JPH0223514B2 - - Google Patents
Info
- Publication number
- JPH0223514B2 JPH0223514B2 JP23122383A JP23122383A JPH0223514B2 JP H0223514 B2 JPH0223514 B2 JP H0223514B2 JP 23122383 A JP23122383 A JP 23122383A JP 23122383 A JP23122383 A JP 23122383A JP H0223514 B2 JPH0223514 B2 JP H0223514B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- sio
- fertilizer
- slow
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 52
- 239000003337 fertilizer Substances 0.000 claims description 34
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 30
- 239000000395 magnesium oxide Substances 0.000 claims description 26
- 239000002893 slag Substances 0.000 claims description 20
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 18
- 239000004111 Potassium silicate Substances 0.000 claims description 15
- 239000000292 calcium oxide Substances 0.000 claims description 15
- 235000012255 calcium oxide Nutrition 0.000 claims description 15
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 15
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 15
- 235000019353 potassium silicate Nutrition 0.000 claims description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000011044 quartzite Substances 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 239000010459 dolomite Substances 0.000 claims description 3
- 229910000514 dolomite Inorganic materials 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 244000025254 Cannabis sativa Species 0.000 claims description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 claims description 2
- 235000019738 Limestone Nutrition 0.000 claims description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 claims description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000006028 limestone Substances 0.000 claims description 2
- 239000010813 municipal solid waste Substances 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims description 2
- 239000003245 coal Substances 0.000 claims 1
- 150000003112 potassium compounds Chemical class 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 description 20
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 19
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 18
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 17
- 238000001816 cooling Methods 0.000 description 15
- 229940072033 potash Drugs 0.000 description 15
- 235000015320 potassium carbonate Nutrition 0.000 description 15
- 239000002994 raw material Substances 0.000 description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 11
- 229910052749 magnesium Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 9
- 239000011591 potassium Substances 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 239000007974 sodium acetate buffer Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004017 vitrification Methods 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021540 colemanite Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 potash compound Chemical class 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000254173 Coleoptera Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000356114 Trachytes Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000002921 fermentation waste Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 229910052631 glauconite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 235000015816 nutrient absorption Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000002881 soil fertilizer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Fertilizers (AREA)
Description
本発明は緩効性溶成珪酸カリ苦土肥料の製造方
法に関するもので、その目的は枸溶性カリ、枸溶
性の苦土及びpH4酢酸ソーダ可溶性珪酸の含量が
高く、しかも所望により枸溶性のホウ素を含有せ
しめ得るガス質の緩効性溶成珪酸カリ苦土肥料を
工業的に製造する方法を提供することにある。
従来緩効性カリ肥料及びその製造方法について
多くの提案がなされているが、いずれもカリ成分
のみに着目しそれをガラス化し緩効性としたもの
で可溶性珪酸あるいは枸溶性の苦土又はホウ素に
ついて総合的に検討したものは見当らない。例え
ば(1)特公昭55−37498号、(2)特開昭51−118672号
及び(3)特開昭50−129367号公報等があるが、(1)の
方法は肥料業界では一般に敬遠されているが、ガ
ラス工業界で認められているAl2O3成分を中ない
し高程度に含有した一定組成範囲の原料を溶融急
冷して製造される特殊なガラス質枸溶性カリ肥料
の製造方法を開示するものであり、(2)の方法は一
定の原料を溶融分解し、水冷粉砕してなる非晶質
の緩効性カリ肥料の製造方法を開示するものであ
り、(3)は特定組成の珪酸カリ組成物に一定量の
CaOを含有したガラス質の遅効性カリ肥料を開示
している。これらはいずれもカリ成分のみに着目
しこれをガラス化した緩効性カリ肥料又はその製
造方法を開示したもので可溶性珪酸あるいは枸溶
性の苦土又はホウ素含量更には他のリン酸質肥料
との混合使用適否などについて総合的に検討した
ものではない。しかもこれらはいずれも製造法上
急冷操作を必須不可欠としている。
そこで本発明者等は上記に鑑み、種々の珪酸含
有物質、アルミナ含有物質、苦土含有物質、石灰
含有物質あるいはこれらの混合物とカリ化合物か
ら緩効性溶成珪酸カリ苦土肥料の工業的製造方法
を検討した結果、これらの特定組成混合物を加熱
溶融することにより、冷却条件の急冷徐冷に拘わ
らず容易にガラス化し、本発明の目的を達成し得
ることを知見し本発明を完成した。
即ち本発明は、珪岩、珪砂、高炉滓、転炉滓ニ
ツケル鉱滓、ステンレス鉱滓、製リン鉱滓、フエ
ロホスホル鉱滓、石灰岩、フエロマンガン鉱滓、
ドロマイト、生石灰、安山岩、草・木・ゴミ・石
灰の燃焼灰、アルミナサンド、蛇紋岩、かんらん
岩の一種又は二種以上に、カリ化合物を、(イ)
Al2O3含量が8重量%以下、(ロ)
CaO+MgO+K2O+Al2O3/SiO2モル比が1.0以上、(ハ)
SiO2のモル百分率が50%以下、及び(ニ)
CaO+MgO/SiO2のモル比が0.5以上になるように混
合した後、加熱溶融し、次いで冷却、粉砕するこ
とを特徴とする緩効性溶成珪酸カリ苦土肥料の製
造方法である。
本発明の原料としては珪酸含有物質、アルミナ
含有物質、苦土含有物質、石灰含有物質若しくは
これらの混合物又はそれらを主成分とする鉱物、
一般に珪酸質肥料として知られている製鉄工業や
非鉄金属工業の副原鉱滓等はいずれも使用可能
で、工業的に採用し得るものとしては上記した珪
岩ないしかんらん岩等の一種又は二種以上を挙げ
ることができ、これらは通常直径0.5〜60mm程度
に粉砕して用いるのがよい。
又、本発明において使用するカリ化合物として
は炭酸カリ、苛性カリ、カリガラス及びカリ長
石、流紋岩、カリ石英粗面岩、絹雲母、海緑石な
どのカリ含有鉱物の一種又は二種以上を挙げるこ
とができ、これらはいずれも粉末状又はフレーク
状で用い天然物については適度の粒度に粉砕して
用いる。
これらの混合割合については全混合組成物あた
り、(イ) Al2O3含量が8重量%以下、(ロ)
CaO+MgO+K2O+Al2O3/SiO2のモル比が1.0以上、
(ハ) SiO2のモル百分率が50以下、及び(ニ)
CaO+MgO/SiO2モル比が0.5以上になるようにする
ことが必要である。ここでAl2O3含量については
8重量%を超える多量の場合には、原料のガラス
化には差支えないが、リン酸質肥料と併用した場
合にリン酸固定化の傾向を生じリン酸質肥料の効
果を減少させるばかりか、pH4酢酸ソーダ緩衝液
による珪酸の可溶率が低下し好ましくない。又、
下限については極端にAl2O3含量が少ない場合に
は経済的操業が困難であり、少なくとも2重量%
は必要である。pH4酢酸ソーダ緩衝液によるガラ
ス質肥料の可溶性珪酸の評価法は従来のN/2塩
酸可溶珪酸では必ずしも肥効と一致しないという
欠点を改良するものとして昭和57年版農林省肥料
公定分析法の中に新たに追加されたものである。
この方法は植物に対して速効的に吸収される珪酸
量と肥料として与えた珪酸量(pH4酢酸ソーダ緩
衝液によるしんとう抽出法による珪酸量)が極め
て相関が高いとして農林省及び関連業界の共同実
験によつて認められた非常に信頼性の高いもので
ある。本発明はこの珪酸可溶率とカリ及び苦土枸
溶率の高い緩効性溶成珪酸カリ苦土肥料を得るべ
く、原料の混合割合を種々検討した結果完成した
ものである。
CaO+MgO+K2O+Al2O3/SiO2モル比とSiO2のモ
ル百分率及びCaO+MgO/SiO2モル比の数値について
はいずれもカリ及び苦土枸溶率(2%クエン酸液
可溶K2O/全K2Oの割合及び2%クエン酸液可溶
MgO/全MgOの割合)がそれぞれ90%以上及び
pH4酢酸ソーダ緩衝液による珪酸可溶率(可溶
SiO2/全SiO2の割合)が60%以上を満たし、か
つ工業的に容易に溶融し冷却条件に拘わらずガラ
ス化するために必要なものである。それぞれの好
適値はCaO+MgO+K2O+Al2O3/SiO2モル比につい
ては1.0〜1.2程度、SuO2のモル百分率は40〜50
%,及びCaO+MgO/SiO2モル比については0.5〜1.5
程度である。上記範囲をはずれると本願発明の目
的が達成されず経済的操業も困難となる。F含量
についてはFの添加量につれてガラス化が容易に
なるとともにpH4酢酸ソーダ緩衝液可溶性珪酸含
量は上昇するのであるが枸溶性カリ含量が低下す
るので0.3〜0.8重量%が好適である。F含有原料
としては製リン鉱滓あるいは螢石などが使用でき
る。
なお、本発明の緩効性溶成珪酸カリ肥料に苦土
及びホウ素成分を含有せしめることは肥効上一層
好ましい。苦土成分を添加する場合には原料混合
物あたりかんらん岩、ニツケル鉱滓、ドロマイト
等をMgOとして3〜10%程度がpH4酢酸ソーダ
緩衝液による珪酸可溶率を低下させずに効率よく
目的物を得るのには適当である。
ホウ素成分については一般に微量配分されれば
充分で、原料にホウ素成分が不足の場合にはホウ
砂、コレマナイト等のホウ素含有鉱物を適宜使用
することができる。
本発明では以上の原料混合物を電気炉、平炉又
はロータリーキルンなどで加熱溶融する。その際
の加熱温度は装置、原料、混合割合等により一様
ではないが通常1000〜1500℃程度で充分であり、
更にその時間についても0.5〜5時間で充分であ
る。次いで加熱溶融後、冷却、粉砕すれば、緩効
性溶成珪酸カリ苦土肥料を得ることができる。冷
却条件については急冷(水冷、空冷)、徐冷を問
わず、いずれにしても容易にガラス化するのが本
発明の特徴の一つであり効率よく目的物を得るこ
とができる。
粉砕条件について水冷の場合には溶湯原料に多
量の水流を衝突させ水砕し、水砕物は乾燥し分篩
する。その場合の好適粒度は直径1〜4mm程度で
ある。空冷、徐冷物については比表面積700〜
3000cm2/g,44μ以下の粒子が25〜60%程度とな
る迄粉砕する。粉砕物についてはそのまま施用す
ることも可能であるが、更にCMC,PVA,アル
コール発酵廃液、リグニンスルホン酸ソーダ、パ
ルプ廃液、珪酸アルカリ等の液体バインダーある
いは硫酸マグネシウム、硫酸カリ、塩化カリ、ベ
ントナイト等の固体バインダーの一種又は二種以
上を用いて常法により適宜の大さに造粒すること
ができる。
斯くして本発明によれば、工業的にカリ及び苦
土の枸溶率それぞれ90%以上、pH4酢酸ソーダ緩
衝液による珪酸可溶率60%以上かつ水溶性カリ含
量3%以下という緩効性溶成珪酸カリ苦土肥料を
製造することが可能となつた。また本発明の肥料
の成分値として、枸溶性カリ20.0%以上、可溶性
珪酸25.0%以上及び枸溶性苦土3.0%以上のもの
が得られる。
更に本発明によつて得られる緩効性溶成珪酸カ
リ苦土肥料にはpH4酢酸ソーダ緩衝液による珪酸
可溶率が高いことによつて、水稲への珪酸の早期
吸収による種々病害虫への抵抗性が強まること、
倒状の防止延いては増収効果があること、更にそ
の他の全ゆる植物の根の表面に吸着され、その膜
の働きによつてねこぶせん虫による耐虫性、根ぐ
され病への抵抗性の強化等にも効果がある。しか
も殆んどが水に難溶性であるが、弱者機酸に可溶
なので従来のKCl,K2SO4,KNO3等の水溶性カ
リ肥料の過剰施肥による濃度障害を起こさず、雨
水による流亡損失がない等の種々の優れた特性が
ある。
次に実施例及び試験例を挙げて本発明を更に具
体的に説明する。
実施例 1
全W・K2O 22.0重量%,Al2O3 6.5重量%SiO2
を49モル%、(CaO+MgO)/SuO2モル比:
0.64、(CaO+MgO+Al2O3+K2O)/SiO2モル
比:1.04となる様に、珪岩70Kg,高炉滓90Kg、ニ
ツケル鉱滓100Kg,製リン鉱滓85Kg,安山岩70Kg,
炭酸カリ160Kg,コレマナイト1Kgを混合し、内
径1.5mφ,640KVAの開放型抵抗炉に入れて溶
融し、ほぼ全量が溶融したことを確認した後出湯
した。出湯物に圧力水を噴射し急冷水砕した水砕
品とタツプホールよりの出湯物を内径20cmφ,深
さ30cmのステンレス製柄杓で約8分目(約15Kg)
まで受け、これを空気中で放冷した徐冷品とを試
作した。水砕品、徐冷品共にX線回折の結果非晶
質であり特性値はほとんど同一であつた。
造粒品については水砕品を107℃で乾燥し、ブ
レーン値1500〜2000cm2/g、−44μ30〜50%とな
る様に粉砕した後、各指定のバインダーにて内径
50cmφの皿型造粒機で約3mmφに造粒し、107℃
で乾燥した。この時の1〜4mmの歩留率は72〜80
%で1〜4mmの径の圧縮強度は1〜3Kg/粒であ
つた。
その他の結果を第1表に示した。なお、第1表
の原料配合比は全量を100Kg基準として表示して
ある。
実施例 2〜8
種々の原料を用いて実施例1と同様に各種の緩
効性溶成珪酸カリ苦土肥料を製造した。その際の
製造条件及び結果を第1表にまとめた。
比較例 1〜3
本願発明の原料配合割合の範囲外で実施例1と
同様に緩効性溶成珪酸カリ苦土肥料を製造したと
ころ生成物のpH4の酢酸ソーダ緩衝液による珪酸
可溶率が極めて悪いことが判明した。その製造条
件及び結果を第1表にまとめた。
The present invention relates to a method for producing a slow-release molten potassium silicate magnesium fertilizer, and its purpose is to have a high content of soluble potassium, soluble magnesium, and pH4 sodium acetate soluble silicic acid, and optionally contain soluble boron. It is an object of the present invention to provide a method for industrially producing a gaseous slow-release fused potassium silicate magnesium fertilizer that can contain. Many proposals have been made regarding slow-release potash fertilizers and their production methods, but all of them focused only on the potash component and vitrified it to make it slow-release. I can't find anything that has been considered. For example, there are (1) Japanese Patent Publication No. 55-37498, (2) Japanese Patent Application Publication No. 51-118672, and (3) Japanese Patent Application Publication No. 129367-1982, but method (1) is generally avoided in the fertilizer industry. However, we disclose a method for producing a special vitreous soluble potash fertilizer that is manufactured by melting and rapidly cooling raw materials with a certain composition range containing medium to high Al 2 O 3 components, which is recognized in the glass industry. Method (2) discloses a method for producing an amorphous slow-release potassium fertilizer by melting and decomposing certain raw materials and water-cooling and pulverizing them, and method (3) discloses a method for producing an amorphous slow-release potassium fertilizer made by melting and decomposing certain raw materials and pulverizing them with water cooling. A certain amount of potash composition
A glassy slow-release potash fertilizer containing CaO is disclosed. All of these disclose slow-release potash fertilizers that focus only on the potash component and vitrify it, as well as their production methods. It is not a comprehensive review of the suitability of use. Moreover, all of these require rapid cooling operations in terms of manufacturing methods. Therefore, in view of the above, the present inventors have developed a method for industrially producing slow-release fused potassium silicate magnesia fertilizer from various silicic acid-containing substances, alumina-containing substances, magnesia-containing substances, lime-containing substances, or mixtures thereof and potash compounds. As a result of studying the method, it was found that by heating and melting a mixture of these specific compositions, the object of the present invention could be easily vitrified regardless of the cooling conditions of rapid cooling or gradual cooling, and the present invention was completed. That is, the present invention provides quartzite, silica sand, blast furnace slag, converter slag, nickel slag, stainless steel slag, phosphate slag, ferrophosphor slag, limestone, ferromanganese slag,
Adding a potash compound to one or more of dolomite, quicklime, andesite, combustion ash of grass, wood, garbage, lime, alumina sand, serpentine, and peridotite (a)
Al 2 O 3 content is 8% by weight or less, (b)
CaO + MgO + K 2 O + Al 2 O 3 /SiO 2 molar ratio is 1.0 or more, (c) the molar percentage of SiO 2 is 50% or less, and (d)
This is a method for producing a slow-release fused potassium silicate fertilizer, which is characterized by mixing CaO + MgO / SiO 2 so that the molar ratio is 0.5 or more, heating and melting, then cooling and pulverizing. The raw materials of the present invention include silicic acid-containing substances, alumina-containing substances, magnesium-containing substances, lime-containing substances, mixtures thereof, or minerals containing these as main components,
Any sub-raw slag from the iron and non-ferrous metal industries, which is generally known as siliceous fertilizer, can be used, and one or more of the above-mentioned quartzite or peridotite can be used industrially. These are usually pulverized to a diameter of about 0.5 to 60 mm before use. In addition, the potash compounds used in the present invention include one or more potash-containing minerals such as potash carbonate, caustic potash, potash glass, potash feldspar, rhyolite, potash quartz trachyte, sericite, and glauconite. All of these can be used in the form of powder or flakes, and natural products can be used by pulverizing them to an appropriate particle size. Regarding these mixing ratios, (a) the Al 2 O 3 content is 8% by weight or less, and (b) the total mixed composition.
The molar ratio of CaO + MgO + K 2 O + Al 2 O 3 /SiO 2 is 1.0 or more, (c) the molar percentage of SiO 2 is 50 or less, and (d)
It is necessary to make the CaO+MgO/SiO 2 molar ratio 0.5 or more. Here, if the Al 2 O 3 content exceeds 8% by weight, it will not affect the vitrification of the raw material, but if it is used in combination with phosphoric acid fertilizers, it will tend to fix phosphoric acid. This is not preferable because it not only reduces the effectiveness of the fertilizer, but also reduces the solubility of silicic acid in the pH 4 sodium acetate buffer. or,
As for the lower limit, if the Al 2 O 3 content is extremely low, economical operation is difficult, so it must be at least 2% by weight.
is necessary. The evaluation method for soluble silicic acid in glassy fertilizer using pH4 sodium acetate buffer is included in the Ministry of Agriculture, Forestry and Forestry Official Analysis Method for Fertilizers published in 1984 as a method to improve the drawback that the conventional N/2 hydrochloric acid soluble silicic acid does not necessarily match the fertilizer effect. This is a new addition.
This method is a joint experiment between the Ministry of Agriculture, Forestry and Forestry and related industries, as there is an extremely high correlation between the amount of silicic acid that is rapidly absorbed by plants and the amount of silicic acid given as fertilizer (the amount of silicic acid obtained by the shinto extraction method using a pH 4 sodium acetate buffer). It has been recognized as extremely reliable. The present invention was completed as a result of various studies on the mixing ratio of raw materials in order to obtain a slow-release fused potassium silicate magnesia fertilizer with high silicic acid solubility and high potash and magnesium solubility. The CaO + MgO + K 2 O + Al 2 O 3 /SiO 2 molar ratio, the SiO 2 molar percentage, and the CaO + MgO / SiO 2 molar ratio are all based on the potassium and magnesium solubility rate (2% citric acid soluble K 2 O / total K2O percentage and 2% citric acid solution soluble
MgO/total MgO ratio) is 90% or more and
Silicic acid solubility rate with pH4 sodium acetate buffer (soluble
SiO 2 /total SiO 2 ratio) of 60% or more, which is necessary for industrially easy melting and vitrification regardless of cooling conditions. Preferred values for each are approximately 1.0 to 1.2 for the CaO + MgO + K 2 O + Al 2 O 3 /SiO 2 molar ratio, and 40 to 50 for the SuO 2 molar percentage.
% and the CaO+MgO/ SiO2 molar ratio are about 0.5 to 1.5. If it deviates from the above range, the object of the present invention will not be achieved and economical operation will also become difficult. The F content is preferably 0.3 to 0.8% by weight, as vitrification becomes easier as the amount of F added increases, and the silicic acid content soluble in the pH4 sodium acetate buffer increases, but the soluble potassium content decreases. As the F-containing raw material, phosphate slag or fluorite can be used. In addition, it is more preferable for the slow-release fused potassium silicate fertilizer of the present invention to contain magnesia and boron components in terms of fertilizer effect. When adding a magnesium component, 3 to 10% MgO of peridotite, nickel slag, dolomite, etc. per raw material mixture will efficiently add the target material without reducing the silicic acid solubility in pH 4 sodium acetate buffer. It's appropriate to get it. As for the boron component, it is generally sufficient if it is distributed in a small amount, and if the raw material is insufficient in boron component, boron-containing minerals such as borax and colemanite can be used as appropriate. In the present invention, the above raw material mixture is heated and melted in an electric furnace, open hearth, rotary kiln, or the like. The heating temperature at that time varies depending on the equipment, raw materials, mixing ratio, etc., but usually around 1000 to 1500°C is sufficient.
Further, as for the time, 0.5 to 5 hours is sufficient. Then, by heating and melting, cooling and pulverizing, a slow-release fused potassium silicate magnesia fertilizer can be obtained. Regardless of the cooling conditions, whether rapid cooling (water cooling, air cooling) or slow cooling, one of the features of the present invention is that vitrification is easy and the desired product can be obtained efficiently. Regarding the grinding conditions, in the case of water cooling, the molten raw material is crushed by colliding with a large amount of water flow, and the crushed material is dried and sieved. In that case, the preferred particle size is about 1 to 4 mm in diameter. For air-cooled and slow-cooled materials, the specific surface area is 700~
Grind at 3000cm 2 /g until particles of 44μ or less account for about 25 to 60%. Although it is possible to apply the pulverized product as it is, it is also possible to apply liquid binders such as CMC, PVA, alcohol fermentation waste liquid, sodium lignin sulfonate, pulp waste liquid, alkali silicate, or magnesium sulfate, potassium sulfate, potassium chloride, bentonite, etc. It can be granulated to an appropriate size by a conventional method using one or more solid binders. Thus, according to the present invention, it is possible to obtain a slow-acting product with an industrial solubility rate of potash and magnesia of 90% or more, a silicic acid solubility rate of 60% or more with a pH 4 sodium acetate buffer, and a water-soluble potassium content of 3% or less. It has become possible to produce molten potassium silicate magnesium fertilizer. In addition, the fertilizer of the present invention has component values of 20.0% or more of soluble potassium, 25.0% or more of soluble silicic acid, and 3.0% or more of soluble magnesia. Furthermore, the slow-release dissolved potassium silicate magnesium fertilizer obtained by the present invention has a high silicic acid solubility rate in a pH 4 sodium acetate buffer, and thus has resistance to various pests and diseases through early absorption of silicic acid into paddy rice. Increasing sexuality,
It has the effect of preventing flopping and increasing yields, and is also adsorbed to the root surface of all other plants, and its film function provides resistance to insects caused by the snail beetle and root rot. It is also effective in strengthening the Moreover, most of them are sparingly soluble in water, but soluble in weak organic acids, so they do not cause concentration problems due to excessive application of conventional water-soluble potassium fertilizers such as KCl, K 2 SO 4 , KNO 3 , and reduce runoff losses due to rainwater. It has various excellent properties such as no Next, the present invention will be explained in more detail with reference to Examples and Test Examples. Example 1 Total W・K 2 O 22.0% by weight, Al 2 O 3 6.5% by weight SiO 2
49 mol%, (CaO + MgO)/SuO 2 molar ratio:
0.64, (CaO + MgO + Al 2 O 3 + K 2 O) / SiO 2 molar ratio: 1.04, 70 kg of quartzite, 90 kg of blast furnace slag, 100 kg of nickel slag, 85 kg of phosphorus slag, 70 kg of andesite,
160 kg of potassium carbonate and 1 kg of colemanite were mixed and melted in an open resistance furnace with an inner diameter of 1.5 mφ and 640 KVA, and after confirming that almost the entire amount was melted, the mixture was tapped. Pressurized water is injected onto the hot water to quickly cool and crush the water and the hot water from the taphole is poured into a stainless steel ladle with an inner diameter of 20cmφ and a depth of 30cm for about 8 minutes (approx. 15Kg).
We then prototyped a slowly cooled product by leaving it to cool in the air. As a result of X-ray diffraction, both the granulated product and the slowly cooled product were found to be amorphous, and their characteristic values were almost the same. For granulated products, the granulated product is dried at 107℃, crushed to a Blaine value of 1500 to 2000 cm 2 /g, -44 μ30 to 50%, and then adjusted to the inner diameter using a designated binder.
Pelletize to approximately 3mmφ using a 50cmφ dish-shaped granulator and heat to 107℃.
It was dried. At this time, the yield rate of 1 to 4 mm is 72 to 80.
%, the compressive strength for diameters of 1 to 4 mm was 1 to 3 Kg/grain. Other results are shown in Table 1. Note that the raw material blending ratio in Table 1 is expressed based on the total amount of 100 kg. Examples 2 to 8 Various slow-release fused potassium silicate magnesia fertilizers were produced in the same manner as in Example 1 using various raw materials. The manufacturing conditions and results at that time are summarized in Table 1. Comparative Examples 1 to 3 When slow-release dissolved potassium silicate magnesia fertilizer was produced in the same manner as in Example 1 outside the range of the raw material blending ratio of the present invention, the silicic acid solubility of the product in a sodium acetate buffer solution of pH 4 was It turned out to be extremely bad. The manufacturing conditions and results are summarized in Table 1.
【表】【table】
【表】【table】
【表】
試験例
実施例1で得られた緩効性溶成珪酸カリ苦土肥
料を用いて下記の1〜6の条件で肥効試験を行つ
たところ次の結果が得られた。
粒状溶成珪酸カリ苦土肥料の効果について
1 作物 水稲トヨニシキ
2 場所 福島県群山市松木町
3 規模 a/5000ワグネルポツト3連
4 供試土壌 福島県石川町火山灰土壌
5 栽培方法 5月13日稚苗
2本1株でポツト当り2株を移植
6 区の構成[Table] Test Example Fertilizer efficacy tests were conducted using the slow-release fused potassium silicate magnesium fertilizer obtained in Example 1 under conditions 1 to 6 below, and the following results were obtained. Effects of granular fused potassium silicate magne soil fertilizer 1 Crop Paddy rice Toyonishiki 2 Location 3 Matsuki-cho, Gunyama City, Fukushima Prefecture Scale 3 A/5000 Wagner pots 4 Test soil Volcanic ash soil, Ishikawa-cho, Fukushima Prefecture 5 Cultivation method Seedlings on May 13th Transplanting 2 plants per pot with 2 plants per pot. Composition of 6 districts.
【表】 7 肥効試験結果 7.1 生育と収量 3連の平均値で示す【table】 7 Fertilizer efficacy test results 7.1 Growth and yield Shown as the average value of three replicates
【表】 7.2 養分吸収量【table】 7.2 Nutrient absorption
【表】【table】
【表】
これらの結果から本発明による溶成珪酸カリ苦
土肥料が水溶性の各カリ肥料に比較し、いかに養
分の吸収に効果があり、且つ収量を増加させるも
のであるかを証明出来た。その中でも特にK2O,
MgO,SiO2の吸収に於いて約1.8〜2.2倍の効果を
示し、それらが水稲の生育促進に役立つたと考え
られる。[Table] From these results, we were able to prove how the dissolved potassium silicate magnesium fertilizer of the present invention is more effective in absorbing nutrients and increases the yield compared to water-soluble potassium fertilizers. Among them, especially K 2 O,
It was about 1.8 to 2.2 times more effective in absorbing MgO and SiO 2 and is thought to be useful for promoting rice growth.
Claims (1)
滓、ステンレス鉱滓、製リン鉱滓、フエロホスホ
ル鉱滓、フエロマンガン鉱滓、石灰岩、ドロマイ
ト、生石灰、安山岩、草・木・ゴミ・石炭の燃焼
灰、アルミナサンド、蛇紋岩、かんらん岩の一種
又は二種以上に、カリ化合物を、 (イ) Al2O3含量が8重量%以下、 (ロ) CaO+MgO+K2O+Al2O3/SiO2のモル比が1.0以 上、 (ハ) SiO2のモル百分率が50%以下、及び (ニ) CaO+MgO/SiO2のモル比が0.5以上 になるように混合した後、加熱溶融し、次いで冷
却、粉砕することを特徴とする緩効性溶成珪酸カ
リ苦土肥料の製造方法。[Scope of Claims] 1. Quartzite, silica sand, blast furnace slag, converter slag, nickel slag, stainless steel slag, phosphate slag, ferrophosphor slag, ferromanganese slag, limestone, dolomite, quicklime, andesite, grass, wood, garbage, coal. Potassium compound is added to one or more of combustion ash, alumina sand, serpentine, and peridotite, (a) Al 2 O 3 content is 8% by weight or less, (b) CaO + MgO + K 2 O + Al 2 O 3 /SiO 2 (c) the molar percentage of SiO 2 is 50% or less, and (d) the molar ratio of CaO + MgO / SiO 2 is 0.5 or more, then heated and melted, then cooled and pulverized. A method for producing a slow-release fused potassium silicate magnesia fertilizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23122383A JPS60127286A (en) | 1983-12-09 | 1983-12-09 | Manufacture of slow release fused potassium magnesium silicate fertilizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23122383A JPS60127286A (en) | 1983-12-09 | 1983-12-09 | Manufacture of slow release fused potassium magnesium silicate fertilizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60127286A JPS60127286A (en) | 1985-07-06 |
JPH0223514B2 true JPH0223514B2 (en) | 1990-05-24 |
Family
ID=16920244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23122383A Granted JPS60127286A (en) | 1983-12-09 | 1983-12-09 | Manufacture of slow release fused potassium magnesium silicate fertilizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60127286A (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11106273A (en) * | 1997-08-08 | 1999-04-20 | Nkk Corp | Slow-acting potassic fertilizer |
JPH1160359A (en) * | 1997-08-08 | 1999-03-02 | Nkk Corp | Slow-release potassium fertilizer |
JP3648995B2 (en) * | 1997-08-11 | 2005-05-18 | Jfeスチール株式会社 | Slow-release potash fertilizer |
JP3648994B2 (en) * | 1997-08-11 | 2005-05-18 | Jfeスチール株式会社 | Slow-release potash fertilizer |
JP2000226285A (en) * | 1999-02-05 | 2000-08-15 | Nkk Corp | Slow acting potassic fertilizer |
JP2000290090A (en) * | 1999-02-05 | 2000-10-17 | Nkk Corp | Slow-release potash fertilizer |
JP3649029B2 (en) * | 1999-03-18 | 2005-05-18 | Jfeスチール株式会社 | K2O-CaO-SiO2 crystal material and slow-release potash fertilizer |
CN1142122C (en) * | 2000-01-03 | 2004-03-17 | 赵善茂 | Functional glass fertilizer and its preparing process |
CN1150135C (en) * | 2000-01-04 | 2004-05-19 | 赵善茂 | Powdered coal ash rich in Se and Ge elements and its application |
AU2002950123A0 (en) * | 2002-07-11 | 2002-09-12 | Sheehy, Donna | A soil additive |
JP5353171B2 (en) * | 2008-10-02 | 2013-11-27 | 国立大学法人岩手大学 | Soil conditioner |
CN107417353A (en) * | 2017-05-25 | 2017-12-01 | 武汉钢铁有限公司 | A kind of slow-release compound fertilizer and preparation method thereof |
CN116640028A (en) * | 2018-05-31 | 2023-08-25 | 深圳前海大地矿物科技有限公司 | Silicon-based slow-release potash fertilizer and manufacturing method thereof |
-
1983
- 1983-12-09 JP JP23122383A patent/JPS60127286A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60127286A (en) | 1985-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0223514B2 (en) | ||
GB2031867A (en) | Vitreous fertilizer composition | |
AU2018282390B2 (en) | Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer, and fertilizer application method | |
JPH04243992A (en) | Fused compound fertilizer | |
AU2018282388B2 (en) | Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer, and fertilizer application method | |
JP2013155273A (en) | Soil improvement material and soil improvement method | |
JP2006306696A (en) | Raw material for siliceous fertilizer and method of manufacturing the same | |
JPS6335598B2 (en) | ||
JP7407533B2 (en) | Amorphous composition, molten hydrate, composition containing molten hydrate, and fertilizer | |
JP2000119082A (en) | Inorganic composition for fertilizer and soil conditioner | |
JP2002003287A (en) | Slow-acting glassy fertilizer and its manufacturing method | |
JP6119704B2 (en) | Raw material for phosphosilicate fertilizer and method for producing the same | |
JP2002047081A (en) | Silicate-based fertilizer | |
JP4308630B2 (en) | Compound fertilizer | |
JP4268300B2 (en) | Rice fertilizer | |
JPH07121836B2 (en) | Soil improvement fertilizer | |
JP3688274B2 (en) | Paddy rice cultivation method to suppress cadmium absorption of paddy rice | |
JP2015137213A (en) | Amorphous fertilizer composition and manufacturing method therefor | |
JPH0550456B2 (en) | ||
JP2004250299A (en) | Glass composition for vegetable cultivation | |
JP4268299B2 (en) | Rice action siliceous fertilizer | |
JP2002068870A (en) | Siliceous fertilizer | |
JPH04254445A (en) | Powdering preventive for steelmaking slag | |
JP2019119657A (en) | Magnesia silicate fertilizer and method of producing the same | |
JP2021014394A (en) | Silicate-based fertilizer and method of producing the same |