JP6722969B2 - Silicate fertilizer and method for producing the same - Google Patents

Silicate fertilizer and method for producing the same Download PDF

Info

Publication number
JP6722969B2
JP6722969B2 JP2016017342A JP2016017342A JP6722969B2 JP 6722969 B2 JP6722969 B2 JP 6722969B2 JP 2016017342 A JP2016017342 A JP 2016017342A JP 2016017342 A JP2016017342 A JP 2016017342A JP 6722969 B2 JP6722969 B2 JP 6722969B2
Authority
JP
Japan
Prior art keywords
fertilizer
silicic acid
sludge
raw material
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016017342A
Other languages
Japanese (ja)
Other versions
JP2017137203A (en
Inventor
今井 敏夫
敏夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016017342A priority Critical patent/JP6722969B2/en
Publication of JP2017137203A publication Critical patent/JP2017137203A/en
Application granted granted Critical
Publication of JP6722969B2 publication Critical patent/JP6722969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

本発明は、けい酸の水溶性が高いけい酸質肥料とその製造方法に関する。 The present invention relates to a siliceous fertilizer having high water solubility of silicic acid and a method for producing the same.

けい酸質肥料は、ケイカル(ケイ酸カルシウム)とケイ酸カリ(ケイ酸カリウム)肥料があり、従来、稲作等に用いられてきた。これらの肥料のうち、ケイカルは、おもにSiO、CaO、およびAlを含み、土壌へのけい酸の補給、酸性土壌の矯正等の効果がある。
しかし、ケイカルからのけい酸溶出量は、塩酸水溶液中では30%を越えるものの、土壌のpHである5〜7程度では5%程度と少ないため、水田1000m当たり約200kgものケイカルを施肥する場合があり、手間やコストの点から農家にとって負担が大きい。また、ケイカルは肥料の三要素である窒素、燐、および加里のいずれも含まないため、通常、肥料の三要素を含む他の肥料に、多量のケイカルを混合する必要がある。例えば、中性域でも比較的けい酸溶出量が多い熔成りん肥との混合でも、ケイカルの混合量は、熔成りん肥40kgに対し200kgと多量になる。
なお、前記けい酸溶出量は、可溶性けい酸(0.5モルの塩酸水溶液中に溶け出るけい酸の量)とは異なる量である。
The siliceous fertilizer includes silicic acid (calcium silicate) and potassium silicate (potassium silicate) fertilizers, which have been conventionally used for rice cultivation and the like. Of these fertilizers, Caikal mainly contains SiO 2 , CaO, and Al 2 O 3 , and is effective in replenishing soil with silicic acid and correcting acidic soil.
However, the elution amount of silicic acid from silica gel exceeds 30% in hydrochloric acid aqueous solution, but it is as small as 5% at a pH of soil of about 5 to 7, so when about 200 kg of silica gel is applied per 1000 m 2 of paddy field. However, it is a heavy burden for farmers due to the labor and cost. In addition, since Caikal does not contain any of the three elements of fertilizer, nitrogen, phosphorus, and potassium, it is usually necessary to mix a large amount of Caikal with other fertilizers containing the three elements of fertilizer. For example, even when mixed with fertilizer, which has a relatively large amount of silicic acid elution, even in the neutral range, the amount of silica added is as large as 200 kg for 40 kg of fertilizer.
The amount of silicic acid eluted is different from the amount of soluble silicic acid (the amount of silicic acid dissolved in a 0.5 mol hydrochloric acid aqueous solution).

そこで、ケイカルの欠点であるけい酸の低い水溶性を改善したけい酸質肥料が、いくつか提案されている。
例えば、特許文献1に記載のけい酸質肥料は、特定の粒度を有するけい酸質組成物の粉末に、特定の水への溶解速度を有する有機質結合材(蔗糖や廃糖蜜)を添加し造粒してなるけい酸質肥料である。そして、イオン交換法を用いて測定した1ヶ月以内の、該肥料のけい酸分溶出量は16質量%以上である。
また、特許文献2に記載のけい酸質肥料は、前記有機質結合材が、糊化処理されたデンプンからなる肥料である。
そして、前記いずれのけい酸質肥料も、MgOを1〜20質量%、SiO2を30〜50質量%のほか、CaOおよびP25等を含有する非晶質物質である。
さらに、特許文献3に記載のけい酸質肥料は、主成分がSiO2、MgO、CaO、P25からなり、SiO2を12質量%以上30質量%未満含有し、イオン交換法で測定したときに10日以内のけい酸分溶出量が10質量%以上の肥料である。しかし、該けい酸質肥料の製造では、天然のリン鉱石である蛇紋岩を使わなければならず、またバッチ方式による熔融スラグ化であるから、エネルギー消費および生産性の点で経済的ではない。
Therefore, some siliceous fertilizers having improved low water solubility of silicic acid, which is a defect of silica, have been proposed.
For example, the siliceous fertilizer described in Patent Document 1 is produced by adding an organic binder (sucrose or molasses) having a specific dissolution rate to water to a powder of a siliceous composition having a specific particle size. It is a silicic acid fertilizer made by granulating. Then, the elution amount of the silicic acid content of the fertilizer within 16 months measured by the ion exchange method is 16% by mass or more.
Further, the siliceous fertilizer described in Patent Document 2 is a fertilizer in which the organic binder is starch that has been gelatinized.
Further, any of the above siliceous fertilizers is an amorphous substance containing 1 to 20% by mass of MgO, 30 to 50% by mass of SiO 2 , and also CaO and P 2 O 5 .
Furthermore, the siliceous fertilizer described in Patent Document 3 has SiO 2 , MgO, CaO, and P 2 O 5 as main components, contains 12% by mass or more and less than 30% by mass of SiO 2, and is measured by an ion exchange method. The fertilizer has a silicic acid content elution amount of 10 mass% or more within 10 days. However, in the production of the siliceous fertilizer, serpentine, which is a natural phosphate rock, must be used, and since the molten slag is formed by a batch method, energy consumption and productivity are not economical.

ところで、前記熔成りん肥等のりん酸質肥料は、天然資源であるリン鉱石を原料の一部に用いて製造される。しかし、我が国では、リンは天然資源として産出されないため、そのほぼ全てを輸入に頼らざるを得ないが、近年、天然のリンは世界的に枯渇しつつあり、リンの価格が高騰してリンの確保が難しくなっている。そこで、りん酸質肥料の製造分野では、天然のリン資源に代わるものとして、リンの含有率がリン鉱石とほぼ同じ20〜30質量%である下水汚泥焼却灰が考えられている。また、我が国において、下水汚泥およびその焼却灰は、それぞれ、年間220万トンおよび30万トンと大量に発生するため、下水汚泥等の処理は社会的要請でもあった。また、下水汚泥焼却灰は、りん酸とけい酸とを含んでいるため、本願発明のけい酸質肥料の原料として好適である。
また、下水、し尿、および畜舎廃水等のリンを含む排水から、HAP法やMAP法で回収したハイドロキシアパタイトやリン酸マグネシウムアンモニウムの有効活用も望まれている。
By the way, the above-mentioned phosphate fertilizer such as fertilizer is produced by using phosphate rock which is a natural resource as a part of the raw material. However, in Japan, phosphorus is not produced as a natural resource, so almost all of it has to rely on imports, but in recent years, natural phosphorus is being depleted worldwide, and the price of phosphorus has risen sharply and It is difficult to secure. Therefore, in the field of manufacturing phosphate fertilizers, as an alternative to natural phosphorus resources, sewage sludge incinerator ash having a phosphorus content of 20 to 30 mass%, which is almost the same as that of phosphate rock, is considered. In Japan, a large amount of sewage sludge and its incinerated ash are generated at 2.2 million tons and 300,000 tons per year, respectively, so the treatment of sewage sludge is a social requirement. In addition, since the sewage sludge incineration ash contains phosphoric acid and silicic acid, it is suitable as a raw material for the siliceous fertilizer of the present invention.
Further, effective utilization of hydroxyapatite and magnesium ammonium phosphate recovered by HAP method or MAP method from wastewater containing phosphorus such as sewage, night soil, and livestock wastewater is also desired.

特開2002−068871号公報JP, 2002-068871, A 特開2002−068870号公報JP, 2002-068870, A 特開2002−047081号公報JP 2002-047081 A

そこで、本発明は、汚泥やその焼却灰等を原料の一部に用いて製造したけい酸質肥料であって、けい酸の水溶性が高いけい酸質肥料を提供することを目的とする。 Therefore, an object of the present invention is to provide a silicic acid fertilizer produced by using sludge or incinerated ash thereof as a part of a raw material and having high water solubility of silicic acid.

本発明者らは、前記目的を達成できるけい酸質肥料を検討したところ、下記のけい酸質肥料は、けい酸の水溶性が高いことを見い出し、本発明を完成させた。すなわち、本発明は、下記の構成を有するけい酸質肥料等である。 The inventors of the present invention investigated a siliceous fertilizer capable of achieving the above-mentioned object, and found that the following siliceous fertilizer had high water solubility of silicic acid, and completed the present invention. That is, the present invention is a siliceous fertilizer and the like having the following constitution.

[1]組成式 2CaO・xSiO・yP(ただし、x>0、y≧0、0.85<x+y≦1.00かつ0.65<[x/(x+y)]≦1.00)で表される鉱物を含み、かつCaOの含有率が50〜60質量%であるけい酸質肥料であって、水−弱酸性陽イオン交換樹脂法による水溶性けい酸が6%以上である、けい酸質肥料。
[2]けい酸質肥料中の、(A)SiO、(B)CaO、および、(C)CaOとSiOとを除く成分の質量比が、図2に示す三角線図の、
点(ア)〔(A)/(B)/(C)=43/50/7〕、
点(イ)〔(A)/(B)/(C)=33/60/7〕、
点(ウ)〔(A)/(B)/(C)=10/60/30〕、および、
点(エ)〔(A)/(B)/(C)=10/50/40〕
で囲まれる範囲内にある、前記[1]に記載のけい酸質肥料。
[3]前記[1]または[2]に記載のけい酸質肥料の製造方法であって、
汚泥、脱水汚泥、汚泥乾燥物、汚泥炭化物、汚泥焼却灰、汚泥溶融スラグから選ばれる1種以上と、カルシウム源とを少なくとも混合して混合原料を得る混合工程と、
該混合原料を、焼成炉を用いて1300〜1400℃で焼成して、焼成物であるけい酸質肥料を得る焼成工程と
を含む、けい酸肥料の製造方法。
[4]前記混合工程において、さらに、リンを含有する排水からHAP法やMAP法を用いて回収されたハイドロキシアパタイトおよびリン酸マグネシウムアンモニウム、並びにリン酸質肥料から選ばれる1種以上を混合する、前記[3]に記載のけい酸質肥料の製造方法。
[5]前記焼成炉がロータリーキルンである、前記[3]または[4]に記載のけい酸質肥料の製造方法。
[1] Composition formula 2CaO·xSiO 2 ·yP 2 O 5 (where x>0, y≧0, 0.85<x+y≦1.00 and 0.65<[x/(x+y)]≦1.00 ) Is a siliceous fertilizer containing a mineral represented by (4) and having a CaO content of 50 to 60% by mass, wherein the water-weakly acidic cation exchange resin method has a water-soluble silicic acid content of 6% or more. , Siliceous fertilizer.
[2] The mass ratio of components other than (A) SiO 2 , (B) CaO, and (C) CaO and SiO 2 in the siliceous fertilizer is as shown in the triangular diagram of FIG.
Point (a) [(A)/(B)/(C)=43/50/7],
Point (a) [(A)/(B)/(C)=33/60/7],
Point (C) [(A)/(B)/(C)=10/60/30], and
Point (D) [(A)/(B)/(C)=10/50/40]
The siliceous fertilizer according to the above [1], which is in a range surrounded by.
[3] The method for producing a siliceous fertilizer according to the above [1] or [2],
A mixing step for obtaining a mixed raw material by at least mixing one or more kinds selected from sludge, dehydrated sludge, dried sludge, sludge charcoal, sludge incineration ash, and sludge molten slag to obtain a mixed raw material;
A method for producing a silicic acid fertilizer, comprising a step of calcining the mixed raw material at 1,300 to 1,400° C. using a calcining furnace to obtain a silicic acid fertilizer as a calcined product.
[4] In the mixing step, further, at least one selected from hydroxyapatite and magnesium ammonium phosphate recovered from the phosphorus-containing wastewater by the HAP method or the MAP method, and a phosphate fertilizer is mixed, The method for producing a siliceous fertilizer according to the above [3].
[5] The method for producing a siliceous fertilizer according to the above [3] or [4], wherein the firing furnace is a rotary kiln.

本発明のけい酸質肥料は、含有するけい酸の水溶性が高い。また、本発明のけい酸質肥料の製造方法は、(i)汚泥およびその焼却灰等の汚泥の由来物を有効利用でき、(ii)溶融肥料の製造と比べて焼成時のエネルギー消費が少ないため省エネルギーに寄与し、(iii)焼成炉にロータリーキルンを用いた場合には、連続生産が可能で生産効率が高い。 The silicic acid fertilizer of the present invention contains silicic acid having high water solubility. Further, the method for producing a siliceous fertilizer of the present invention, (i) sludge and its derived products of sludge such as incinerated ash can be effectively used, and (ii) less energy consumption during firing as compared with the production of molten fertilizer Therefore, it contributes to energy saving. (iii) When a rotary kiln is used in the firing furnace, continuous production is possible and production efficiency is high.

本発明のけい酸質肥料(実施例3、8および11)のX線回折チャートである。2 is an X-ray diffraction chart of the siliceous fertilizer of the present invention (Examples 3, 8 and 11). (A)SiO、(B)CaO、および(C)CaOとSiOとを除く成分の質量比を示す三角線図である。 (A) SiO 2, a triangular diagram showing the (B) CaO, and (C) CaO and the mass ratio of the components except the SiO 2.

以下、本発明について、けい酸質肥料とその製造方法に分けて詳細に説明する。
1.けい酸質肥料
本発明のけい酸質肥料は、組成式 2CaO・xSiO・yP(ただし、x>0、y≧0、0.85<x+y≦1.00かつ0.65<[x/(x+y)]≦1.00)で表される鉱物を含み、かつCaOの含有率が50〜60質量%であるけい酸質肥料であって、水−弱酸性陽イオン交換樹脂法による水溶性けい酸が6%以上である。前記組成式で表される鉱物は、ナーゲルシュミッタイト(7CaO・2SiO・P)、14.92CaO・5.65SiO・1.175P、15CaO・6SiO・P、ケイ酸二カルシウム(2CaO・SiO)などであり、これらはけい酸の水溶性が高い。
また、けい酸質肥料中のCaOの含有率は50〜60質量%である。該含有率が50〜60質量%であれば、後掲の表2に示すように、水−弱酸性陽イオン交換樹脂法による水溶性けい酸は6%以上になる。ここで、けい酸の水溶率とは、けい酸質酸肥料中の全けい酸に対する水−弱酸性陽イオン交換樹脂法による水溶性けい酸の質量比(%)である。また、水−弱酸性陽イオン交換樹脂法による水溶性けい酸は、中性(pH=7)付近でのけい酸分の溶解性を評価する方法であって、以下の文献Aおよび文献Bに記載されている方法に準拠して測定する。
Hereinafter, the present invention will be described in detail by dividing it into a silicic acid fertilizer and a method for producing the same.
1. Silicate fertilizer The siliceous fertilizer of the present invention has a composition formula 2CaO.xSiO 2 .yP 2 O 5 (where x>0, y≧0, 0.85<x+y≦1.00 and 0.65<[ x/(x+y)]≦1.00), which is a silicic acid fertilizer having a CaO content of 50 to 60% by mass, the water-weakly acidic cation exchange resin method being used. Water-soluble silicic acid is 6% or more. The minerals represented by the above composition formula are Nagelschmittite (7CaO·2SiO 2 ·P 2 O 5 ), 14.92CaO·5.65SiO 2 ·1.175P 2 O 5 , 15CaO·6SiO 2 ·P 2 O. 5 , dicalcium silicate (2CaO.SiO 2 ), etc., and these have high water solubility of silicic acid.
The content of CaO in the siliceous fertilizer is 50 to 60% by mass. When the content is 50 to 60% by mass, as shown in Table 2 below, the water-soluble silicic acid content by the water-weakly acidic cation exchange resin method is 6% or more. Here, the water-soluble rate of silicic acid is the mass ratio (%) of water-soluble silicic acid by the water-weakly acidic cation exchange resin method to the total silicic acid in silicic acid fertilizer. Further, water-soluble silicic acid prepared by the water-weakly acidic cation exchange resin method is a method for evaluating the solubility of the silicic acid component in the vicinity of neutrality (pH=7). Measure according to the method described.

文献A:加藤直人著「農林水産省・農業環境技術研究所報告」16巻,9−75頁(1998)
文献B:加藤、尾和共著 Soil Sci.Plant Nutr.,43巻,2号,351−359頁(1997)
Reference A: Naoto Kato "Ministry of Agriculture, Forestry and Fisheries/Agricultural Environmental Technology Research Institute Report" 16: 9-75 (1998)
Reference B: Kato and Owa Co., Soil Sci. Plant Nutr. , Vol. 43, No. 2, pp. 351-359 (1997).

ここで、水溶性けい酸の測定において、イオン交換樹脂を用いるのは、けい酸質肥料から溶出するアルカリ土類金属等のアルカリ性物質が溶液に溶けて生ずるpHの上昇を、イオン交換樹脂のイオン交換能を利用して防止するためである。水田の土壌はほぼ中性でありpH緩衝能が高いため、イオン交換法を用いると、実際の水田により近い環境下でけい酸の水溶性を評価できる。なお、原料およびけい酸質肥料中の酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。 Here, in the measurement of water-soluble silicic acid, the ion exchange resin is used because the increase in pH caused by the dissolution of alkaline substances such as alkaline earth metals from the siliceous fertilizer in the solution This is because the exchange ability is used to prevent this. Since the paddy soil is almost neutral and has a high pH buffering capacity, the ion-exchange method can be used to evaluate the water solubility of silicic acid in an environment closer to the actual paddy field. The oxides in the raw materials and the siliceous fertilizer can be quantified by the fundamental parameter method using a fluorescent X-ray device.

また、本発明のけい酸質肥料は、好ましくは、けい酸質肥料中の、(A)SiO、(B)CaO、および、(C)CaOとSiOとを除く成分の質量比が、図2に示す三角線図の、
点(ア)〔(A)/(B)/(C)=43/50/7〕、
点(イ)〔(A)/(B)/(C)=33/60/7〕、
点(ウ)〔(A)/(B)/(C)=10/60/30〕、および、
点(エ)〔(A)/(B)/(C)=10/50/40〕
で囲まれる範囲内にあるけい酸質肥料である。(A)SiO、(B)CaO、および、(C)CaOとSiOとを除く成分の質量比が、図2に示す三角線図の範囲内にあれば、さらにけい酸の水溶性は向上する。なお、前記(A)成分、(B)成分、および(C)成分の合計は100である。また、前記「囲まれる範囲内」は境界線上も含む。
In addition, the siliceous fertilizer of the present invention preferably has a mass ratio of (A) SiO 2 , (B) CaO, and (C) components other than CaO and SiO 2 in the siliceous fertilizer, In the triangular diagram shown in FIG.
Point (a) [(A)/(B)/(C)=43/50/7],
Point (a) [(A)/(B)/(C)=33/60/7],
Point (C) [(A)/(B)/(C)=10/60/30], and
Point (D) [(A)/(B)/(C)=10/50/40]
It is a silicic acid fertilizer within the range surrounded by. If the mass ratio of (A) SiO 2 , (B) CaO, and the components other than (C) CaO and SiO 2 is within the range of the triangular diagram shown in FIG. improves. The total of the components (A), (B), and (C) is 100. Further, the “within the enclosed range” includes the boundary line.

2.けい酸肥料の製造方法
本発明のけい酸質肥料の製造方法は、汚泥、脱水汚泥、汚泥乾燥物、汚泥炭化物、汚泥焼却灰、汚泥溶融スラグから選ばれる1種以上と、カルシウム源とを少なくとも混合して混合原料を得る混合工程と、該混合原料を、焼成炉を用いて1300〜1400℃で焼成して、焼成物であるけい酸質肥料を得る焼成工程とを、必須の工程として含む製造方法である。以下、混合工程と焼成工程に分けて説明する。
2. Method for producing silicic acid fertilizer
The method for producing a siliceous fertilizer of the present invention comprises at least one selected from sludge, dehydrated sludge, dried sludge, sludge charcoal, sludge incineration ash, and sludge molten slag, and a calcium source, to prepare a mixed raw material. It is a manufacturing method including, as an essential step, a mixing step of obtaining and a firing step of firing the mixed raw material at 1300 to 1400° C. in a firing furnace to obtain a siliceous fertilizer as a fired product. Hereinafter, the mixing step and the firing step will be described separately.

(1)混合工程
該工程は、焼成物中のCaOの含有率が50〜60質量%となるように、前記原料を混合して混合原料(焼成用原料)を得る工程である。混合し易い粒度にするために、前記原料は、必要に応じてボールミル、ローラーミル、またはロッドミル等で粉砕する。
また、原料の混合方法として、例えば、各原料の一部を電気炉等で焼成した後、該焼成灰中の酸化物を定量し、該定量値と所定の配合に基づき、各原料を混合する方法が挙げられる。該酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。焼成前の原料の化学組成は、焼成後物の化学組成と、焼成による揮発成分を除きほぼ同一であるから、CaOの含有率が50〜60質量%の焼成物を得るためには、通常、CaOの含有率が該範囲を満たす焼成用原料を用いれば十分である。ただし、正確を期すためには、該原料の一部を電気炉等で焼成して、該原料中のCaOの含有率と、該焼成物中のCaOの含有率との相関を事前に把握しておき、該相関に基づき、原料の混合割合を、目的とする焼成物中のCaOの含有率になるように修正することが好ましい。
(1) Mixing step This step is a step of mixing the raw materials to obtain a mixed raw material (raw material for firing) so that the content of CaO in the fired product is 50 to 60% by mass. The raw material is pulverized by a ball mill, a roller mill, a rod mill, or the like, if necessary, in order to make the particle size easy to mix.
In addition, as a method for mixing the raw materials, for example, after burning a part of each raw material in an electric furnace or the like, the amount of oxide in the baked ash is quantified, and the respective raw materials are mixed based on the quantitative value and a predetermined composition. There is a method. The quantification of the oxide can be performed by a fundamental parameter method using a fluorescent X-ray apparatus. The chemical composition of the raw material before firing is almost the same as the chemical composition of the fired material except for the volatile components due to firing, and therefore, in order to obtain a fired material having a CaO content of 50 to 60 mass%, It is sufficient to use a raw material for firing in which the content of CaO satisfies the above range. However, for accuracy, a part of the raw material is fired in an electric furnace or the like, and the correlation between the content of CaO in the raw material and the content of CaO in the fired product is grasped in advance. Based on the correlation, it is preferable to correct the mixing ratio of the raw materials so that the target content of CaO in the fired product is adjusted.

前記混合工程において混合する原料のうち、前記汚泥は、下水道の終末処理場における下水処理や屎尿処理場における屎尿処理、およびこれらの排水処理の過程において、沈殿やろ過等により分離して得た有機物や無機物を含む泥状物である。また、前記脱水汚泥は、前記泥状物を遠心分離等で脱水して得られたものである。
前記汚泥乾燥物は、前記下水汚泥を天日干しまたは乾燥機により乾燥して、含水率を概ね50質量%以下にしたものである。
また、前記汚泥炭化物は、汚泥を加熱して汚泥に含まれる有機物の一部または全部を炭化物にしたものである。該加熱温度は、好ましくは300〜800℃、より好ましくは500〜700℃である。該加熱温度が300℃未満では炭化に時間がかかり、800℃を超えると炭化物が燃焼するおそれがある。該燃焼を抑制するために、好ましくは無酸素または低酸素状態で加熱する。該炭化物は、本発明のけい酸質肥料の製造において燃料の一部にもなるため、その分、製造に要するエネルギーを節約できる。
前記汚泥焼却灰は汚泥を焼却して得られる残渣である。また、前記汚泥溶融スラグは、前記汚泥焼却灰を1350℃以上で溶融したものである。
前記汚泥等はその形態や含水率が異なっても、焼却または焼成した後の化学成分およびその組成は同一または実質的に同一であるため、焼成用の原料の一部として何れを用いてもよい。なお、後掲の表1に下水汚泥焼却灰の化学組成を例示した。
Among the raw materials to be mixed in the mixing step, the sludge is an organic substance obtained by separating by sedimentation or filtration in the process of sewage treatment in a sewage terminal treatment plant or human waste treatment in a human waste treatment plant, and these wastewater treatment processes. It is a mud-like substance containing inorganic substances. The dehydrated sludge is obtained by dehydrating the mud matter by centrifugation or the like.
The sludge dried product is obtained by drying the sewage sludge in the sun or drying it with a drier to have a water content of about 50% by mass or less.
Further, the sludge charcoal-based material is obtained by heating the sludge to convert a part or all of the organic matter contained in the sludge into carbonized material. The heating temperature is preferably 300 to 800°C, more preferably 500 to 700°C. If the heating temperature is lower than 300°C, it takes time to carbonize, and if it exceeds 800°C, the carbide may burn. In order to suppress the combustion, heating is preferably performed in anoxic or hypoxic state. Since the carbide also serves as a part of fuel in the production of the siliceous fertilizer of the present invention, the energy required for production can be saved accordingly.
The sludge incineration ash is a residue obtained by incinerating sludge. The sludge melting slag is obtained by melting the sludge incineration ash at 1350°C or higher.
Even if the sludge or the like has a different form or moisture content, the chemical components and the composition thereof after incineration or firing are the same or substantially the same, so any one may be used as a part of the raw material for firing. .. The chemical composition of sewage sludge incineration ash is shown in Table 1 below.

また、前記カルシウム源は、けい酸質肥料中のCaOの含有率が50〜60質量%の範囲内になるように調製するために用いる原料であり、さらには、(A)成分、(B)成分、および(C)成分の質量比(化学組成比)が、前記範囲内になるように調整するために用いる。該カルシウム源としては、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、リン酸カルシウム、塩化カルシウム、硫酸カルシウム、石灰石、生石灰、消石灰、セメント、鉄鋼スラグ、廃コンクリート、および生コンスラッジ等から選ばれる1種以上である。 Further, the calcium source is a raw material used for preparing so that the content of CaO in the siliceous fertilizer is in the range of 50 to 60% by mass, and further, the component (A) and the component (B). It is used for adjusting the mass ratio (chemical composition ratio) of the component and the component (C) to be within the above range. The calcium source is at least one selected from calcium carbonate, calcium oxide, calcium hydroxide, calcium phosphate, calcium chloride, calcium sulfate, limestone, quick lime, slaked lime, cement, steel slag, waste concrete, and fresh consludge. ..

さらに、化学組成比を調整するための原料として、その他にけい酸源およびりん酸源を用いることができる。
前記けい酸源は、石炭灰、珪石、珪砂、鋳物砂、頁岩、白土、ゼオライト、珪藻土、粘土、火山灰、鉄鋼スラグ、廃コンクリート、および生コンスラッジ等から選ばれる1種以上が挙げられる。また、化学組成比の調整の容易さの観点から、SiOの含有率が50質量%以上のけい酸源が好ましい。なお、前記けい酸源の内、鉄鋼スラグ、廃コンクリート、および生コンスラッジ等は、カルシウム源としても機能する。
また、前記りん酸源は、下水、屎尿、および畜舎排水等のリンを含有する排水からHAP法やMAP法を用いて回収されたハイドロキシアパタイトおよびリン酸マグネシウムアンモニウム、並びにリン酸質肥料から選ばれる1種以上が挙げられる。
Furthermore, as a raw material for adjusting the chemical composition ratio, a silicic acid source and a phosphoric acid source can be used in addition.
The silicic acid source may be at least one selected from coal ash, silica stone, silica sand, foundry sand, shale, clay, zeolite, diatomaceous earth, clay, volcanic ash, steel slag, waste concrete, and raw consludge. From the viewpoint of easy adjustment of the chemical composition ratio, a silicic acid source having a SiO 2 content of 50 mass% or more is preferable. Among the above-mentioned silicic acid sources, iron and steel slag, waste concrete, fresh conslud and the like also function as a calcium source.
In addition, the phosphoric acid source is selected from hydroxyapatite and magnesium ammonium phosphate recovered from phosphorus-containing wastewater such as sewage, human waste, and barn wastewater by the HAP method or MAP method, and a phosphate fertilizer. One or more may be mentioned.

(2)焼成工程
該工程は、前記混合原料を、焼成炉を用いて焼成する工程である。前記混合原料は、粉末のままで焼成するか、該粉末に水を添加してスラリーにした状態で焼成するか、または脱水ケーキの状態で焼成するか、若しくは、より焼成効率を上げるために、該粉末、または該粉末のセメント固化物等を、パンペレタイザー等の造粒機や、ブリケットマシン、ロールプレス等の成形機で、それぞれ造粒や成形してから焼成する。
前記焼成工程において、焼成温度は好ましくは1300〜1400℃である。該温度が1300未満では焼成が不十分でけい酸の水溶性が低く、1400℃を超えると焼成物が溶融して溶融物になるおそれがある。また、前記焼成炉は、連続生産が可能であるためロータリーキルンが好ましい。また、焼成時間は10〜60分が好ましく、20〜40分がより好ましい。該時間が10分未満では焼成が不十分であり、60分を超えると生産効率が低下する。
(2) Firing step This step is a step of firing the mixed raw material using a firing furnace. The mixed raw material is fired as a powder, fired in a slurry by adding water to the powder, or fired in a dehydrated cake state, or to further increase firing efficiency, The powder, a cement solidified product of the powder, or the like is granulated or molded by a granulating machine such as a pan pelletizer or a molding machine such as a briquette machine or a roll press, and then fired.
In the firing step, the firing temperature is preferably 1300 to 1400°C. If the temperature is lower than 1300, firing is insufficient and the water solubility of silicic acid is low, and if it exceeds 1400°C, the fired product may melt and become a melt. The firing furnace is preferably a rotary kiln because continuous production is possible. The firing time is preferably 10 to 60 minutes, more preferably 20 to 40 minutes. If the time is less than 10 minutes, the firing will be insufficient, and if it exceeds 60 minutes, the production efficiency will decrease.

(3)粉砕および造粒工程
該工程は、前記焼成物の粒度を調整する工程であり、粉塵の発生を抑制して、肥料の取り扱いを容易にするためや、肥料効果を十分に発揮させるため、肥料の粒度を調整する必要がある場合に選択される任意の工程である。該粒度は0.1〜10mmが好ましく、0.5〜5mmがより好ましい。
粉砕手段として、例えば、ジョークラッシャー、ローラーミル、ボールミル、またはロッドミル等を用いることができる。また、造粒手段として、例えば、パン型ミキサー、パンペレタイザー、ブリケットマシン、ロールプレス、押出成型機等を用いることができる。
また、該工程において、肥料の用途に応じて、適宜、けい酸やりん酸の成分を追加したり、窒素、加里、苦土等のその他の肥料成分を、新たに添加することができる。
(3) Grinding and granulating step This step is a step of adjusting the particle size of the fired product, in order to suppress the generation of dust, facilitate the handling of fertilizer, and sufficiently exert the fertilizer effect. , Is an optional step that is selected when it is necessary to adjust the particle size of the fertilizer. The particle size is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm.
As the crushing means, for example, a jaw crusher, a roller mill, a ball mill, a rod mill or the like can be used. Further, as the granulating means, for example, a pan type mixer, a pan pelletizer, a briquette machine, a roll press, an extrusion molding machine and the like can be used.
Further, in the step, it is possible to appropriately add a component of silicic acid or phosphoric acid or newly add other fertilizer components such as nitrogen, potassium, and magnesia depending on the use of the fertilizer.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.けい酸質肥料の製造
表1に示す化学組成を有する下水汚泥焼却灰、ハイドロキシアパタイト、りん酸質肥料、炭酸カルシウム粉末(宇部マテリアルズ社製)、および珪砂粉末を用い、表2に示す実施例1〜14、および比較例1〜6の配合に従い混合して混合原料を調製した。次に、該混合原料を用いて、一軸加圧成形機により成形し、直径40mm、高さ10mmの円柱状の原料を作製した。さらに、該円柱状の原料を、電気炉内に載置した後、昇温速度20℃/分で、表2に示す温度まで昇温し、該温度の下で10分間焼成して焼成物を得た。さらに、該焼成物を、鉄製乳鉢を用いて目開き600μmのふるいを全通するまで粉砕して、粉末状のけい酸質肥料(実施例1〜14、比較例1〜6)を製造した。表3に、けい酸質肥料中に同定された主要な鉱物(○印)を示し、図1に、実施例3、8および11のX線回折チャートを示した。なお、焼成後のけい酸質肥料の化学組成は、焼成前の混合原料の化学組成と、焼成による揮発成分を除きほぼ同一であった。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
1. Manufacture of Silica Fertilizer Using sewage sludge incineration ash, hydroxyapatite, phosphate fertilizer, calcium carbonate powder (manufactured by Ube Materials Co., Ltd.), and silica sand powder having the chemical composition shown in Table 1, and the examples shown in Table 2 1 to 14 and Comparative Examples 1 to 6 were mixed to prepare mixed raw materials. Next, the mixed raw material was molded by a uniaxial pressure molding machine to prepare a cylindrical raw material having a diameter of 40 mm and a height of 10 mm. Further, after the cylindrical raw material was placed in an electric furnace, the temperature was raised to a temperature shown in Table 2 at a heating rate of 20° C./minute, and the material was fired at the temperature for 10 minutes to obtain a fired product. Obtained. Further, the calcined product was pulverized using an iron mortar until it passed through a sieve having openings of 600 μm to produce powdery siliceous fertilizers (Examples 1 to 14 and Comparative Examples 1 to 6). Table 3 shows the major minerals (marked with ◯) identified in the siliceous fertilizer, and FIG. 1 shows the X-ray diffraction charts of Examples 3, 8 and 11. The chemical composition of the siliceous fertilizer after firing was almost the same as the chemical composition of the mixed raw material before firing, except for the volatile components due to firing.

Figure 0006722969
Figure 0006722969

Figure 0006722969
Figure 0006722969

Figure 0006722969
Figure 0006722969

2.水溶性けい酸とく溶性りん酸の測定
水溶性けい酸の測定は、水−弱酸性陽イオン交換樹脂法を用いて以下の手順で行い、けい酸の水溶率を算出した。
すなわち、あらかじめ水酸化ナトリウム水溶液と希塩酸を用いて逆再生処理したイオン交換樹脂(商品名:アンバーライトIRC−50[登録商標]、オルガノ社製)2gと純水1リットルを入れた樹脂製のビーカー内に、前記実施例および比較例のけい酸質肥料0.2gをそれぞれ加え、マグネチックスターラーで静かに10分間撹拌した後、10日間静置した。この10日間が経過した後、再度マグネチックスターラーで静かに10分間撹拌した後、30分間静置し、上澄み液2mlをメスフラスコに分取し、塩酸(1+1)1mlを添加した後、20mlに希釈した。これをICP発光分析法により溶液中のSiの濃度を定量してSiOの濃度に換算した。また、く溶性りん酸の測定は、肥料分析法(農林水産省農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法により行い、りん酸のく溶率を算出した。これらの結果を表2に示す。
表2に示すように、本発明のけい酸質肥料(実施例1〜14)の水溶性けい酸は6.6%以上、水溶率は31%以上といずれも高かった。これに対し、比較例1〜6のけい酸質肥料の水溶性けい酸は4.0%以下、水溶率は20%以下といずれもと低かった。また、実施例のく溶率は、実施例14を除き、82%以上と高かった。
2. Measurement of Water-Soluble Silicic Acid and Soluble Phosphoric Acid Water-soluble silicic acid was measured by the following procedure using the water-weakly acidic cation exchange resin method, and the water solubility of silicic acid was calculated.
That is, a beaker made of resin containing 2 g of an ion exchange resin (trade name: Amberlite IRC-50 [registered trademark], manufactured by Organo) that has been previously subjected to reverse regeneration treatment using an aqueous sodium hydroxide solution and dilute hydrochloric acid, and 1 liter of pure water. 0.2 g of the siliceous fertilizers of the above-mentioned Examples and Comparative Examples were added therein, and the mixture was gently stirred with a magnetic stirrer for 10 minutes, and then allowed to stand for 10 days. After the lapse of 10 days, the mixture was gently stirred with a magnetic stirrer for 10 minutes again, and allowed to stand for 30 minutes, 2 ml of the supernatant was collected in a measuring flask, and 1 ml of hydrochloric acid (1+1) was added to 20 ml. Diluted. The concentration of Si in the solution was quantified by ICP emission spectrometry and converted into the concentration of SiO 2 . Further, the solubilized phosphoric acid was measured by the ammonium vanadomolybdate method defined in the Fertilizer Analysis Method (Ministry of Agriculture, Forestry and Fisheries Research Institute for Agricultural Environmental Technology), and the solubilized rate of phosphoric acid was calculated. The results are shown in Table 2.
As shown in Table 2, the silicic acid fertilizers of the present invention (Examples 1 to 14) had a high water-soluble silicic acid content of 6.6% or more and a water-solubility rate of 31% or more. On the other hand, the water-soluble silicic acid of the siliceous fertilizers of Comparative Examples 1 to 6 was 4.0% or less, and the water solubility was 20% or less, which were low at all. In addition, the dissolution rate of Examples was as high as 82% or more except for Example 14.

以上の結果から、本発明のけい酸質肥料はけい酸の水溶性およびりん酸のく溶率が高く、下水汚泥等の再資源化により、リンの省資源に寄与することができる。また、本発明のけい酸質肥料の製造方法は、熔融肥料の製造と比べて、焼成におけるエネルギー消費が少ないため、省エネルギーに寄与することができるとともに、ロータリーキルンを用いた場合、連続生産が可能で生産効率が高くなる。 From the above results, the siliceous fertilizer of the present invention has high water solubility of silicic acid and high solubility of phosphoric acid, and can contribute to resource saving of phosphorus by recycling sewage sludge and the like. Further, the method for producing siliceous fertilizer of the present invention consumes less energy in firing as compared with the production of molten fertilizer, so that it can contribute to energy saving, and when a rotary kiln is used, continuous production is possible. Higher production efficiency.

Claims (4)

組成式 2CaO・xSiO・yP(ただし、x>0、y≧0、0.85<x+y≦1.00かつ0.65<[x/(x+y)]≦1.00)で表される鉱物を含み、かつCaOの含有率が50〜60質量%であるけい酸質肥料であって、水−弱酸性陽イオン交換樹脂法による水溶性けい酸が6%以上である、けい酸質肥料であって
けい酸質肥料中の、(A)SiO 、(B)CaO、および、(C)CaOとSiO とを除く成分の質量比が、図2に示す三角線図の、
点(ア)〔(A)/(B)/(C)=24/50/26〕、
点(イ)〔(A)/(B)/(C)=21/60/19〕、
点(ウ)〔(A)/(B)/(C)=10/60/30〕、および、
点(エ)〔(A)/(B)/(C)=10/50/40〕
で囲まれる範囲内にある、けい酸質肥料。
Composition formula 2CaO·xSiO 2 ·yP 2 O 5 (where x>0, y≧0, 0.85<x+y≦1.00 and 0.65<[x/(x+y)]≦1.00) Which is a silicic acid fertilizer containing 50 to 60% by mass of CaO and containing 6% or more of water-soluble silicic acid by a water-weakly acidic cation exchange resin method. a quality fertilizer
The mass ratio of (A) SiO 2 , (B) CaO, and the components other than (C) CaO and SiO 2 in the siliceous fertilizer is as shown in the triangular diagram of FIG.
Point (a) [(A)/(B)/(C)=24/50/26],
Point (a) [(A)/(B)/(C)=21/60/19],
Point (C) [(A)/(B)/(C)=10/60/30], and
Point (D) [(A)/(B)/(C)=10/50/40]
Silica fertilizer in the area surrounded by.
請求項1に記載のけい酸質肥料の製造方法であって、
汚泥、脱水汚泥、汚泥乾燥物、汚泥炭化物、汚泥焼却灰、汚泥溶融スラグから選ばれる1種以上と、カルシウム源とを少なくとも混合して混合原料を得る混合工程と、
該混合原料を、焼成炉を用いて1300〜1400℃で焼成して、焼成物であるけい酸質肥料を得る焼成工程と
を含む、けい酸肥料の製造方法。
The method for producing a siliceous fertilizer according to claim 1 ,
A mixing step for obtaining a mixed raw material by at least mixing one or more kinds selected from sludge, dehydrated sludge, dried sludge, sludge charcoal, sludge incineration ash, and sludge molten slag to obtain a mixed raw material;
A method for producing a silicic acid fertilizer, comprising a step of calcining the mixed raw material at 1,300 to 1,400° C. using a calcining furnace to obtain a silicic acid fertilizer as a calcined product.
前記混合工程において、さらに、リンを含有する排水からHAP法やMAP法を用いて回収されたハイドロキシアパタイトおよびリン酸マグネシウムアンモニウム、並びにリン酸質肥料から選ばれる1種以上を混合する、請求項に記載のけい酸質肥料の製造方法。 In the mixing step, further, mixed hydroxyapatite and magnesium ammonium phosphate was recovered using HAP method or MAP method from wastewater containing phosphorus and one or more selected from phosphate fertilizer, claim 2 The method for producing a siliceous fertilizer according to 1. 前記焼成炉がロータリーキルンである、請求項またはに記載のけい酸質肥料の製造方法。
The sintering furnace is a rotary kiln, the manufacturing method of silicate fertilizer according to claim 2 or 3.
JP2016017342A 2016-02-01 2016-02-01 Silicate fertilizer and method for producing the same Active JP6722969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017342A JP6722969B2 (en) 2016-02-01 2016-02-01 Silicate fertilizer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017342A JP6722969B2 (en) 2016-02-01 2016-02-01 Silicate fertilizer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017137203A JP2017137203A (en) 2017-08-10
JP6722969B2 true JP6722969B2 (en) 2020-07-15

Family

ID=59565515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017342A Active JP6722969B2 (en) 2016-02-01 2016-02-01 Silicate fertilizer and method for producing the same

Country Status (1)

Country Link
JP (1) JP6722969B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085351B2 (en) * 2018-01-10 2022-06-16 太平洋セメント株式会社 Silicic acid magnesium fertilizer calcined product and its manufacturing method
JP7079101B2 (en) * 2018-01-15 2022-06-01 太平洋セメント株式会社 How to make silicic acid fertilizer
JP7411314B2 (en) 2019-07-10 2024-01-11 太平洋セメント株式会社 Silicate fertilizer and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268300B2 (en) * 2000-01-28 2009-05-27 電気化学工業株式会社 Rice fertilizer
JP4040542B2 (en) * 2002-11-20 2008-01-30 新日鐵住金ステンレス株式会社 Silicic fertilizer
JP2006306696A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk Raw material for siliceous fertilizer and method of manufacturing the same
JP6022226B2 (en) * 2012-06-18 2016-11-09 太平洋セメント株式会社 Method for producing silicate phosphate fertilizer
JP2013014492A (en) * 2011-07-06 2013-01-24 Taiheiyo Cement Corp Silicic acid phosphate fertilizer, and method for producing the same
KR101941319B1 (en) * 2011-06-27 2019-01-22 다이헤이요 세멘토 가부시키가이샤 Phosphate fertilizer and method for producing phosphate fertilizer
WO2013175632A1 (en) * 2012-05-25 2013-11-28 太平洋セメント株式会社 Method for producing phosphorous fertilizer

Also Published As

Publication number Publication date
JP2017137203A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
CN103649016B (en) The manufacture method of phosphatic manure and phosphatic manure
JP6021199B2 (en) Method for producing phosphate fertilizer
JP2007306844A (en) Method for producing greening material using waste material, and greening material
JP2007308322A (en) Method of manufacturing fertilizer using waste, and fertilizer
JP6722969B2 (en) Silicate fertilizer and method for producing the same
JP6391142B2 (en) Method for producing phosphate fertilizer
JP6804132B2 (en) Silicic acid fertilizer and its manufacturing method
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
JP5984572B2 (en) Phosphate fertilizer and method for producing the same
JP5188640B2 (en) Phosphate fertilizer and method for producing the same
JP6022226B2 (en) Method for producing silicate phosphate fertilizer
JP7079101B2 (en) How to make silicic acid fertilizer
JP6804131B2 (en) Silicic acid fertilizer and its manufacturing method
JP2018135237A (en) Method of producing phosphorous silicate fertilizer
JP5954777B2 (en) Method for producing phosphate fertilizer
JP5988684B2 (en) Method for producing phosphate fertilizer
JP6025540B2 (en) Method for producing phosphate fertilizer
JP5946721B2 (en) Method for producing phosphate fertilizer
JP7386600B2 (en) Method for producing silicic acid fertilizer
JP7411314B2 (en) Silicate fertilizer and its manufacturing method
JP2019123657A (en) Method of producing magnesia silicate fertilizer
JP6282035B2 (en) Phosphate fertilizer and method for producing the same
JP7085351B2 (en) Silicic acid magnesium fertilizer calcined product and its manufacturing method
JP6021182B2 (en) Method for producing a bitter earth phosphate fertilizer
JP7079100B2 (en) Silicic acid fertilizer and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6722969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250