエチレンオキシドをボンベより導入し
た。導入終了後、120°Cで1時間熟成して反応を完
結させた。次いで、オートクレーブより主成分1914
gを抜き出して化合物A(ポリグリセリンOH基1に対
し10モルのエチレンオキシドが付加)を得た。
Example 1 Production of high matrix A 480 g of polyglycerin (average degree of polymerization n = 10) with kinematic viscosity (υso°C) 17000 cSt was charged into a 52 autoclave, 20 g of a 20% KOH aqueous solution was added, and after stirring and mixing, dehydration was carried out under reduced pressure. did. When water no longer distilled out at room temperature, the temperature was gradually raised to 100°C to completely dehydrate. Next, the temperature is 120℃ or less and the pressure is 4kg.
3343 g of ethylene oxide was introduced from the cylinder over 2 hours while adjusting the flow rate so that the flow rate was less than /cm2. After the introduction was completed, the reaction was completed by aging at 120°C for 1 hour. Next, the main component 1914 was removed from the autoclave.
g was extracted to obtain Compound A (10 moles of ethylene oxide added to 1 OH group of polyglycerin).

イオン導電性固体電解   の製造 上記化合物Al0gと過塩素酸リチウム0.45gをア
セトニトリル20gに溶解した後、トリレンジイソシア
ネート1.73gを加え、これをポリプロピレンフィル
ム上に流し込み溶媒を減圧留去した後、80°Cて48
時間反応させて、透明で柔軟な膜を得た。次いで、膜の
両側に、スパッタ法により金電極を付けた後、コールコ
ールプロット測定法により導電率を求めた。導電率の測
定結果を第1表に示す。
Production of ion conductive solid electrolyte After dissolving 0 g of the above compound Al and 0.45 g of lithium perchlorate in 20 g of acetonitrile, 1.73 g of tolylene diisocyanate was added, this was poured onto a polypropylene film, and the solvent was distilled off under reduced pressure. 48 at 80°C
After reacting for a period of time, a transparent and flexible film was obtained. Next, gold electrodes were attached to both sides of the film by sputtering, and then the conductivity was determined by Cole-Cole plot measurement. The measurement results of electrical conductivity are shown in Table 1.

実施例2 高  マトリックス1 実施例1において化合物Aを抜き出した残りのオートク
レーブに、同じ条件で更に2時間かけて1672gのエ
チレンオキシドをボンベより導入した。導入終了後、1
20℃で1時間熟成して反応を完結させた。熟成後、オ
ートクレーブより生成物を抜き出し化合物B(ポリグリ
セリンOH基lに対し20モルのエチレンオキシドが付
加)を得た。
Example 2 High Matrix 1 Into the remaining autoclave from which Compound A was extracted in Example 1, 1672 g of ethylene oxide was introduced from a cylinder over a further 2 hours under the same conditions. After installation, 1
The reaction was completed by aging at 20° C. for 1 hour. After aging, the product was extracted from the autoclave to obtain Compound B (20 moles of ethylene oxide added to 1 OH group of polyglycerin).

イオン導電 固 電解質 化合物810gと過塩素酸リチウム0.45gをアセト
ニトリル20g1に溶解した後、トリレンジイワシアネ
ート0.93gを加え、これをポリプロピレンフィルム
上に流し込み溶媒を減圧留去した後、80°Cで48時
間反応させて透明で柔軟な膜を得た。
After dissolving 810 g of an ion conductive solid electrolyte compound and 0.45 g of lithium perchlorate in 20 g of acetonitrile, 0.93 g of tolylene diisocyanate was added, this was poured onto a polypropylene film, the solvent was distilled off under reduced pressure, and the temperature was heated to 80°C. After reacting for 48 hours, a transparent and flexible film was obtained.

導電率の測定結果を第1表に示す。The measurement results of electrical conductivity are shown in Table 1.

実施例3 高  マトリックスC 実施例1の高分子マトリックスの製造において、ポリグ
リセリンOH基1に対し100モルのエチレンオキシド
を付加させた以外は実施例1と同様の合成を行ない、化
合物Cを得た。
Example 3 High Matrix C Compound C was obtained by performing the same synthesis as in Example 1 except that 100 moles of ethylene oxide was added to 1 polyglycerin OH group in the production of the polymer matrix of Example 1.

イオン導電性  電解質 実施例1の高分子マトリックスの製造において、化合物
ClOg、トリレンジイソシアネート0、20gを用い
た他は、実施例1と同様に行ない透明で柔軟な膜を得た
。導電率の測定結果を第1表に示す。
Ionic conductivity In the production of the polymer matrix of electrolyte Example 1, a transparent and flexible membrane was obtained in the same manner as in Example 1, except that the compound ClOg and 0 and 20 g of tolylene diisocyanate were used. The measurement results of electrical conductivity are shown in Table 1.

実施例4 高  マトリックスD 実施例1で使用したポリグリセリンに、実施例1での合
成条件と同様にして、ポリグリセリン011基1に対し
97モルのエチレンオキシド、3モルのプロピレンオキ
シドをランダムに付加し、化合物りを得た。
Example 4 High Matrix D To the polyglycerin used in Example 1, 97 mol of ethylene oxide and 3 mol of propylene oxide were randomly added per 1 group of polyglycerin 011 under the same synthesis conditions as in Example 1. , the compound was obtained.

イオン導電・一体重解質 実施例3のイオン導電性固体電解質材料の製造において
、前記化合物DlOgを用いた他は、実施例3と同様に
行ない、透明で柔軟な膜を得た。導電率の測定結果を第
1表に示す。
Ion conductive monopolylyte Example 3 In producing the ion conductive solid electrolyte material of Example 3, a transparent and flexible membrane was obtained in the same manner as in Example 3, except that the compound DlOg was used. The measurement results of electrical conductivity are shown in Table 1.

実施例5 高  マトリックスE 実施例1の高分子マトリックスの製造において製造した
化合物Aを出発原料とし、実施例1の製造条件と同様に
して、プロピレンオキシドを011基1に対し、1モル
付加させた後、続けて9モルのエチレンオキシドを付加
させた。その後、プロピレンオキシドとエチレンオキシ
ドの付加を継続的に 9回繰り返し、化合物AのOHH
I3対しA(PO,EO9)、なるシーフェンス化合物
Eを得た。
Example 5 High Matrix E Compound A produced in the production of the polymer matrix in Example 1 was used as a starting material, and 1 mol of propylene oxide was added to 1 011 group under the same production conditions as in Example 1. After that, 9 moles of ethylene oxide were added successively. After that, the addition of propylene oxide and ethylene oxide was continuously repeated nine times to obtain OHH of compound A.
A sea fence compound E was obtained in which A(PO, EO9) was used for I3.

イオン導電・  電解質 上記化合物E10gを用いた他は、実施例3のイオン導
電性固体電解質材料の製造と同様に行なって、透明で柔
軟な膜を得た。導電率の測定結果を第1表に示す。
Ion conductive/electrolyte A transparent and flexible membrane was obtained in the same manner as in the production of the ion conductive solid electrolyte material in Example 3, except that 10 g of the above compound E was used. The measurement results of electrical conductivity are shown in Table 1.

実施例6 実施例5の高分子マトリックスの製造において得られた
化合物E lOgと過塩素酸リチウム0.45gをアセ
トニトリルに溶解しトリエチルアルミニウム15%トル
エン溶液0.45gを加え、ポリプロピレンフィルム上
に流し込み、溶媒を減圧留去した後、80°Cで48時
間反応させ、透明で柔軟な膜を得た。導電率の測定結果
を第1表に示す。
Example 6 Compound E1Og obtained in the production of the polymer matrix of Example 5 and 0.45 g of lithium perchlorate were dissolved in acetonitrile, 0.45 g of a 15% toluene solution of triethylaluminum was added, and the mixture was poured onto a polypropylene film. After distilling off the solvent under reduced pressure, the mixture was reacted at 80°C for 48 hours to obtain a transparent and flexible film. The measurement results of electrical conductivity are shown in Table 1.

実施例7 高  マトリックスF 実施例5の高分子マトリックスの製造において、酸化プ
ロピレンの代わりにメチルグリシジルエーテルを用いた
他は、実施例5と同様の合成を行なってA (MGE、
E09)9なるシーフェンス化合物Fを得た。
Example 7 High Matrix F A (MGE,
E09) 9 Seafence Compound F was obtained.

イオン導電   電解質 上記化合物FlOgを用いた他は、実施例3のイオン導
電性固体電解質の製造と同様に行なって透明で柔軟な膜
を得た。導電率の測定結果を第1表に示す。
Ion conductive electrolyte A transparent and flexible membrane was obtained in the same manner as in the production of the ion conductive solid electrolyte in Example 3, except that the above compound FlOg was used. The measurement results of electrical conductivity are shown in Table 1.

実施例8 高  マトリックスG 動粘度(νsoy ) 2000cStのポリグリセリ
ン(平均重合度n・3)を出発原料として、実施例1と
同様にして、OH基lに対し20モルのエチレンオキシ
ドを付加し、化合物Gを得た。
Example 8 Using polyglycerin (average degree of polymerization n.3) with a high matrix G kinematic viscosity (νsoy) of 2000 cSt as a starting material, 20 mol of ethylene oxide was added to 1 OH group in the same manner as in Example 1 to form a compound. I got a G.

イオン導電   電解質 上記化合物G10g及びトリレンジイソシアネト0.9
4gを用いた他は、実施例1と同様に行ない透明で柔軟
な膜を得た。導電率の測定結果を第1表に示す。
Ion conductive electrolyte: 10 g of the above compound G and 0.9 tolylene diisocyanate
A transparent and flexible film was obtained in the same manner as in Example 1, except that 4 g was used. The measurement results of electrical conductivity are shown in Table 1.

実施例9 高 子マトリックスH 動粘度(V 5o℃) 25000cStのポリグリセ
リン(平均重合度n・15)を出発原料として、実施例
1と同様にしてOHHI3対し20モルのエチレンオキ
シドを付加し、化合物Hを得た。
Example 9 Using polyglycerin (average degree of polymerization n.15) of polymer matrix H kinematic viscosity (V 5o C) 25000 cSt as a starting material, 20 mol of ethylene oxide was added to OHHI3 in the same manner as in Example 1, and compound H I got it.

イオン導電 固 電解質 上記化合物HlOg、トリレンジイソシアネート0.9
2gを用いた他は、実施例1と同様に行ない透明で柔軟
な膜を得た。導電率の測定結果を第1表に示す。
Ionic conductive solid electrolyte The above compound HlOg, tolylene diisocyanate 0.9
A transparent and flexible film was obtained in the same manner as in Example 1, except that 2 g was used. The measurement results of electrical conductivity are shown in Table 1.

比較例1 高  マトリックス■ 動粘度(v 5oc 117000cStのポリグリセ
リン(平均重合度n=l0) 1516gを51のオー
オフレープに仕込み、20%KOH水溶液5gを加え。
Comparative Example 1 High Matrix■ Kinematic viscosity (v 5oc) 1516 g of polyglycerin (average degree of polymerization n=10) of 117000 cSt was charged into a No. 51 Oofrepe, and 5 g of a 20% KOH aqueous solution was added.

撹拌混合後、減圧にして脱水した。常温で水が留出しな
くなったら徐々に昇温し、100℃まで加熱し、完全に
脱水を行なった。続いて、温度120℃以下、圧力4k
g/cm2以下になるように流量を調節しながら2時間
かけて3168gのエチレンオキシドをボンベより導入
した。導入終了後後、120℃で1時間熟成し、反応を
完結させ、4684gの化合物■ (ポリグリセリンO
H基1に対し3モルのエチレンオキシドが付加)を得た
After stirring and mixing, the mixture was dehydrated under reduced pressure. When water no longer distilled out at room temperature, the temperature was gradually raised to 100°C to completely dehydrate. Next, the temperature is 120℃ or less and the pressure is 4K.
3168 g of ethylene oxide was introduced from the cylinder over 2 hours while adjusting the flow rate so that the flow rate was below g/cm2. After the introduction, the reaction was completed by aging at 120°C for 1 hour, and 4684g of compound (polyglycerin O
3 moles of ethylene oxide were added to 1 H group).

イオン導電・  電 化合物I 10gと過塩素酸リチウム0.33gをアセ
トニトリル20gに溶解し、トリレンジイソシアネート
4.46gを加え、これをポリプロピレンフィルム上に
流し込み、溶媒を減圧留去した後、80℃で48時間反
応させて透明な膜を得た。この膜は柔軟性に乏しかった
10 g of ion conductive/electrical compound I and 0.33 g of lithium perchlorate were dissolved in 20 g of acetonitrile, 4.46 g of tolylene diisocyanate was added, this was poured onto a polypropylene film, the solvent was distilled off under reduced pressure, and the mixture was heated at 80°C. A transparent film was obtained by reacting for 48 hours. This membrane had poor flexibility.

膜の両側にスパッタで金電極を付け、コールコールプロ
ットよりの導電率の測定結果を実施例の結果と共に第1
表に示す。
Gold electrodes were attached to both sides of the film by sputtering, and the conductivity measurement results from Cole-Cole plot were plotted together with the results of Example 1.
Shown in the table.

比較例2 高  マトリックスJ モノグリセリンを出発原料として、実施例1の高分子マ
トリックスの製造と同様にして、OHHI3対し10モ
ルのエチレンオキシドを付加させた化合物Jを得た。
Comparative Example 2 High Matrix J Compound J was obtained by adding 10 moles of ethylene oxide to OHHI3 in the same manner as in the production of the polymer matrix in Example 1 using monoglycerin as a starting material.

イオン導電性 体重解質 化合物J  10gを用いた他は実施例1のイオン導電
性固体電解質材料の製造と同様に行なって透明で柔軟な
膜を得た。
A transparent and flexible membrane was obtained in the same manner as in the production of the ion conductive solid electrolyte material in Example 1, except that 10 g of the ion conductive heavy electrolyte compound J was used.

導電率の測定結果を第1表に示す。The measurement results of electrical conductivity are shown in Table 1.

比較例3 高  マトリックスに 実施例1で使用したポリグリセリンに、実施例1と同様
にして、ポリグリセリンOH基1モルに対し10モルの
エチレンオキシドと1190モルのプロピレンオキシド
をランダムに44加し、化合物Kを得た。
Comparative Example 3 High In the same manner as in Example 1, 10 moles of ethylene oxide and 1190 moles of propylene oxide were randomly added to the polyglycerin used in Example 1 for the matrix, and the compound I got K.

イオン導電   電解 化合物K 50g、トリレンジイソシアネート0.07
g及び過塩素酸リチウム1.85gを用いた他は、実施
例1と同様に行ない透明で柔軟な膜を得た。
Ion conductive electrolytic compound K 50g, tolylene diisocyanate 0.07
A transparent and flexible film was obtained in the same manner as in Example 1, except that 1.85 g of lithium perchlorate and 1.85 g of lithium perchlorate were used.

導電率の測定結果を第1表に示す。The measurement results of electrical conductivity are shown in Table 1.

[発明の効果] 本発明のイオン導電性高分子固体電解質材料は、ポリグ
リセリンを主鎖として、ポリエーテルを側鎖とし、ポリ
エーテルの末端OHによって架橋結合が行なわれている
三次元架橋物が用いられているので、結晶化による導電
性の低下が小さく。
[Effects of the Invention] The ion conductive polymer solid electrolyte material of the present invention is a three-dimensional crosslinked product in which polyglycerin is the main chain, polyether is the side chain, and crosslinking is performed by the terminal OH of the polyether. Because it is used in this way, the decrease in conductivity due to crystallization is small.

室温付近でも優れた導電性を示す。また、長い側鎖の末
端で架橋しているので、柔軟性があり、かつ、薄膜化が
可能である。
Shows excellent conductivity even near room temperature. Furthermore, since it is crosslinked at the end of a long side chain, it is flexible and can be made into a thin film.

第1表Table 1

Claims (6)

【特許請求の範囲】[Claims] (1)主として高分子マトリックスとイオン化合物とか
らなる固体電解質において、高分子マトリックスが、そ
の平均重合度又は平均縮合度が3以上で、かつ、その動
粘度ν_5_0_℃が1000cSt以上のポリグリセ
リンを主鎖とし、ポリエーテルを側鎖とする付加重合体
を架橋させて得られた三次元架橋物からなることを特徴
とするイオン導電性固体電解質材料。
(1) In a solid electrolyte mainly composed of a polymer matrix and an ionic compound, the polymer matrix mainly contains polyglycerin whose average degree of polymerization or average degree of condensation is 3 or more and whose kinematic viscosity ν_5_0_°C is 1000 cSt or more. An ion conductive solid electrolyte material comprising a three-dimensionally crosslinked product obtained by crosslinking an addition polymer having polyether as a chain and a side chain.
(2)ポリグリセリンが、グリセリン又はエピクロルヒ
ドリンの縮合物、若しくはグリシドールの重合物である
、請求項1に記載のイオン導電性固体電解質材料。
(2) The ionically conductive solid electrolyte material according to claim 1, wherein the polyglycerin is a condensate of glycerin or epichlorohydrin, or a polymer of glycidol.
(3)ポリエーテルが、エチレンオキシドの単独重合体
又はエチレンオキシドと一般式 ▲数式、化学式、表等があります▼(ただし、Rはアル
キル基、アルケニル基、ハロゲン化アルキル基、又はア
ルコキシ基) で表わされるアルキレンオキシド類とのランダム又はシ
ークェンス共重合体であって、エチレンオキシドの繰り
返し単位の数が5〜2000である、請求項1又は2に
記載のイオン導電性固体電解質材料。
(3) Polyether is a homopolymer of ethylene oxide or ethylene oxide and is represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (where R is an alkyl group, alkenyl group, halogenated alkyl group, or alkoxy group) The ionically conductive solid electrolyte material according to claim 1 or 2, which is a random or sequence copolymer with alkylene oxides and has 5 to 2,000 repeating units of ethylene oxide.
(4)アルキレンオキシドが、プロピレンオキシドであ
って、その繰り返し単位の数が1〜1000である、請
求項3に記載のイオン導電性固体電解質材料。
(4) The ion conductive solid electrolyte material according to claim 3, wherein the alkylene oxide is propylene oxide, and the number of repeating units thereof is 1 to 1000.
(5)架橋剤がイソシアナート類である、請求項1〜4
に記載のイオン導電性固体電解質材料。
(5) Claims 1 to 4, wherein the crosslinking agent is an isocyanate.
The ionically conductive solid electrolyte material described in .
(6)架橋剤がアルミニウム、ケイ素、ホウ素、チタン
、カドミウム、マグネシウム及びスズからなる群より選
ばれた少なくとも一種の元素を含む有機金属化合物であ
る、請求項1〜4のいずれかに記載のイオン導電性固体
電解質材料。
(6) The ion according to any one of claims 1 to 4, wherein the crosslinking agent is an organometallic compound containing at least one element selected from the group consisting of aluminum, silicon, boron, titanium, cadmium, magnesium, and tin. Conductive solid electrolyte material.
JP63189323A 1988-07-27 1988-07-27 Ionically conductive solid electrolyte material Pending JPH0238451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63189323A JPH0238451A (en) 1988-07-27 1988-07-27 Ionically conductive solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63189323A JPH0238451A (en) 1988-07-27 1988-07-27 Ionically conductive solid electrolyte material

Publications (1)

Publication Number Publication Date
JPH0238451A true JPH0238451A (en) 1990-02-07

Family

ID=16239435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189323A Pending JPH0238451A (en) 1988-07-27 1988-07-27 Ionically conductive solid electrolyte material

Country Status (1)

Country Link
JP (1) JPH0238451A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421546A2 (en) * 1989-10-06 1991-04-10 ENIRICERCHE S.p.A. Solid, polymeric electrolyte on polyepoxy basis
EP0538615A2 (en) * 1991-10-21 1993-04-28 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method for producing the same
US5972539A (en) * 1996-08-19 1999-10-26 Denso Corporation Flame-retardant solid electrolytes
WO2000036017A1 (en) * 1998-12-17 2000-06-22 Nisshinbo Industries, Inc. Composition for ionically conductive polyelectrolyte and ionically conductive solid polyelectrolyte
WO2000035991A1 (en) * 1998-12-17 2000-06-22 Nisshinbo Industries, Inc. Polymeric compound, polymer for polyelectrolyte, and composition for ionically conductive polyelectrolyte
WO2001095351A1 (en) * 2000-06-07 2001-12-13 Nisshinbo Industries, Inc. Electrolyte composition for electric double-layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double-layer capacitor
EP1249464A1 (en) 2001-04-09 2002-10-16 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polyether polymer compounds as well as ion conductive polymer compositions and electrochemical devices using the same
WO2005081646A3 (en) * 2004-02-26 2006-02-02 Seoul Nat Univ Ind Foundation Porous film type solvent-free polymer electrolyte filled with oligomer/prepolymer electrolyte and secondary battery employing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421546A2 (en) * 1989-10-06 1991-04-10 ENIRICERCHE S.p.A. Solid, polymeric electrolyte on polyepoxy basis
EP0538615A2 (en) * 1991-10-21 1993-04-28 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor and method for producing the same
US5972539A (en) * 1996-08-19 1999-10-26 Denso Corporation Flame-retardant solid electrolytes
US6469107B1 (en) 1998-12-17 2002-10-22 Nissihinbo Industries, Inc. Ion-conductive polymer electrolyte composition of polyglycidol
WO2000036017A1 (en) * 1998-12-17 2000-06-22 Nisshinbo Industries, Inc. Composition for ionically conductive polyelectrolyte and ionically conductive solid polyelectrolyte
WO2000035991A1 (en) * 1998-12-17 2000-06-22 Nisshinbo Industries, Inc. Polymeric compound, polymer for polyelectrolyte, and composition for ionically conductive polyelectrolyte
US6472106B1 (en) 1998-12-17 2002-10-29 Nisshinbo Industries Inc. Polymeric compound, polymer for polyelectrolyte, and composition for ionically conductive polyelectrolyte
EP1306864A1 (en) * 2000-06-07 2003-05-02 Nisshinbo Industries, Inc. Electrolyte composition for electric double-layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double-layer capacitor
WO2001095351A1 (en) * 2000-06-07 2001-12-13 Nisshinbo Industries, Inc. Electrolyte composition for electric double-layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double-layer capacitor
EP1306864A4 (en) * 2000-06-07 2003-08-20 Nisshin Spinning Electrolyte composition for electric double-layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double-layer capacitor
US6862167B1 (en) 2000-06-07 2005-03-01 Nisshinbo Industries, Inc. Electrolyte composition for electric double-layer capacitor, solid polymer electrolyte, composition for polarized electrode, polarizable electrode, and electric double-layer capacitor
EP1249464A1 (en) 2001-04-09 2002-10-16 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polyether polymer compounds as well as ion conductive polymer compositions and electrochemical devices using the same
CN100354336C (en) * 2001-04-09 2007-12-12 第一工业制药株式会社 Polyether high polymer compound, using formed ion conducing high polymer composition and electrochemical equipment
WO2005081646A3 (en) * 2004-02-26 2006-02-02 Seoul Nat Univ Ind Foundation Porous film type solvent-free polymer electrolyte filled with oligomer/prepolymer electrolyte and secondary battery employing the same
US7468226B2 (en) 2004-02-26 2008-12-23 Seoul National University Industry Foundation Porous film type solvent-free polymer electrolyte filled with oligomer/prepolymer electrolyte and secondary battery employing the same

Similar Documents

Publication Publication Date Title
KR100538680B1 (en) Copolyether and solid polymer electrolyte
CA2235166C (en) Polymer solid electrolyte
EP0838487B1 (en) Polyether copolymer and polymer solid electrolyte
US6239204B1 (en) Cross-linked solid polyelectrolyte and use thereof
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
JP4164131B2 (en) Polyether copolymer, polymer solid electrolyte and battery
EP0460876B1 (en) Ion-conductive polymer electrolyte
EP1403948A2 (en) Electrolyte compositions
WO2000063292A1 (en) Solid crosslinked-polymer electrolyte and use thereof
JP3282565B2 (en) Crosslinked polymer solid electrolyte and its use
KR101326754B1 (en) Copolymer of propylene or ethylene oxide and of an oxirane bearing an ionic group
JPH0238451A (en) Ionically conductive solid electrolyte material
JPH10176105A (en) Solid polyelectrolyte
JP3613908B2 (en) Polymer solid electrolyte and battery using the same
JP2006120569A (en) Gelatinous lithium ion conductor and its manufacturing method
JP2011216443A (en) Lithium ion conductive gel and manufacturing method
JP4269648B2 (en) Electrolyte composition and battery
JP4640172B2 (en) Electrolyte composition and battery
JPH08217869A (en) Solid polyelectrolyte
JP2000234020A (en) Polymer for polyelectrolyte and composition for ionically conductive polyelectrolyte
JP4560721B2 (en) Electrolyte composition and battery
JP2005011663A (en) Cross-linked polymer electrolyte and its use
JP2006134817A (en) Electrolyte composition and battery