JP4268300B2 - Rice fertilizer - Google Patents

Rice fertilizer Download PDF

Info

Publication number
JP4268300B2
JP4268300B2 JP2000019826A JP2000019826A JP4268300B2 JP 4268300 B2 JP4268300 B2 JP 4268300B2 JP 2000019826 A JP2000019826 A JP 2000019826A JP 2000019826 A JP2000019826 A JP 2000019826A JP 4268300 B2 JP4268300 B2 JP 4268300B2
Authority
JP
Japan
Prior art keywords
mass
fertilizer
silicic acid
rice
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000019826A
Other languages
Japanese (ja)
Other versions
JP2001213679A (en
Inventor
正浩 伊吹山
誠 冨田
純一 須崎
信行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000019826A priority Critical patent/JP4268300B2/en
Publication of JP2001213679A publication Critical patent/JP2001213679A/en
Application granted granted Critical
Publication of JP4268300B2 publication Critical patent/JP4268300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、植物にとって吸収性のよいケイ酸分を多く含む稲作用肥料に関する。
【0002】
【従来の技術】
稲作に有用なケイ酸質肥料として、従来からケイカル(ケイ酸カルシウム)、並びにケイ酸カリ(ケイ酸カリウム)肥料が用いられている。ケイカルはスラグを原料として製造され、SiO2、CaO、Al23を主成分とする、主としてアルカリ分とケイ酸を補給するための土壌改質剤である。しかしケイカルは塩酸可溶性ケイ酸分が30質量%を越えるものの、実際の土壌のpHに近いpH=5〜7程度の領域では、ケイ酸の溶出量が極端に減少し、ケイ酸分の供給源としては非常に効率の悪い資材である。
【0003】
従って、実際に使用する場合も、田1000m2当たり200kgと大量に施肥しなくてはならず、それに要する労力が農家の大きな負担になっている。ケイカルは肥料の三要素のいずれをも含まない資材であるため、他の肥料と混合して使用するのが一般的であり、例えばようりん40kgをケイカル200kgと混合して散布するのが広く用いられている処方である。ようりんは、それに含まれるケイ酸分の中性に近いpH域での溶出性が高い事が知られており、燐酸質肥料であると同時にケイ酸質の供給源となっていることが認められている。
【0004】
また、ケイ酸カリ肥料のケイ酸溶出性は、ケイカルに比べると高いと言われているが、ようりんに比べるとpH=5〜7では劣っており十分とは言えない。ケイ酸カリ肥料も、ケイカルの場合と同様に、ようりんと混合して施肥されることが多く、ここでもようりんがケイ酸質の供給源としての役割を果たしている。
【0005】
ケイカルの欠点であるケイ酸質溶出性が低いことを改善するために各種の試みがなされ、中でもケイ酸カリ肥料の溶出性が比較的高いことに着目してカリ成分を加える方法に基づいた、例えばケイ燐酸カリを主成分とする新規肥料組成物(特公平1−24759号公報参照)や緩効性熔成ケイ酸カリ苦土肥料の製造法(特公平2−23514号公報参照)が開示されている。
【0006】
カリウム成分は、一般に組成物をガラス化しやすくし、ケイ酸質の溶出性を改善するが、その反面、カリ原料が高価であるため得られた製品も高価になる、十分に高いケイ酸溶出性を確保するにはカリ含有量を高くしなければらなず不経済である、更に、カリウムが強アルカリであるため製造設備の炉材を浸食する、カリを加えると溶融物の粘度が上昇するため操業しにくく、それを下げようとして温度を上げるとカリが揮散する等の欠点を有している。
【0007】
一方、ようりんに含まれるケイ酸分は溶出性が高く、植物による吸収性が高い事が知られている。市販されているようりんに含まれるSiO2は20〜25質量%程度であるが、ケイ酸含有量を増やすとその溶出性が低下する事が知られている。すなわち、溶成燐肥の一般的な原料配合にケイ石を加えて加熱溶融・急冷して、2%クエン酸水溶液へのケイ酸の溶出性を測定した試験例(工業化学雑誌第60巻1109頁1957年)によれば、2%クエン酸水溶液(初期pHが約2)へのケイ酸溶出量は30質量%程度で頭打ちになると記載されている。
【0008】
又、特公平2−23514号公報には、pHが4の酢酸ソーダ緩衝液を用いた可溶性ケイ酸の評価法が、植物吸収性との相関性が高いと記載されているが、実際の土壌のpHはもっと中性に近く、たまたま試験に使用した組成物のこの方法による溶出性が植物吸収性と一致したと解釈するべきと思われる。ケイ酸質の溶出性試験に関しては未だ公定法がなく、様々な方法が提案されている。
【0009】
肥料のケイ酸分の溶出性を調べる方法としては、前記したとおりに、2%クエン酸水溶液(pHが約2)を用いる方法、pHの初期値が4の酢酸ソーダ緩衝液を用いる方法が知られているが、いずれも溶出時のpHが低く、土壌のpHに近いpH=5〜7付近でのケイ酸の溶出性の評価方法としては不適切である。本発明者らは、先願の特願平10−205258号明細書の中で、4質量%クエン酸緩衝液(pHの初期値が5.5)を用いる方法を提案してきた。しかし、前記方法であっても、肥料のケイ酸分溶出量と実際の植物、ことに稲のケイ酸分吸収量との相関は充分に満足できるほどに高いものではない。
【0010】
本発明者らは、pH=5以上の高いpH域で高い溶出性を持つSiO2を含む組成を探求した結果、同じ組成であってもその結晶性によって、溶出性が大きく変化すること、そして、特定組成を有する非晶質の組成物が前記高pH域でケイ酸溶出性を示すことを見い出し、先に特願平10−205258号を出願した。
【0011】
そして、その後、ケイ酸分の溶出性の評価方法と肥料効果(稲による吸収性)について更に検討を続けた結果、水溶液のpH調節剤としてのイオン交換樹脂共存下で測定した(以下イオン交換法と略称する)一ヶ月後のケイ酸分溶出量が一定値以上のものが、肥料効果が高いことを見いだし、また、肥料として使用する粉体の粒度を制御することにより、長期にわたるケイ酸分溶出性を制御できることを見いだし本発明に至ったものである。即ち、本発明者らは、ケイ酸溶出性の評価方法と肥料効果について更に検討を重ね、以降に示すイオン交換法による評価方法が、実際の稲のケイ酸分吸収量と相関することを見いだしたものである。
【0012】
イオン交換法とは、中性(pH=7)付近でのケイ酸分の溶解性評価手法で、以下の手順で行う(参考文献:加藤直人著「農林水産省・農業環境技術研究所報告」16巻,9−75頁(1998)、加藤,尾和共著 Soil Sci. Plant Nutr.,43巻,2号,351−359頁(1997))。
【0013】
即ち、試料0.20gを、あらかじめ水酸化ナトリウム水溶液と希塩酸を用いて逆再生しておいたカルボン酸型イオン交換樹脂(例えばアンバーライトIRC−50)2gと純水1リットルを入れたポリエチレン瓶に加え、マグネチックスターラーで静かに数分間撹拌した後、所定日数静置する。所定日数経過したら再度マグネチックスターラーで静かに数分間撹拌した後、最低10分間静置し、上澄み液2mlをメスフラスコ20mlに分取し、塩酸(1+1)1mlを添加後、20mlに希釈する。これをICP発光分析法(例えば、日本ジャーレルアッシュICAP−575を使用、測定波長例:251.612nm、288.158nm他)によりSiを定量し、SiO2に換算する。市販原子吸光分析用標準原液1000mg/リットルを希釈して得られる検量線を基づいて定量する。
【0014】
イオン交換樹脂を用いる目的は、珪酸質肥料から溶出するアルカリ土類金属等のアルカリ性物質が溶液に溶けて生ずるpHの上昇を、イオン交換樹脂のイオン交換能を利用して防止することにある。水田の土壌は、中性であり、pH緩衝能が高いと言われており、イオン交換法を用いると、実際の水田に近い環境下でのケイ酸分の溶出性を測定できると考えられる。
【0015】
稲がケイ酸分をよく吸収する期間は、田植え期から出穂期までと言われている。この2〜3ヶ月間にわたって、含有するケイ酸分が徐々に溶出し、継続的にケイ酸を供給し続ける肥料が好ましい。従って、イオン交換法で継続的に測定して得た溶出曲線が、初期は勾配が比較的小さく、日数が経過した後も、勾配があまり小さくならない肥料が好ましい。初期のケイ酸分含有量はそれが溶出する限り大きい方が好ましいことは言うまでもない。
【0016】
本発明者らは、ケイ酸分を含む肥料を用いて、稲の肥効試験を行ったところ、前記のイオン交換法による1ヶ月後のケイ酸溶出量が、稲による肥料由来のケイ酸分吸収量と相関を示すことを見いだした。しかし、ケイ酸分を多く含む市販の各種肥料を前記イオン交換法で評価したところ、1ヶ月後のケイ酸溶出量が15質量%を超えるものはなかった。
【0017】
【発明が解決しようとする課題】
本発明は、イオン交換法による1ヶ月後のケイ酸溶出量が16質量%以上の肥効に優れる稲作用肥料を提供することを目的としている。また、少量の施肥で、実際の土壌のpH=5〜7付近で、長期にわたってケイ酸分を溶出し、かつ溶出性の高いケイ酸分をSiO2換算で30質量%以上含む稲作用肥料を提供することを目的とする。
【0018】
更に、本発明は、燐を含有させることにより施用前に燐肥と混合しなくてもよい、ケイ酸を主体として、燐、アルカリ分を含む資材を提供することを目的とする。更に、本発明は、通常のようりん製造設備を用いて容易に製造することができ、カリを含んでいないので前記製造上の問題点を避けることのできるケイ酸質肥料を提供することを目的とする。
【0019】
【課題を解決するための手段】
即ち、本発明は、主成分がMgO、SiO 2 、CaO、P 2 5 からなる非晶質の無機粉体であって、該無機粉体がMgOを14.1〜16.1質量%、SiO 2 を30〜50質量%、P 2 5 を9.2〜12.8質量%含有し、しかもD90が0.6〜3.0mm、D50が37μm以上である粒度分布を有する無機粉体を主成分とすることを特徴とする稲作用肥料である。
【0021】
また、本発明は、主成分がMgO、SiO2、CaO、P25からなる非晶質の無機粉体であって、該無機粉体がMgOを14.1〜16.1質量%、SiO2を30〜50質量%、P 2 5 を9.2〜12.8質量%含有し、しかもD90が0.1〜1.0mm、D50が37μm以上である粒度分布を有する無機粉体を主成分とすることを特徴とする稲作用肥料である。
【0023】
また、本発明は、前記の稲作用肥料に更に結合材を加えて造粒してなることを特徴とする稲作用肥料であり、好ましくは、前記結合材が、ポバール、メチルセルロース、リグニン誘導体、でんぷん、蔗糖のいずれか一種以上を含有することを特徴とする前記の稲作用肥料である。
【0024】
【発明の実施の形態】
本発明は、イオン交換法で測定したときに、1ヶ月以内のケイ酸分溶出量が16質量%以上である稲作用肥料である。本発明の稲作用肥料は、前記機能を有するので、追肥することなく従来よりも稲の発育を助長することができる。
【0025】
また、本発明は、主成分がMgO、SiO2、CaO、P25からなる非晶質の無機粉体であって、該無機粉体がMgOを1〜20質量%、SiO2を30〜50質量%含有し、しかもD90が0.6〜3.0mm、D50が37μm以上である粒度分布を有する無機粉体を主成分とすることを特徴とする稲作用肥料である。
【0026】
本発明において、無機粉体の主成分は、MgO、SiO2、CaO、P25から構成され、その合計量は87質量%以上、好ましくは90質量%以上あれば良い。従来公知のケイ酸溶出性を有するものの多くは、例えばケイ酸カリ肥料の如くに、カリウムを主成分として含有するのに対し、本願発明の無機組成物はこれを主成分として有していないという特徴がある。これにより、製品価格が高くなる、製造設備の炉材を浸食する、操業しにくい等の欠点を解消することが出来る。
【0027】
本発明の無機粉体は、SiO2含有量が30質量%以上である。これより少ないと、十分なケイ酸溶出量が確保できず、ケイ酸質資材或いは肥料としての価値が減少する。50質量%を越えると大幅にケイ酸溶出性が下がり、中性に近い領域での溶出性が悪くなる。32〜43質量%が好ましい範囲である。
【0028】
MgOは、無機組成物の溶融温度を下げる効果やケイ酸溶出率を増大させる効果があり、また肥料成分としても有効なので、適当量含有させる必要がある。1質量%以下ではこれらの効果が十分ではなく、20質量%をこえると施用した植物の肥効成分の吸収性に拮抗作用を生じ、不都合である。上記バランスから、1〜20質量%、好ましくは7〜18質量%の範囲がよい。
【0029】
本発明の無機粉体について、P25量が1〜16質量%であることが好ましい。P25は、1質量%以下では溶融物の融点が上昇しケイ酸の溶出率が低くなりやすくなると共に、ケイ酸分とのバランス上リン分が不足するためリン肥料を混合散布する必要が生じることがある。一方、16質量%を越えると、ケイ酸の必要量を散布するとP25の適切な施用量を超える場合が生じることがあり好ましくない。ケイ酸の溶出率を高くし、リン肥料の混合散布を必要とせず、更に適切なP25の施用量を維持できるということから前記範囲が選択され、4〜12質量%の範囲が一層好ましい。
【0030】
また、本発明の無機粉体について、モル換算した(CaO+MgO)/(SiO2+P25)比が1.2〜2.5であることが好ましい。前記比が1.2より小さくなるとケイ酸溶出量が減少する一方、2.5を超えるとSiO2含有量の低下や融点の上昇とケイ酸溶出性の低下が起こることがある。1.3〜2.0が好ましい範囲である。
【0031】
本発明の無機粉体において、主成分を構成する前記の成分の他に、微量成分として有効な硼素やマンガンを含有させることもできる。硼素やマンガンの存在は、後述する製造方法において溶融温度の低下や溶融物の流動性の増加の効果があるし、得られる無機組成物の非晶質化を促し、ケイ酸の溶出性を助長する効果もある。また、不可避的に混入する鉄酸化物やアルミニウムの酸化物などが含まれてもよい。しかし、アルミニウムについては、肥料効果が無く、有効成分の含有量を低下させ、また、量が多くなるとケイ酸分の溶出性に悪影響を及ぼすので、Al23の量は2質量%以下に抑制することが好ましい。
【0032】
本発明の無機粉体はケイ酸の溶出性を高めるために非晶質であることが必須である。非晶質の程度については、本発明者らの実験的検討結果によれば、NMR−29Siの半値幅が13ppm以上23ppm以下を示せば充分である。NMR−29Siの測定方法は、特願平10−205258号に記載したとおりである。
【0033】
本発明に於いて、無機粉体の粒度分布は、D90が0.6〜3.0mm、D50が37μm以上である。ここで、粒度分布は、フルイで測定すればよい。例えば、JIS Z 8801に記載されたフルイを重ねて、試料を最も上のフルイ上に乗せ、タップ振動機にセットする。一定時間の後、各フルイ上に残った粉体の質量を測定し、百分率で表し、粒度分布とする。D90、D50は、累積質量%がそれぞれ90%、50%の時の粒度を示す。
【0034】
D90が前記範囲より大きい場合には、D50の大きさにも影響されるが、イオン交換法で測定したときに、1ヶ月以内のケイ酸分溶出量が16質量%以上であるという本発明の目的を達成できないことがある。また、D50が37μm未満の場合には、前記目的は達成しやすいものの、粒度が細かいために長期に渡ってケイ酸分を溶出することを確保できないことがあるし、施肥後に粉末の微粉部分が雨等により流失されることがあるし、更に、粉砕にコストがかかるので好ましくないからである。更に、本発明の稲作用肥料は、ケイ酸の溶出量が時間と共にゆっくり増加する傾向があるので、特に秋から冬にかけての農閑期に施肥する場合や春のしろかきの前後に施肥する場合に、特に有効である。
【0035】
一方、本発明の他の一つは、主成分がMgO、SiO2、CaO、P25からなる非晶質の無機粉体であって、該無機粉体がMgOを1〜20質量%、SiO2を30〜50質量%含有し、しかもD90が0.1〜1.0mm、D50が37μm以上である粒度分布を有する無機粉体を主成分とすることを特徴とする稲作用肥料であり、前記発明に対して、異なる粒度分布を有していることを特徴としている。
【0036】
本発明に於いては、D90を0.1〜1.0mmとすることで、イオン交換法で測定したときに、1ヶ月以内のケイ酸分溶出量を20質量%以上に高めることができ、一層好ましいからである。本発明の稲作用肥料は、イオン交換法の溶出率が2.5ヶ月後で80%以上に達するので、田植え後の追肥として使用するのに好適である。また、粒度分布が窒素、カリなどの他の肥料との混合や造粒に適しているので、容易に所望の組成の複合肥料とすることもできる。
【0037】
また、本発明は、D90で0.1〜1.0mm、D50で37μm以上の粒度分布を有する前記無機粉体に、結合材を加えて造粒してなる稲作用肥料である。結合材を加えて造粒されているので、短期に多量の可溶性ケイ酸分を提供できる稲作用肥料を作業性良く取り扱うことができる。
【0038】
結合材としては、肥料の結合材として用いられているものならば用いることができ、例えば、ポバール、メチルセルロース、リグニン誘導体、でんぷん、蔗糖が挙げられる。本発明に於いては、前記結合材のいずれか一種以上を含有していれば良いが、このうち、リグニン誘導体はパルプ廃液として、また蔗糖は廃糖蜜として安価に入手できるので都合がよい。また、でんぷんは、コーンスターチなど安定した品質のものが入手でき、廃糖蜜などより少ない固形分で造粒できるという特徴を持つので好ましい。
【0039】
また、本発明は、イオン交換法で測定して、2.5ヶ月以内のケイ酸分溶出量が当初含まれていたケイ酸分の60%以上である稲作用肥料である。この機能を有するが故に、少量の施肥であっても追肥することなく長期に渡ってケイ酸可溶分を供給することができ、稲の発育促進に寄与することができる。
【0040】
本発明の稲作用肥料の製造方法について、その一例を以下に記述する。製造方法はこれに限定されるわけではない。
【0041】
原料として、燐鉱石、蛇紋岩、ケイ石、石灰石、フェロニッケル鉱滓、フェロマンガン鉱滓、各種高炉滓、各種製鋼滓、製リンスラグ、フライアッシュ等のP25、CaO、MgO、或いはSiO2を含有する通常の原料類を利用することができる。上記原料の中にはアルミナ分(Al23)を含むものもあるが、Al23の存在は得られる稲作用肥料のケイ酸溶出率を悪化させ、またAl23含有量が増加すると他の成分の含有量が実質的に減るので、Al23含有量の増大は好ましくない。Al23が含まれていない原料を使用するか、またはAl23が含まれている原料は少量に限定して使用し、得られる無機組成物中のAl23量が2質量%以下とすることが好ましい。
【0042】
前記原料を、揮発分の量等を考慮し、生成物が所望組成となるように、即ち、MgOを1〜20質量%、SiO2を30〜50質量%含有するように、好ましくはP25が1〜16質量%、モル比(CaO+MgO)/(SiO2+P25)が1.2〜2.5となるように、更に好ましくはP25が4〜12質量%、モル比(CaO+MgO)/(SiO2+P25)が1.3〜2.0となるように配合し、高温で溶融する。
【0043】
前記溶融に用いる炉(溶融炉)は、外熱式電気炉、アーク炉、高周波加熱炉等の電気炉、或いは平炉を初めとするいろいろな燃焼ガス炉等が使用できる。溶融温度は、組成にもよるが1350℃以上が望ましい。目標とする組成を有する原料が完全に溶融する温度より、およそ150℃以上高い温度で溶融すると、溶融温度から結晶化の進まない温度までの間で十分な冷却速度がとれるので好ましい。前記溶融炉のうち、後述するとおりに、溶融液を急冷することができ、非晶質化した無機粉体を容易に得ることができることから電気炉、並びに平炉が好ましく選択される。
【0044】
溶融液の急冷は、得られる無機組成物の非晶質化を達成し、ケイ酸の溶出性を高めるために必須である。急冷は、一般には、炉から抜き出した溶融液に溶融液の20〜40倍の質量の水を吹き付ける方法や、多量の水中に浸漬する方法等を適用することによって行われる。本発明の無機組成物を得る際の冷却方法としては、溶融温度から100℃までの所要時間は20秒以下好ましくは10秒以下とすることがよく、特に、原料が完全に溶融する温度の上下200℃の間を5秒以内とする事が望ましいので、このため、ジェット水流を当てて冷却する方法が好ましい。更に、ジェット水流を用いる冷却方法は、溶融液より砂状物を直接に得られ、後工程としての粉砕を省略することもできるという効果も得られる。
【0045】
砂状物の粒度は、ジェット水圧、水量などにより制御でき、この操作のみで、粒度がD90で0.6〜3.0mm、D50で37μm以上である無機粉体を得ることもできる。更に、必要に応じて、粉砕して、更に必要ならば分級操作を組み合わせながら、粒度分布をD90で0.1〜1.0mm、D50で37μm以上とすれば良い。
【0046】
前記粉砕操作には、ロールクラッシャー、スタンプミル、ローラーミル、ボールミル、ジェットミルなどの各種粉砕機を用いることができる。また、造粒操作には、ペレタイザー、転動造粒機などの各種造粒機を用いることができる。
【0047】
造粒操作は、以下の手順で例示するとおりに、混合機と造粒機とを併用して2段階で操作することがある。即ち、主原料となる粉体100質量部に対して、固形分を40質量%含む廃糖蜜を12質量部添加し、万能混合機で混合する。これを皿型造粒機に移し、回転させながら水を噴霧する。取り出された水分を含む造粒品を乾燥機で乾燥し、1〜4mm程度に造粒された粒状の肥料を得る。
【0048】
【実施例】
以下、実施例及び比較例に基づいて、本発明を更に詳細に説明する。
【0049】
〔実施例1〜3〕りん鉱石(中国産)1tに対して、蛇紋岩1.5t、フェロニッケル鉱滓0.3t、ケイ石0.9t、生石灰1.1tを混合粉砕し、平炉に供給して加熱溶融した。平炉から流れ出る湯にジェット水流をぶつけ、水砕品を得た。これを試料A(実施例1)とする。
【0050】
試料Aは、非晶質で、P25、SiO2、MgO、CaOをそれぞれ9.2質量%、35.0質量%、16.1質量%、35.3質量%含んでいた。従って、モル比(CaO+MgO)/(SiO2+P25)は1.59である。また、粒度分布を篩いを用いて測定したところ、2mm以上が0.4質量%、2mm未満〜1mm以上が9.7質量%、1mm未満が89.9質量%、44μm以下が3.2質量%であった。
【0051】
別ロットの水砕品をボールミルで粉砕し、この無機粉体を100質量部と固形分濃度が40%の廃糖蜜12質量部を混合し、パンケーキ型の造粒機で造粒した。これを試料B(実施例2)とする。
【0052】
試料Bの主原料である無機粉体は、非晶質で、P25、SiO2、MgO、CaOをそれぞれ10.5質量%、33.7質量%、15.9質量%、34.5質量%含んでいた。従って、モル比(CaO+MgO)/(SiO2+P2O5)は1.59である。また、粒度分布をフルイを用いて測定したところ、500〜105μmが20.4質量%、105〜44μmが35.5質量%、44μm以下が44.1質量%であった。
【0053】
更に、別ロットの水砕品をロールクラッシャーで粉砕し無機粉体を得た。これを150μmの篩いを用いて分級し、篩い下を試料C(実施例3)とする。
【0054】
試料Cの粒度分布をフルイを用いて測定したところ、149μm未満〜105μm以上が45.4質量%、105〜44μmが46.8質量%、44μm以下が7.8質量%であった。この無機粉体は、非晶質で、P25、SiO2、MgO、CaOをそれぞれ12.8質量%、32.0質量%、14.1質量%、35.7質量%含んでいた。従って、モル比(CaO+MgO)/(SiO2+P25)は1.58である。
【0055】
試料A、試料B、試料Cについて、それぞれイオン交換法でケイ酸分の溶出量を測定した。一ヶ月後と2.5ヶ月後の溶出量測定結果を表1に示す。
【0056】
【表1】

Figure 0004268300
*溶出量;肥料全質量に対する溶出したケイ酸分質量の割合
溶出率;肥料中のケイ酸分質量に対する溶出したケイ酸分質量の割合
【0057】
参考例1
市販のケイカル砂状品を、ボーミルを用いて粉砕し、149μmの篩いで分級した。この篩い下を試料Dとする。試料Dのイオン交換法で測定した一ヶ月後のケイ酸分溶出量を表1に示す。
【0058】
〔比較例1、2〕市販のケイカル砂状品(比較例1)と市販のケイカル粒状品(比較例2)のケイ酸分の溶出量を、イオン交換法で測定した。一ヶ月後と2.5ヶ月後のケイ酸分溶出量を表1に示す。
【0059】
〔肥料効果試験〕
実施例1〜2、比較例2の肥料について、当該肥料中に含まれるケイ酸分が稲に吸収される割合を測定するために、稲のポット栽培による肥効試験を行った。試験条件は表2および表3の通りである。尚、SiO2で3.0g、P25で0.94gになるように、各種肥料および試薬を混合して施肥した。なお、使用したケイカルのSiO2含有量は35.7質量%である。試験結果を表4に示す。
【0060】
【表2】
Figure 0004268300
【0061】
【表3】
Figure 0004268300
【0062】
【表4】
Figure 0004268300
【0063】
【発明の効果】
本発明の稲作用肥料は、土壌中への可溶性ケイ酸を多く含み、施肥後1月以内に16質量%以上もの可溶性ケイ酸を供給できるという従来品にはない特徴を有し、燐酸分を含んでいるので、従来広く用いられているケイカルに比べて、施肥量を少なくできるし、燐酸質肥料とケイ酸質肥料との混合が不要であり、農家における省力化に有用である。
【0064】
更に、本発明の稲作用肥料は、ケイ酸質の吸収性が良いので、作物の病虫害発生が抑えられること、稲が倒れにくくなること、緩効性であるから肥あたりを起こさないこと、雨水に流亡せず肥料散布の回数を減らせること、等の数々の利点を有する特徴を持つ。更に、その組成中にはカリウム等のアルカリ金属元素を含有しないので製造しやすい、カリ含有肥料に比べて安価に製造できるという特徴を有し、産業上有用なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rice fertilizer containing a large amount of silicic acid that is well absorbed by plants.
[0002]
[Prior art]
As siliceous fertilizers useful for rice cultivation, conventionally, calcium (calcium silicate) and potassium silicate (potassium silicate) fertilizers have been used. Keikal is manufactured from slag as a raw material and is a soil modifier mainly composed of SiO 2 , CaO, and Al 2 O 3 for supplementing mainly alkali components and silicic acid. However, although silicic acid has a soluble silicic acid content exceeding 30% by mass, silicic acid elution is extremely reduced in the region of pH = 5-7, which is close to the actual pH of the soil, and the silicic acid supply source. As a very inefficient material.
[0003]
Therefore, even when actually used, it is necessary to fertilize a large amount of 200 kg per 1000 m 2 of rice fields, and the labor required for this is a great burden on the farmers. Because calcium is a material that does not contain any of the three elements of fertilizer, it is common to use it mixed with other fertilizers. For example, 40 kg of Yorin is mixed with 200 kg of calcium and sprayed widely. It is a prescription. Yoryu is known to have high elution in the pH range close to neutrality of the silicic acid contained in it, and it is recognized that it is a phosphate fertilizer and at the same time a source of silicic acid. It has been.
[0004]
Moreover, although it is said that the silicic acid dissolution property of a potassium silicate fertilizer is high compared with a calcium, it is inferior in pH = 5-7 compared with a yorin, and it cannot be said that it is enough. Potassium silicate fertilizers are often fertilized in a mixed manner with Yorin as in the case of Kyal, and Yorin also plays a role as a source of siliceous material here.
[0005]
Various attempts have been made to improve the low silicic acid dissolution property, which is a disadvantage of the calcium, and based on the method of adding potash components, focusing on the relatively high dissolution property of potassium silicate fertilizer, among others, for example A novel fertilizer composition (see Japanese Patent Publication No. 1-24759) and a method for producing a slow-release molten potassium silicate fertilizer (see Japanese Patent Publication No. 2-3523) are disclosed. ing.
[0006]
The potassium component generally facilitates vitrification of the composition and improves the elution of silicic acid, but on the other hand, the product obtained is expensive because the potash raw material is expensive. It is uneconomical to increase the potash content to ensure the resistance, and furthermore, since potassium is a strong alkali, it will erode the furnace material of the manufacturing equipment, and adding potash will increase the viscosity of the melt It is difficult to operate, and has the disadvantage that if the temperature is raised to lower it, potash will be volatilized.
[0007]
On the other hand, it is known that silicic acid contained in yolin has a high elution property and a high absorbability by plants. It is known that SiO 2 contained in phosphorus is about 20 to 25% by mass as commercially available, but its elution is lowered when the silicic acid content is increased. That is, a test example in which silicic acid was dissolved in a 2% citric acid aqueous solution by adding silica to a general raw material composition of dissolved phosphorus fertilizer and then heating, melting and quenching (Industrial Chemical Journal Vol. 60, 1109) (1957) describes that the amount of silicic acid eluted in a 2% aqueous citric acid solution (initial pH is about 2) reaches a peak at about 30% by mass.
[0008]
JP-B-2-23514 discloses that the method for evaluating soluble silicic acid using a sodium acetate buffer solution having a pH of 4 has a high correlation with plant absorbability. It is believed that the pH of the solution is more neutral and that the dissolution of the composition used in the test by chance was interpreted as consistent with plant absorption. There is still no official method for silicic acid dissolution test, and various methods have been proposed.
[0009]
As described above, as a method for examining the elution property of the silicic acid content of the fertilizer, a method using a 2% citric acid aqueous solution (pH is about 2) and a method using a sodium acetate buffer having an initial pH value of 4 are known. However, both have low pH at the time of elution, and are inappropriate as methods for evaluating the elution of silicic acid at a pH close to pH = 5-7. In the specification of Japanese Patent Application No. 10-205258, the present inventors have proposed a method using a 4 mass% citrate buffer solution (the initial value of pH is 5.5). However, even with the above method, the correlation between the silicic acid elution amount of the fertilizer and the silicic acid absorption amount of the actual plant, particularly rice, is not high enough to be satisfactorily satisfied.
[0010]
As a result of searching for a composition containing SiO 2 having a high elution property in a high pH range of pH = 5 or higher, the present inventors have found that the elution property is greatly changed depending on the crystallinity of the same composition, and The inventors have found that an amorphous composition having a specific composition exhibits silicic acid elution in the high pH range, and filed Japanese Patent Application No. 10-205258 earlier.
[0011]
And then, as a result of further investigation on the evaluation method of silicic acid elution and fertilizer effect (absorption by rice), the measurement was conducted in the presence of an ion exchange resin as a pH regulator of an aqueous solution (hereinafter referred to as ion exchange method). It is abbreviated as) that the amount of silicic acid eluted after one month is more than a certain value, and it has been found that the effect of fertilizer is high, and by controlling the particle size of the powder used as fertilizer, The present inventors have found that the dissolution property can be controlled and have arrived at the present invention. That is, the present inventors have further investigated the evaluation method of silicic acid elution and the fertilizer effect, and found that the evaluation method by the ion exchange method shown below correlates with the actual silicic acid absorption of rice. It is a thing.
[0012]
The ion exchange method is a method for evaluating the solubility of silicic acid near neutrality (pH = 7), and is performed according to the following procedure (reference: Naoto Kato, “Report from the Ministry of Agriculture, Forestry and Fisheries, National Institute for Agro-Environmental Technology” 16, pp. 9-75 (1998), Kato and Owa, Soil Sci. Plant Nutr., 43, 2, 351-359 (1997)).
[0013]
That is, 0.20 g of a sample was placed in a polyethylene bottle containing 2 g of a carboxylic acid ion exchange resin (for example, Amberlite IRC-50) that had been reversely regenerated using an aqueous sodium hydroxide solution and dilute hydrochloric acid, and 1 liter of pure water. In addition, after gently stirring for several minutes with a magnetic stirrer, leave it for a predetermined number of days. After a predetermined number of days, the mixture is gently stirred again with a magnetic stirrer for several minutes, then allowed to stand for a minimum of 10 minutes, 2 ml of the supernatant is taken up in 20 ml of a volumetric flask, 1 ml of hydrochloric acid (1 + 1) is added, and then diluted to 20 ml. This is quantified by ICP emission analysis (for example, using Japanese Jarrel Ash ICAP-575, measurement wavelength example: 251.612 nm, 288.158 nm, etc.) and converted to SiO2. Quantification is based on a calibration curve obtained by diluting 1000 mg / liter of a standard stock solution for atomic absorption analysis.
[0014]
The purpose of using an ion exchange resin is to prevent an increase in pH caused by dissolving an alkaline substance such as an alkaline earth metal eluted from silicic fertilizer in a solution by utilizing the ion exchange ability of the ion exchange resin. It is said that the paddy soil is neutral and has a high pH buffering capacity, and it is considered that the elution of silicic acid in an environment close to an actual paddy field can be measured using the ion exchange method.
[0015]
It is said that the period when rice absorbs silicic acid well is from rice planting to heading. A fertilizer in which the silicic acid content contained is gradually eluted over the period of 2 to 3 months and the silica is continuously supplied is preferable. Therefore, it is preferable to use a fertilizer in which the elution curve obtained by continuous measurement by the ion exchange method has a relatively small gradient at the beginning, and the gradient does not become so small even after the number of days has passed. Needless to say, it is preferable that the initial silicic acid content is as large as it dissolves.
[0016]
The present inventors conducted a fertilizer effect test of rice using a fertilizer containing silicic acid. As a result, the elution amount of silicic acid after one month by the above ion exchange method was found to be derived from fertilizer derived from rice. It was found that there is a correlation with the amount of absorption. However, when various commercially available fertilizers containing a large amount of silicic acid were evaluated by the ion exchange method, no silicic acid elution amount after 15 months exceeded 15% by mass.
[0017]
[Problems to be solved by the invention]
The object of the present invention is to provide a rice fertilizer that excels in fertilization effect with a silicic acid elution amount after 16 months by an ion exchange method of 16% by mass or more. In addition, with a small amount of fertilizer, a rice action fertilizer that elutes silicic acid content over a long period of time around the pH = 5-7 of the actual soil and contains 30% by mass or more of highly soluble silicic acid content in terms of SiO 2 The purpose is to provide.
[0018]
Furthermore, an object of the present invention is to provide a material mainly containing silicic acid and containing phosphorus and alkali, which does not need to be mixed with phosphorus fertilizer before application by containing phosphorus. It is another object of the present invention to provide a siliceous fertilizer that can be easily produced using a normal phosphorus production facility and does not contain potash, so that the production problems can be avoided. And
[0019]
[Means for Solving the Problems]
That is, the present invention is an amorphous inorganic powder composed mainly of MgO, SiO 2 , CaO, P 2 O 5 , wherein the inorganic powder contains 14.1 to 16.1% by mass of MgO. the SiO 2 30 to 50 wt%, the P 2 O 5 containing 9.2 to 12.8 wt%, yet D90 is 0.6~3.0Mm, inorganic powder having a particle size distribution D50 is not less than 37μm It is a rice action fertilizer characterized by comprising
[0021]
Further, the present invention is an amorphous inorganic powder composed mainly of MgO, SiO 2 , CaO, P 2 O 5 , wherein the inorganic powder contains 14.1 to 16.1 % by mass of MgO. Inorganic powder containing 30 to 50% by mass of SiO 2 and 9.2 to 12.8% by mass of P 2 O 5 and having a particle size distribution in which D90 is 0.1 to 1.0 mm and D50 is 37 μm or more. It is a rice action fertilizer characterized by comprising
[0023]
Further, the present invention is a rice action fertilizer obtained by adding a binder to the above rice action fertilizer and granulating it. Preferably, the binder is made of poval, methylcellulose, lignin derivative, starch. The above-mentioned rice action fertilizer characterized by containing at least one of sucrose.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
This invention is a rice action fertilizer whose silicic acid content elution amount within one month is 16 mass% or more when measured by an ion exchange method. Since the rice action fertilizer of this invention has the said function, it can promote the growth of rice rather than the conventional without additional fertilization.
[0025]
Further, the present invention is an amorphous inorganic powder composed mainly of MgO, SiO 2 , CaO, P 2 O 5 , wherein the inorganic powder contains 1 to 20% by mass of MgO and 30 of SiO 2 . A rice fertilizer characterized by containing as a main component an inorganic powder having a particle size distribution of ˜50 mass%, D90 of 0.6 to 3.0 mm, and D50 of 37 μm or more.
[0026]
In the present invention, the main component of the inorganic powder is composed of MgO, SiO 2 , CaO, P 2 O 5 , and the total amount may be 87% by mass or more, preferably 90% by mass or more. Many of the conventionally known silicic acid elution properties include potassium as a main component, such as potassium silicate fertilizer, while the inorganic composition of the present invention does not have this as a main component. There is. As a result, it is possible to eliminate defects such as high product prices, erosion of furnace materials in manufacturing facilities, and difficulty in operation.
[0027]
The inorganic powder of the present invention has a SiO 2 content of 30% by mass or more. If it is less than this, a sufficient silicic acid elution amount cannot be secured, and the value as siliceous material or fertilizer decreases. When it exceeds 50% by mass, the elution of silicic acid is greatly lowered, and the elution in a region close to neutrality is deteriorated. 32-43 mass% is a preferable range.
[0028]
MgO has the effect of lowering the melting temperature of the inorganic composition and the effect of increasing the elution rate of silicic acid, and is also effective as a fertilizer component, so it needs to be contained in an appropriate amount. If the amount is less than 1% by mass, these effects are not sufficient, and if it exceeds 20% by mass, the absorbability of the applied fertilizer component of the applied plant is antagonized, which is inconvenient. From the above balance, the range of 1 to 20% by mass, preferably 7 to 18% by mass is good.
[0029]
For the inorganic powder of the present invention, it is preferred that P 2 O 5 content is 1 to 16 mass%. When P 2 O 5 is less than 1% by mass, the melting point of the melt rises and the silicic acid elution rate tends to be low, and the phosphorus content is insufficient due to the balance with the silicic acid content. May occur. On the other hand, if the amount exceeds 16% by mass, the amount of P 2 O 5 may be exceeded when the required amount of silicic acid is sprayed. The above-mentioned range is selected because the elution rate of silicic acid is increased, the mixed application of phosphorus fertilizer is not required, and an appropriate P 2 O 5 application rate can be maintained, and the range of 4 to 12% by mass is further increased. preferable.
[0030]
The inorganic powder of the present invention preferably has a (CaO + MgO) / (SiO 2 + P 2 O 5 ) ratio of 1.2 to 2.5 in terms of mole. When the ratio is less than 1.2, the silicic acid elution amount decreases. On the other hand, when the ratio exceeds 2.5, the SiO 2 content may decrease, the melting point may increase, and the silicic acid elution property may decrease. 1.3 to 2.0 is a preferable range.
[0031]
In the inorganic powder of the present invention, boron or manganese that is effective as a trace component can be contained in addition to the above-mentioned components constituting the main component. The presence of boron and manganese has the effect of lowering the melting temperature and increasing the fluidity of the melt in the production method described later, promotes amorphousization of the resulting inorganic composition, and promotes the elution of silicic acid. There is also an effect. Also, iron oxides and aluminum oxides inevitably mixed may be included. However, for aluminum, there is no fertilizer effect, reducing the content of active ingredients, and increasing the amount adversely affects the elution of the silicic acid content, so the amount of Al 2 O 3 is 2% by mass or less. It is preferable to suppress.
[0032]
It is essential that the inorganic powder of the present invention is amorphous in order to enhance the dissolution property of silicic acid. As for the degree of amorphousness, it is sufficient if the half-value width of NMR-29Si is 13 ppm or more and 23 ppm or less, according to the results of experimental studies by the present inventors. The measuring method of NMR-29Si is as described in Japanese Patent Application No. 10-205258.
[0033]
In the present invention, the particle size distribution of the inorganic powder is such that D90 is 0.6 to 3.0 mm and D50 is 37 μm or more. Here, the particle size distribution may be measured with a sieve. For example, the sieves described in JIS Z 8801 are stacked and the sample is placed on the uppermost sieve and set on the tap vibrator. After a certain time, the mass of the powder remaining on each sieve is measured, expressed as a percentage, and the particle size distribution. D90 and D50 indicate the particle sizes when the cumulative mass% is 90% and 50%, respectively.
[0034]
When D90 is larger than the above range, it is influenced by the size of D50, but when measured by the ion exchange method, the elution amount of silicic acid within one month is 16% by mass or more. Sometimes the goal cannot be achieved. In addition, when D50 is less than 37 μm, the above-mentioned purpose can be easily achieved, but since the particle size is fine, it may not be possible to ensure that the silicic acid component is eluted over a long period of time. This is because it may be washed away by rain or the like, and further, it is not preferable because the cost for pulverization is high. Furthermore, since the rice action fertilizer of the present invention tends to increase the amount of silicic acid slowly with time, it is particularly effective when fertilized during the agricultural off-season from autumn to winter or before and after spring scouring. It is.
[0035]
On the other hand, another aspect of the present invention is an amorphous inorganic powder whose main component is MgO, SiO 2 , CaO, P 2 O 5, and the inorganic powder contains 1 to 20% by mass of MgO. A rice fertilizer comprising 30-50% by mass of SiO 2 , an inorganic powder having a particle size distribution of D90 of 0.1 to 1.0 mm and D50 of 37 μm or more as a main component. The present invention is characterized by having a different particle size distribution.
[0036]
In the present invention, when the D90 is 0.1 to 1.0 mm, the amount of silicic acid eluted within one month can be increased to 20% by mass or more when measured by the ion exchange method. This is because it is more preferable. The rice action fertilizer of the present invention is suitable for use as additional fertilizer after rice planting because the elution rate of the ion exchange method reaches 80% or more after 2.5 months. Moreover, since the particle size distribution is suitable for mixing and granulation with other fertilizers such as nitrogen and potash, it is possible to easily obtain a composite fertilizer having a desired composition.
[0037]
Further, the present invention is a rice action fertilizer obtained by adding a binder to the inorganic powder having a particle size distribution of D90 of 0.1 to 1.0 mm and D50 of 37 μm or more. Since it is granulated by adding a binder, it can handle rice-operating fertilizer that can provide a large amount of soluble silicic acid in a short time with good workability.
[0038]
Any binder can be used as long as it is used as a fertilizer binder. Examples thereof include poval, methylcellulose, lignin derivatives, starch, and sucrose. In the present invention, any one or more of the above-mentioned binders may be contained, but among them, lignin derivatives can be obtained as pulp waste liquor and sucrose can be obtained as waste molasses at low cost. Also, starch is preferable because it has a feature that it can be obtained in stable quality such as corn starch and can be granulated with less solid content than waste molasses.
[0039]
Moreover, this invention is a rice action fertilizer which is 60% or more of the silicic acid content originally contained within 2.5 months as measured by the ion exchange method. Since it has this function, even if it is a small amount of fertilizer, it can supply a silicic acid soluble part over a long period without additional fertilization, and it can contribute to the growth promotion of rice.
[0040]
An example of the method for producing rice fertilizer of the present invention is described below. The manufacturing method is not limited to this.
[0041]
As raw materials, P 2 O 5 , CaO, MgO, or SiO 2 such as phosphate ore, serpentine, silica, limestone, ferronickel iron, ferromanganese iron, various blast furnace steel, various steelmaking steel, phosphorus slag, fly ash, etc. The usual raw materials to contain can be utilized. Some of the above raw materials contain alumina (Al 2 O 3 ), but the presence of Al 2 O 3 deteriorates the silicic acid elution rate of the resulting rice fertilizer, and the content of Al 2 O 3 is low. Increasing the content substantially reduces the content of other components, so an increase in the Al 2 O 3 content is undesirable. A raw material not containing Al 2 O 3 is used, or a raw material containing Al 2 O 3 is limited to a small amount, and the amount of Al 2 O 3 in the resulting inorganic composition is 2 mass. % Or less is preferable.
[0042]
The raw material, taking into account the amount or the like of the volatiles, such product has a desired composition, i.e., the MgO 1 to 20 wt%, a SiO 2 so as to contain 30 to 50 wt%, preferably P 2 O 5 is 1 to 16 wt%, a molar ratio (CaO + MgO) / as (SiO 2 + P 2 O 5) is 1.2 to 2.5, more preferably P 2 O 5 is 4-12 wt%, molar ratio (CaO + MgO) / (SiO 2 + P 2 O 5) is blended so that 1.3 to 2.0, melts at a high temperature.
[0043]
As the furnace (melting furnace) used for melting, an electric furnace such as an external heating electric furnace, an arc furnace, a high-frequency heating furnace, or various combustion gas furnaces including a flat furnace can be used. The melting temperature is preferably 1350 ° C. or higher although it depends on the composition. When the raw material having the target composition is melted at a temperature higher by about 150 ° C. or more than the temperature at which it completely melts, a sufficient cooling rate can be obtained between the melting temperature and a temperature at which crystallization does not proceed. Among the melting furnaces, as will be described later, an electric furnace and a flat furnace are preferably selected because the molten liquid can be rapidly cooled, and an amorphous inorganic powder can be easily obtained.
[0044]
The rapid cooling of the melt is essential for achieving an amorphous state of the resulting inorganic composition and enhancing the elution of silicic acid. The rapid cooling is generally performed by applying a method of spraying water having a mass 20 to 40 times that of the melt to the melt extracted from the furnace, a method of immersing in a large amount of water, or the like. As a cooling method for obtaining the inorganic composition of the present invention, the time required from the melting temperature to 100 ° C. is preferably 20 seconds or less, preferably 10 seconds or less. Since it is desirable that the time between 200 ° C. is within 5 seconds, a method of cooling by applying a jet water flow is preferable. Further, the cooling method using a jet water stream can also obtain an effect that a sand-like material can be obtained directly from the melt and pulverization as a post-process can be omitted.
[0045]
The particle size of the sandy substance can be controlled by the jet water pressure, the amount of water, and the like, and by this operation alone, an inorganic powder having a particle size of 0.6 to 3.0 mm at D90 and 37 μm or more at D50 can be obtained. Further, if necessary, the particle size distribution may be adjusted to 0.1 to 1.0 mm at D90 and 37 μm or more at D50 while further combining classification operations if necessary.
[0046]
Various crushers such as a roll crusher, a stamp mill, a roller mill, a ball mill, and a jet mill can be used for the crushing operation. Moreover, various granulators, such as a pelletizer and a rolling granulator, can be used for granulation operation.
[0047]
As illustrated in the following procedure, the granulation operation may be performed in two stages by using a mixer and a granulator together. That is, 12 parts by mass of waste molasses containing 40% by mass of solid content is added to 100 parts by mass of powder as a main raw material, and mixed with a universal mixer. This is transferred to a dish granulator and sprayed with water while rotating. The granulated product containing the extracted moisture is dried with a dryer to obtain a granular fertilizer granulated to about 1 to 4 mm.
[0048]
【Example】
Hereinafter, the present invention will be described in more detail based on examples and comparative examples.
[0049]
[Embodiments 1 to 3] 1.5t of serpentinite, 0.3t of ferronickel ore, 0.9t of quartzite, and 1.1t of quicklime are mixed and ground to 1t of phosphate ore (from China) and supplied to a flat furnace. And melted. Jet water flow was struck against the hot water flowing out of the flat furnace to obtain a granulated product. This is designated as Sample A (Example 1).
[0050]
Sample A was amorphous and contained 9.2% by mass, 35.0% by mass, 16.1% by mass, and 35.3% by mass of P 2 O 5 , SiO 2 , MgO, and CaO, respectively. Therefore, the molar ratio (CaO + MgO) / (SiO 2 + P 2 O 5 ) is 1.59. Further, when the particle size distribution was measured using a sieve, 2 mm or more was 0.4 mass%, less than 2 mm to 1 mm or more was 9.7 mass%, less than 1 mm was 89.9 mass%, and 44 μm or less was 3.2 mass. %Met.
[0051]
A granulated product of another lot was pulverized with a ball mill, and 100 parts by mass of this inorganic powder and 12 parts by mass of waste molasses having a solid content concentration of 40% were mixed and granulated with a pancake type granulator. This is designated as Sample B (Example 2).
[0052]
The inorganic powder, which is the main raw material of Sample B, is amorphous, and P 2 O 5 , SiO 2 , MgO, and CaO are 10.5% by mass, 33.7% by mass, 15.9% by mass, and 34.%, respectively. It contained 5% by mass. Therefore, the molar ratio (CaO + MgO) / (SiO2 + P2O5) is 1.59. Moreover, when the particle size distribution was measured using a sieve, 500 to 105 μm was 20.4 mass%, 105 to 44 μm was 35.5 mass%, and 44 μm or less was 44.1 mass%.
[0053]
Furthermore, a granulated product of another lot was pulverized with a roll crusher to obtain an inorganic powder. This is classified using a 150 μm sieve, and the sample under the sieve is designated as Sample C (Example 3).
[0054]
When the particle size distribution of the sample C was measured using a sieve, the particle size was less than 149 μm to 105 μm or more, 45.4 mass%, 105 to 44 μm was 46.8 mass%, and 44 μm or less was 7.8 mass%. This inorganic powder was amorphous and contained 12.8% by mass, 32.0% by mass, 14.1% by mass and 35.7% by mass of P 2 O 5 , SiO 2 , MgO and CaO, respectively. . Therefore, the molar ratio (CaO + MgO) / (SiO 2 + P 2 O 5 ) is 1.58.
[0055]
For sample A, sample B, and sample C, the elution amount of silicic acid was measured by the ion exchange method. Table 1 shows the results of elution amount measurement after one month and after 2.5 months.
[0056]
[Table 1]
Figure 0004268300
* Elution amount: Ratio of eluted silicic acid mass to total fertilizer mass Elution rate: Ratio of eluted silicic acid mass to fertilizer silicic acid mass [0057]
[ Reference Example 1 ]
A commercially available calcium sandy product was pulverized using a bo mill and classified with a 149 μm sieve. This sieve is referred to as sample D. Table 1 shows the amount of silicic acid eluted after one month as measured by the ion exchange method of sample D.
[0058]
[Comparative Examples 1 and 2] The elution amount of silicic acid content of a commercially available calcium sandy product (Comparative Example 1) and a commercially available calcium granular product (Comparative Example 2) was measured by an ion exchange method. Table 1 shows the amount of silicic acid eluted after one month and after 2.5 months.
[0059]
[Fertilizer effect test]
About the fertilizer of Examples 1-2 and the comparative example 2, in order to measure the ratio by which the silicic acid content contained in the said fertilizer is absorbed by the rice, the fertilization effect test by the pot cultivation of the rice was done. Test conditions are as shown in Tables 2 and 3. Various fertilizers and reagents were mixed and fertilized so as to be 3.0 g with SiO 2 and 0.94 g with P 2 O 5 . The SiO 2 content of the used calcium is 35.7% by mass. The test results are shown in Table 4.
[0060]
[Table 2]
Figure 0004268300
[0061]
[Table 3]
Figure 0004268300
[0062]
[Table 4]
Figure 0004268300
[0063]
【The invention's effect】
The rice-acting fertilizer of the present invention has a feature that is not found in conventional products, including a large amount of soluble silicic acid in the soil and capable of supplying more than 16% by weight of soluble silicic acid within one month after fertilization. As a result, it is possible to reduce the amount of fertilization compared to the conventionally widely used calcium, and it is not necessary to mix phosphate fertilizer and siliceous fertilizer, which is useful for labor saving in farmers.
[0064]
Furthermore, since the rice action fertilizer of the present invention has a good siliceous absorbability, the occurrence of disease and pest damage in crops is suppressed, the rice is less likely to fall down, and since it is slow-acting, it does not cause fertilization, rainwater It has a number of advantages, such as being able to reduce the number of fertilizer sprays without being washed away. Furthermore, since the composition does not contain an alkali metal element such as potassium, it is easy to produce, and can be produced at a lower cost than a potash-containing fertilizer, which is industrially useful.

Claims (4)

主成分がMgO、SiO2、CaO、P25からなる非晶質の無機粉体であって、該無機粉体がMgOを14.1〜16.1質量%、SiO2を30〜50質量%、P 2 5 を9.2〜12.8質量%含有し、しかもD90が0.6〜3.0mm、D50が37μm以上である粒度分布を有する無機粉体を主成分とすることを特徴とする稲作用肥料。Amorphous inorganic powder comprising MgO, SiO 2 , CaO, P 2 O 5 as a main component, wherein the inorganic powder is 14.1 to 16.1 % by mass of MgO and 30 to 50 of SiO 2 . The main component is an inorganic powder containing 9.2 to 12.8% by mass of P 2 O 5 and having a particle size distribution with D90 of 0.6 to 3.0 mm and D50 of 37 μm or more. Rice fertilizer characterized by 主成分がMgO、SiO2、CaO、P25からなる非晶質の無機粉体であって、該無機粉体がMgOを14.1〜16.1質量%、SiO2を30〜50質量%、P 2 5 を9.2〜12.8質量%含有し、しかもD90が0.1〜1.0mm、D50が37μm以上である粒度分布を有する無機粉体を主成分とすることを特徴とする稲作用肥料。Amorphous inorganic powder comprising MgO, SiO 2 , CaO, P 2 O 5 as a main component, wherein the inorganic powder is 14.1 to 16.1 % by mass of MgO and 30 to 50 of SiO 2 . Mainly composed of inorganic powder having a particle size distribution containing 9.2 to 12.8% by mass of P 2 O 5 , D90 of 0.1 to 1.0 mm, and D50 of 37 μm or more. Rice fertilizer characterized by 請求項の稲作用肥料に更に結合材を加えて造粒してなることを特徴とする稲作用肥料。A rice action fertilizer obtained by adding a binder to the rice action fertilizer of claim 2 and granulating it. 前記結合材が、ポバール、メチルセルロース、リグニン誘導体、でんぷん、蔗糖のいずれか一種以上を含有することを特徴とする請求項記載の稲作用肥料。4. The rice action fertilizer according to claim 3 , wherein the binder contains at least one of poval, methylcellulose, lignin derivative, starch, and sucrose.
JP2000019826A 2000-01-28 2000-01-28 Rice fertilizer Expired - Lifetime JP4268300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019826A JP4268300B2 (en) 2000-01-28 2000-01-28 Rice fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019826A JP4268300B2 (en) 2000-01-28 2000-01-28 Rice fertilizer

Publications (2)

Publication Number Publication Date
JP2001213679A JP2001213679A (en) 2001-08-07
JP4268300B2 true JP4268300B2 (en) 2009-05-27

Family

ID=18546472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019826A Expired - Lifetime JP4268300B2 (en) 2000-01-28 2000-01-28 Rice fertilizer

Country Status (1)

Country Link
JP (1) JP4268300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668028B2 (en) * 2005-10-21 2011-04-13 三菱電機インフォメーションシステムズ株式会社 Transfer source software, transfer request terminal, transfer source pack generation device, and program set
CN102140046B (en) * 2011-04-27 2013-03-13 湖北富邦科技股份有限公司 Compound fertilizer granulating agent and preparation method thereof
JP6722969B2 (en) * 2016-02-01 2020-07-15 太平洋セメント株式会社 Silicate fertilizer and method for producing the same

Also Published As

Publication number Publication date
JP2001213679A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
KR102182277B1 (en) Steel making slag for fertilizer raw material, method for manufacturing steel slag for fertilizer raw material, fertilizer production method and fertilization method
JP4268300B2 (en) Rice fertilizer
JPS60127286A (en) Manufacture of slow release fused potassium magnesium silicate fertilizer
JP4040542B2 (en) Silicic fertilizer
JP5105322B2 (en) Silica phosphate fertilizer raw material and method for producing the same
JP4268299B2 (en) Rice action siliceous fertilizer
JP3661748B2 (en) INORGANIC COMPOSITION AND METHOD FOR MANUFACTURING THE SAME
JP2006306696A (en) Raw material for siliceous fertilizer and method of manufacturing the same
JP2004137136A (en) Raw material for silicate phosphate fertilizer, and its manufacturing method
JP2002047081A (en) Silicate-based fertilizer
WO2019004339A1 (en) Steelmaking slag for use as fertilizer starting material, method for producing steelmaking slag for use as fertilizer starting material, method for producing fertilizer, and fertilization method
JP4202254B2 (en) Production method of raw material for siliceous fertilizer
JP2002068870A (en) Siliceous fertilizer
JP4141538B2 (en) Fertilizer or soil conditioner
JP2002068871A (en) Siliceous fertilizer
JP4036546B2 (en) Fertilizer or soil modifier
JPH07121836B2 (en) Soil improvement fertilizer
JP7407533B2 (en) Amorphous composition, molten hydrate, composition containing molten hydrate, and fertilizer
JP2014152047A (en) Method for manufacturing silicate fertilizer
JP6119704B2 (en) Raw material for phosphosilicate fertilizer and method for producing the same
JP2002047084A (en) Fertilizer for wheat and corn
JP4308630B2 (en) Compound fertilizer
KR20040060838A (en) Raw material for silicate phosphate fertilizer and method for production thereof
JP7085351B2 (en) Silicic acid magnesium fertilizer calcined product and its manufacturing method
JP2002047083A (en) Fertilizer for vegetable

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Ref document number: 4268300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term