JP6021182B2 - Method for producing a bitter earth phosphate fertilizer - Google Patents

Method for producing a bitter earth phosphate fertilizer Download PDF

Info

Publication number
JP6021182B2
JP6021182B2 JP2012273036A JP2012273036A JP6021182B2 JP 6021182 B2 JP6021182 B2 JP 6021182B2 JP 2012273036 A JP2012273036 A JP 2012273036A JP 2012273036 A JP2012273036 A JP 2012273036A JP 6021182 B2 JP6021182 B2 JP 6021182B2
Authority
JP
Japan
Prior art keywords
sludge
solid
phosphate fertilizer
human waste
magnesium source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012273036A
Other languages
Japanese (ja)
Other versions
JP2014118312A (en
Inventor
今井 敏夫
敏夫 今井
雅也 戸田
雅也 戸田
中村 寛
寛 中村
靖正 西村
靖正 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012273036A priority Critical patent/JP6021182B2/en
Publication of JP2014118312A publication Critical patent/JP2014118312A/en
Application granted granted Critical
Publication of JP6021182B2 publication Critical patent/JP6021182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

本発明は、苦土りん酸肥料の製造方法に関し、特に、下水処理施設又はし尿処理施設で発生する汚泥に含まれるリンを用いて苦土りん酸肥料を製造する方法に関する。 The present invention relates to a manufacturing method of magnesia phosphate manure, in particular, phosphorus relates how you produce magnesia phosphoric fertilizer with included in sludge from sewage treatment plants or human waste treatment facilities.

肥料の三要素の1つであるリンは、その原料をリン鉱石に依存し、鉱物資源の乏しいわが国ではその全量を輸入している。リン鉱石は将来枯渇することが予想されるなど、今後入手が極めて困難になる可能性があり、リンを多量に含む下水等から如何に効率的に質のよいリンを回収するか、循環利用するかが今般のわが国における技術開発の課題となっている。   Phosphorus, one of the three elements of fertilizer, depends on phosphate ore for its raw material, and in Japan, where mineral resources are scarce, all of it is imported. Phosphorite ore is expected to be depleted in the future and may become extremely difficult to obtain in the future. How to efficiently recover high-quality phosphorus from sewage containing a large amount of phosphorus, or recycle it Kaga has become a challenge for technological development in Japan.

わが国の下水処理施設の中には、溶融炉を所有しており、下水の脱水汚泥にカルシウム源又はマグネシウム源を添加して溶融温度を制御して溶融スラグ化しているところがある。しかし、この溶融スラグ化は肥料化を目的としたものではなく、路盤材等の土木資材化、あるいは単に最終処分量を削減するための減容化を目的としたものであり、リン資源の循環利用という上記課題は何ら考慮されていない。   Some of Japan's sewage treatment facilities have melting furnaces that add a calcium source or magnesium source to the sewage dewatered sludge to control the melting temperature to form molten slag. However, this molten slag is not intended to be used as fertilizer, but is intended to be used as civil engineering materials such as roadbed materials, or simply to reduce the volume to reduce the final disposal amount. The above problem of use is not considered at all.

そこで、肥料化を目的として、例えば、特許文献1には、リンを含有する汚泥又はその他の焼却灰を原料とし、該原料に酸化マグネシウム、酸化カルシウム、リン酸又はその他の成分を含む添加物を添加して混合原料とし、該混合原料を溶融し、その後に急冷してスラグ化し、粉砕する工程を含む肥料の製造方法が記載されている。   Therefore, for the purpose of fertilization, for example, Patent Document 1 uses, as a raw material, sludge containing phosphorus or other incinerated ash, and an additive containing magnesium oxide, calcium oxide, phosphoric acid or other components in the raw material. A method for producing a fertilizer is described, which includes a step of adding to form a mixed raw material, melting the mixed raw material, and then rapidly cooling to slag and pulverizing.

特開2001−80979号公報JP 2001-80979 A

しかし、上記特許文献に記載の肥料製造方法等では、脱水汚泥を焼却灰にする焼却工程と、溶融して肥料化する溶融工程とを必要とする。そのため、多量の熱エネルギーが必要となり、製造コストが高騰するという問題があった。   However, in the fertilizer manufacturing method described in the above-mentioned patent document, an incineration step for converting dehydrated sludge into incineration ash and a melting step for melting into fertilizer are required. For this reason, a large amount of heat energy is required, resulting in a problem that the manufacturing cost increases.

そこで、本発明は、上記解決課題に鑑みてなされたものであって、下水汚泥又はし尿汚泥に含まれるリンを有効活用し、低コストで高品質の肥料、特に苦土りん酸肥料を製造することを目的とする。   Then, this invention is made | formed in view of the said solution subject, Comprising: The phosphorus contained in a sewage sludge or a human waste sludge is used effectively, and manufactures a high-quality fertilizer, especially a bitumen phosphate fertilizer at low cost. For the purpose.

上記目的を達成するため、本発明は、苦土りん酸肥料の製造方法であって、下水汚泥又はし尿汚泥950℃以上1100℃以下で焼却又は焼成するにあたり、該焼却又は焼成により生じる焼却物又は焼成物のMgO濃度が10質量%以上25質量%以下になるように、前記下水汚泥又はし尿汚泥にマグネシウム源を添加することを特徴とする。
本発明によれば、マグネシウム源の添加により、950℃以上1100℃以下の低温焼却又は焼成でもリン酸マグネシウムカルシウムやアルカリ土類リン酸塩が生成し、りん酸と苦土の2成分を可給する苦土りん酸肥料を製造することができ、溶融より処理温度の低い焼却又は焼成工程によることで、消費エネルギーを低減し、製造コストを大幅に削減することができる。
In order to achieve the above object , the present invention is a method for producing a bituminous phosphate fertilizer, which is incinerated or fired when sewage sludge or human waste sludge is incinerated or fired at 950 ° C. or higher and 1100 ° C. or lower . Alternatively, a magnesium source is added to the sewage sludge or human waste sludge so that the MgO concentration of the fired product is 10% by mass or more and 25% by mass or less .
According to the present invention, soluble by the addition of magnesium sources, 950 magnesium calcium and alkaline earth phosphates phosphoric acid is produced at a low temperature incineration or firing ° C. or higher 1100 ° C. or less, the two components of phosphate and verbosity It is possible to produce a fed-battery phosphate fertilizer, and by using an incineration or firing process whose treatment temperature is lower than that of melting, energy consumption can be reduced and production costs can be greatly reduced.

さらに、前記焼却物又は焼成物のMgO濃度10質量%以上、より好ましくは15質量%以上とすることで、りん酸及び苦土の可給性に優れた鉱物を生成することができる。従って、りん酸のく溶率(リン含有量のうちく溶性りん酸である割合)、及び苦土のく溶率(マグネシウム含有量のうちく溶性苦土である割合)の高い焼却物又は焼成物を得ることができる。一方、前記焼却物又は焼成物のMgO濃度を25質量%より高くすると、焼成温度が上昇し、苦土の可給性に乏しい鉱物の生成量が増加するため好ましくない。 Furthermore, the material to be incinerated or fired product of MgO concentration of 10 mass% or more, more preferably by a on 15% by mass or can generate a good mineral availability supply of phosphate and verbosity. Therefore, incinerated products or calcinations with a high solubility of phosphoric acid (ratio of soluble phosphoric acid in the phosphorus content) and a high dissolution rate of magnesia (ratio of soluble magnesia in the magnesium content) You can get things. On the other hand, if the MgO concentration of the incinerated product or the calcined product is higher than 25% by mass, the calcining temperature rises, and the amount of mineral that is poor in availability of bitter soil increases, which is not preferable.

また、上記苦土りん酸肥料の製造方法において、前記マグネシウム源が添加された下水汚泥又はし尿汚泥のP/Siモル比が0.7以上となるように、前記下水汚泥又はし尿汚泥に前記マグネシウム源を添加することができる。
さらに、前記マグネシウム源が添加された下水汚泥又はし尿汚泥を固液分離し、該固液分離により得られた脱水汚泥を焼却又は焼成することができる。これにより、含水率の高い下水汚泥又はし尿汚泥を効率よく処理することができる。
また、前記下水汚泥又はし尿汚泥を固液分離し、該固液分離により得られた脱水汚泥に前記マグネシウム源を添加することができる。これにより、含水率の高い下水汚泥又はし尿汚泥を効率よく処理することができる。
さらに、前記マグネシウム源を平均粒径が100μm以下とすることができるマグネシウム源MAの平均粒径を100μmより大きくすると、苦土りん酸肥料中に未反応のマグネシウムが残留して、く溶率が低下するおそれがある。
Further, in the above method for producing a maternal phosphate fertilizer, the magnesium is added to the sewage sludge or human waste sludge so that the P / Si molar ratio of the sewage sludge or human waste sludge to which the magnesium source is added is 0.7 or more. Sources can be added.
Furthermore, the sewage sludge or human waste sludge to which the magnesium source is added can be subjected to solid-liquid separation, and the dewatered sludge obtained by the solid-liquid separation can be incinerated or fired. Thereby, the sewage sludge or human waste sludge with a high moisture content can be processed efficiently.
The sewage sludge or human waste sludge can be subjected to solid-liquid separation, and the magnesium source can be added to the dewatered sludge obtained by the solid-liquid separation. Thereby, the sewage sludge or human waste sludge with a high moisture content can be processed efficiently.
Furthermore, the magnesium source may have an average particle size of 100 μm or less . If the average particle size of the magnesium source MA is larger than 100 μm, unreacted magnesium remains in the maternal phosphate fertilizer, and the dissolution rate may decrease.

また、前記マグネシウム源を、前記下水汚泥又はし尿汚泥を貯留する貯留槽、該貯留槽から下水汚泥又はし尿汚泥を固液分離する固液分離機、該固液分離機の入口に接続される汚泥輸送手段、該固液分離機から排出された脱水汚泥を焼却又は焼成する焼却炉又は焼成炉の入口に接続される脱水汚泥輸送手段から選択される少なくとも一箇所に添加することができる。   The magnesium source is a storage tank for storing the sewage sludge or human waste sludge, a solid-liquid separator for solid-liquid separation of the sewage sludge or human waste sludge from the storage tank, and a sludge connected to an inlet of the solid-liquid separator. It can be added to at least one location selected from a transport means, an incinerator for incinerating or firing the dewatered sludge discharged from the solid-liquid separator, or a dehydrated sludge transport means connected to the inlet of the firing furnace.

以上のように、本発明に係る苦土りん酸肥料の製造方法によれば、下水汚泥又はし尿汚泥から低コストで苦土りん酸肥料を製造することができる。 As described above, according to the manufacturing how the magnesia phosphate fertilizer according to the present invention, it is possible to produce the magnesia phosphate fertilizer at low cost from sewage sludge or night soil sludge.

本発明に係る苦土りん酸肥料の製造方法を適用した下水処理施設を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows the sewage treatment facility to which the manufacturing method of the maternal phosphate fertilizer which concerns on this invention is applied .

次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る苦土りん酸肥料の製造方法を適用した下水処理施設を示し、この下水処理施設1は、大別して、下水処理施設1へ持ち込まれた下水S1を濃縮し、脱水汚泥S9と脱水ろ液W3とに分離する水処理設備2と、水処理設備2で分離された脱水汚泥S9にマグネシウム源MAを添加して焼却し、焼却物Iを粉砕、造粒して苦土りん酸肥料Fを得る混合焼却設備4からなる。 FIG. 1 shows a sewage treatment facility to which the method for producing a maternal phosphate fertilizer according to the present invention is applied . The sewage treatment facility 1 is roughly divided to concentrate sewage S1 brought into the sewage treatment facility 1 for dehydration. Water treatment equipment 2 that separates into sludge S9 and dehydrated filtrate W3, and magnesium source MA is added to the dewatered sludge S9 separated in the water treatment equipment 2 and incinerated, and the incinerated product I is pulverized and granulated. It consists of a mixed incineration facility 4 for obtaining soil phosphate fertilizer F.

水処理設備2は、下水S1中の沈殿し易い浮遊物や泥MUを濃縮して重力濃縮槽12へ送る最初沈殿池5と、沈殿処理を終えた最初沈殿池5からの有機物、窒素、リン等を含む汚水S2を微生物等で処理する生物処理槽6と、生物処理槽6で処理された活性汚泥S3を時間をかけて沈殿させ、上澄み水Dを放流する最終沈殿池7と、最終沈殿池7からの余剰汚泥S4をさらに遠心力により濃縮する遠心濃縮機8と、遠心濃縮機8からの濃縮汚泥S5及び重力濃縮槽12からの濃縮汚泥S6を分解するメタン発酵槽9と、メタン発酵槽9から排出された汚泥S7を貯留する貯槽10と、貯槽10から排出された汚泥S8を脱水汚泥S9と脱水ろ液W3とに固液分離する固液分離機11とで構成される。   The water treatment facility 2 concentrates the suspended matter and mud MU that easily settle in the sewage S1 and sends them to the gravity concentration tank 12, and the organic matter, nitrogen, phosphorus from the first precipitation basin 5 after finishing the precipitation treatment. A biological treatment tank 6 for treating sewage S2 containing microorganisms with microorganisms, etc., a final sedimentation tank 7 for precipitating activated sludge S3 treated in the biological treatment tank 6 over time, and discharging supernatant water D, and final precipitation Centrifugal concentrator 8 for further concentrating surplus sludge S4 from pond 7 by centrifugal force, methane fermentation tank 9 for decomposing concentrated sludge S5 from centrifugal concentrator 8 and concentrated sludge S6 from gravity concentrator tank 12, and methane fermentation The storage tank 10 stores the sludge S7 discharged from the tank 9, and the solid-liquid separator 11 that separates the sludge S8 discharged from the storage tank 10 into the dehydrated sludge S9 and the dehydrated filtrate W3.

混合焼却設備4は、水処理設備2で分離された脱水汚泥S9にマグネシウム源MAを添加するマグネシウム源添加装置13と、脱水汚泥S9とマグネシウム源MAとを混合する混合機14と、混合機14から供給される混合物Mを焼却するストーカー炉15と、焼却物Iを所望の大きさに粉砕する粉砕機16と、粉砕された焼却物Iに造粒補助剤Aを添加して造粒する造粒機17とで構成される。   The mixed incineration facility 4 includes a magnesium source addition device 13 that adds the magnesium source MA to the dehydrated sludge S9 separated by the water treatment facility 2, a mixer 14 that mixes the dehydrated sludge S9 and the magnesium source MA, and a mixer 14 A stalker furnace 15 for incinerating the mixture M supplied from the slab, a pulverizer 16 for pulverizing the incinerated product I to a desired size, and a granulation by adding the granulation aid A to the pulverized incinerated product I It consists of a granulator 17.

マグネシウム源添加装置13は、脱水汚泥S9にマグネシウム源MAを添加するために備えられ、このマグネシウム源添加装置13には、粉粒体を供給するための種々の装置から添加するマグネシウム源MAの性状に適したものを選択する。   The magnesium source addition device 13 is provided to add the magnesium source MA to the dewatered sludge S9. The magnesium source addition device 13 includes the properties of the magnesium source MA added from various devices for supplying the powder particles. Choose the right one for you.

ストーカー炉15は、傾斜した火格子に上部から混合物Mを流下させながら焼却するものであって、火格子として、階段状に構成され格段が前後に摺動するものを有するのが一般的である。このストーカー炉15として、下水処理施設等に既設のものをそのままあるいは改修を実施してから使用することもできる。また、ストーカー式炉に代えて、ロータリー式又は流動床式の焼却炉を使用することもできる。該焼却炉は、耐火温度が900℃以上である煉瓦の内張りを有するものであることが好ましく、既設のものは必要であれば改修を実施すればよい。   The stalker furnace 15 is incinerated while allowing the mixture M to flow down from an upper part to an inclined grate, and generally has a grate that has a stepped shape and slides back and forth. . As the stalker furnace 15, an existing sewage treatment facility or the like can be used as it is or after being modified. Further, instead of the stalker type furnace, a rotary type or fluidized bed type incinerator can be used. The incinerator preferably has a brick lining having a fireproof temperature of 900 ° C. or higher, and the existing one may be modified if necessary.

粉砕機16は、焼却物Iを粉砕するために備えられ、ジョークラッシャー、ハンマークラッシャー、ボールミル、振動ミル、ディスクミル等を用いることが好ましい。粉砕機16と共に、汎用の振動ふるいや気流式分級器を用いることができる。   The pulverizer 16 is provided for pulverizing the incinerated material I, and it is preferable to use a jaw crusher, a hammer crusher, a ball mill, a vibration mill, a disk mill or the like. A general-purpose vibrating screen or airflow classifier can be used together with the pulverizer 16.

造粒機17は、焼却物Iに造粒補助剤Aを添加して造粒するために備えられ、パンペレタイザー、パン型ミキサー、撹拌造粒機、ブリケットマシン、ロールプレス、押出成形機等を用いることができる。   The granulator 17 is provided to granulate by adding the granulation auxiliary A to the incinerated material I, and includes a pan pelletizer, a bread type mixer, a stirring granulator, a briquette machine, a roll press, an extrusion molding machine, and the like. Can be used.

次に、上記下水処理施設1における苦土りん酸肥料の製造方法について、図1を参照しながら説明する。   Next, a method for producing a bitumen phosphate fertilizer in the sewage treatment facility 1 will be described with reference to FIG.

下水処理施設1に流入した下水S1を最初沈殿池5に導き、最初沈殿池5で沈殿し易い浮遊物や泥MUを濃縮して重力濃縮槽12へ送ると共に、有機物等を含む汚水S2を生物処理槽6に供給して微生物等で処理する。   The sewage S1 that has flowed into the sewage treatment facility 1 is guided to the first settling basin 5, and the suspended matter and mud MU that are likely to settle in the first settling basin 5 are concentrated and sent to the gravity concentration tank 12, and the sewage S2 containing organic matter is biologically It supplies to the processing tank 6 and processes with microorganisms.

生物処理槽6で生成された活性汚泥S3を最終沈殿池7で時間をかけて沈殿させ、沈殿した汚泥を余剰汚泥S4として遠心濃縮機8に供給すると共に、最終沈殿池7で得られた上澄み水Dを放流する。尚、通常余剰汚泥S4の一部は生物処理槽6へ返流される。   The activated sludge S3 generated in the biological treatment tank 6 is precipitated in the final sedimentation tank 7 over time, and the precipitated sludge is supplied to the centrifugal concentrator 8 as surplus sludge S4, and the supernatant obtained in the final sedimentation tank 7 is supplied. Release water D. A part of the excess sludge S4 is usually returned to the biological treatment tank 6.

最終沈殿池7からの余剰汚泥S4を遠心濃縮機8で濃縮し、重力濃縮槽12に貯留された濃縮汚泥S6と共に、メタン発酵槽9に供給する。メタン発酵槽9で、濃縮汚泥S5、S6を微生物によって分解し、発生した汚泥S7を貯槽10に一旦貯留した後、汚泥S8を固液分離機11に供給し、固液分離して脱水汚泥S9を製造する。該固液分離機11には、ベルトプレス、ベルトフィルタ、デカンター、スクリュープレス又はフィルタプレスを用いることができる。   Excess sludge S4 from the final sedimentation basin 7 is concentrated by the centrifugal concentrator 8 and supplied to the methane fermentation tank 9 together with the concentrated sludge S6 stored in the gravity concentration tank 12. In the methane fermentation tank 9, the concentrated sludges S5 and S6 are decomposed by microorganisms, and the generated sludge S7 is temporarily stored in the storage tank 10, and then the sludge S8 is supplied to the solid-liquid separator 11 for solid-liquid separation and dewatered sludge S9. Manufacturing. The solid-liquid separator 11 can be a belt press, a belt filter, a decanter, a screw press, or a filter press.

次に、マグネシウム源添加装置13によって脱水汚泥S9にマグネシウム源MAを添加する。マグネシウム源MAを添加するのは、950℃以上1100℃以下の低温焼却又は焼成でもりん酸と苦土の2成分を可給する苦土りん酸肥料を製造するためであって、得られる苦土りん酸肥料の酸化マグネシウム含有率を10質量%以上25質量%以下に調整する。   Next, the magnesium source MA is added to the dehydrated sludge S9 by the magnesium source addition device 13. The magnesium source MA is added to produce a bituminous phosphate fertilizer that can supply two components of phosphoric acid and bitter earth even at low temperature incineration or baking at 950 ° C. or higher and 1100 ° C. or lower. The magnesium oxide content of the phosphate fertilizer is adjusted to 10% by mass to 25% by mass.

尚、前記固液分離機11で分離された脱水汚泥や混合物Mの含水率を低下させる乾燥機を備えることもできる。該乾燥により含水率を好ましくは50%以下とすることができ、焼却あるいは焼成の投入エネルギーがさらに低減され、焼却中に焼却物自体の温度が上昇するために、りん酸及び苦土の可給性に優れた鉱物が生成しやすくなる。乾燥機は、汎用の乾燥機を用いることができ、熱源として天日、焼却あるいは焼成排ガス、別に発生させた熱風等を用いることができる。   It is also possible to provide a dryer that reduces the water content of the dewatered sludge and the mixture M separated by the solid-liquid separator 11. The moisture content can be reduced to preferably 50% or less by the drying, and the input energy for incineration or calcination is further reduced, and the temperature of the incinerated product itself rises during incineration. It becomes easy to produce minerals with excellent properties. As the dryer, a general-purpose dryer can be used, and as a heat source, sunlight, incineration or calcination exhaust gas, hot air generated separately, or the like can be used.

添加するマグネシウム源MAとしては、炭酸マグネシウム、塩基性炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、ドロマイト、ドロマイト質レンガ屑から選択される少なくとも1種以上が挙げられる。   Examples of the magnesium source MA to be added include at least one selected from magnesium carbonate, basic magnesium carbonate, magnesium oxide, magnesium hydroxide, dolomite, and dolomite brick waste.

また、マグネシウム源MAは、平均粒径(50%通過粒子径)が100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下にまで粉砕されたものを用いることができる。マグネシウム源MAの平均粒径を100μmより大きくすると、苦土りん酸肥料中に未反応のマグネシウムが残留して、く溶率が低下するおそれがある。   Further, the magnesium source MA may be pulverized to an average particle size (50% passing particle size) of 100 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less. If the average particle size of the magnesium source MA is larger than 100 μm, unreacted magnesium remains in the maternal phosphate fertilizer, and the dissolution rate may decrease.

マグネシウム源MAに加えて、さらにシリカ源を添加してもよい。一般に、下水汚泥は珪素(SiO2)を多く含むためシリカ源を添加する場合は少ないが、けい酸の加給性も付与したいが下水汚泥の珪素含有量が少ない場合はシリカ源を補う必要がある。この場合のシリカ源は、珪石、珪砂、砂、珪藻土、シラス、生コンスラッジ、廃モルタル、廃コンクリート、酸性火山灰、酸性火山岩、及びケイ酸カルシウムから選択される少なくとも1種以上が挙げられる。 In addition to the magnesium source MA, a silica source may be further added. In general, sewage sludge contains a large amount of silicon (SiO 2 ), so there are few cases where a silica source is added. However, it is necessary to supplement the silica source when the silicon content of the sewage sludge is low, although it is desired to provide silicic acid supply. . Examples of the silica source in this case include at least one selected from silica, silica sand, sand, diatomaceous earth, shirasu, raw conslag, waste mortar, waste concrete, acidic volcanic ash, acidic volcanic rock, and calcium silicate.

次に、脱水汚泥S9とマグネシウム源MAとを混合機14へ供給して混合し、均質化した混合物Mをストーカー炉15に供給して焼却する。ストーカー炉15から排出される焼却物は、大きなものでは30cm程度小さなものでは1mm程度、平均で8cm程度の粒径を有する塊状である。この粒径のままでは肥料製品として流通させることができないため、粒度範囲を1mmから5mmの間が中心となるように粉砕機16で粗粉砕し、篩い分け等による整粒を行う。整粒装置には市販の振動ふるい装置を用いることができる。この範囲に整粒されたものは、そのままりん酸肥料として農用地へ施肥することができる。   Next, the dewatered sludge S9 and the magnesium source MA are supplied to the mixer 14 and mixed, and the homogenized mixture M is supplied to the stalker furnace 15 and incinerated. The incinerated product discharged from the stalker furnace 15 is a lump having a particle size of about 1 mm for a small one and about 8 cm on average for a small one. Since this particle size cannot be distributed as a fertilizer product, the particle size range is roughly pulverized by a pulverizer 16 so that the particle size range is between 1 mm and 5 mm, and sized by sieving or the like. A commercially available vibration sieving device can be used as the sizing device. What is sized in this range can be fertilized directly to agricultural land as phosphate fertilizer.

また、前記粗粉砕で細かくなり過ぎたものや、あるいは焼却物Iを平均粒子径が100μm以下となるまで微粉砕したものを、造粒補助材とともに造粒し、整粒操作により所望の粒度範囲のものを選別する方法によっても農用地へ直接施肥することができる肥料とすることができる。   In addition, the coarsely pulverized product or the incinerated product I which has been finely pulverized until the average particle size becomes 100 μm or less is granulated together with a granulation auxiliary material, and a desired particle size range by sizing operation. A fertilizer that can be directly applied to agricultural land can also be obtained by a method of selecting the ones.

後段の造粒機17で造粒補助剤Aと共に、所望の寸法となるように造粒成形する。造粒補助剤Aには、リグニン、ポリビニルアルコール、メチルセルロース等を用いることができる。また、該工程において、肥料の用途に応じて、適宜、けい酸やりん酸の成分を追加したり、窒素、加里、苦土等のその他の肥料成分を新たに添加することができる。   Granulation molding is carried out together with the granulation auxiliary agent A by a subsequent granulator 17 so as to obtain a desired size. For the granulation aid A, lignin, polyvinyl alcohol, methylcellulose and the like can be used. Moreover, in this process, depending on the use of the fertilizer, components of silicic acid and phosphoric acid can be added as appropriate, and other fertilizer components such as nitrogen, potassium and bitter earth can be newly added.

該造粒成型や整粒工程は、農用地へ施肥する際に粉塵の発生を抑制して肥料の取り扱いを容易にするためや、肥料効果を十分に発揮させるために、肥料の粒度を調整する必要がある場合に選択される任意の工程である。   The granulation molding and sizing process is necessary to adjust the particle size of the fertilizer in order to suppress the generation of dust and facilitate the handling of the fertilizer when fertilizing agricultural land, and to fully demonstrate the fertilizer effect It is an optional step that is selected if there is.

尚、上記実施の形態においては、脱水汚泥S9とマグネシウム源MAとを混合機14へ供給して混合し、均質化した混合物Mをストーカー炉15に供給して焼却したが、混合機14を設けずに、固液分離機11に直接、又は固液分離機11の入口に接続される汚泥輸送手段、すなわち貯槽10と固液分離機11との間の汚泥S8に添加してもよく、その場合には、マグネシウム源MAも固液分離機11で固液分離の対象となるが、マグネシウム源MAの添加量と汚泥S8の含水率を考慮すると固液分離機11の負荷の増加は問題となる程度ではない。   In the above embodiment, the dewatered sludge S9 and the magnesium source MA are supplied to the mixer 14 and mixed, and the homogenized mixture M is supplied to the stalker furnace 15 and incinerated. However, the mixer 14 is provided. Without being added directly to the solid-liquid separator 11 or to the sludge transport means connected to the inlet of the solid-liquid separator 11, that is, the sludge S8 between the storage tank 10 and the solid-liquid separator 11, In this case, the magnesium source MA is also subject to solid-liquid separation by the solid-liquid separator 11, but an increase in the load of the solid-liquid separator 11 is a problem considering the amount of magnesium source MA added and the moisture content of the sludge S8. Not so much.

さらに、貯槽10にリン回収材を添加したり、脱水ろ液W3にリン回収材を添加し、リンを吸着したリン回収物を固液分離するなどして得て、リン回収物と脱水汚泥S9とをマグネシウム源MAと共に混合機14へ供給した後混合物Mをストーカー炉15で焼却してもよい。   Further, a phosphorus recovery material is added to the storage tank 10, a phosphorus recovery material is added to the dehydrated filtrate W3, and a phosphorus recovery material adsorbing phosphorus is obtained by solid-liquid separation. And the magnesium source MA together with the magnesium source MA, the mixture M may be incinerated in the stalker furnace 15.

リン回収材には、カルシウムを含む回収材、例えば、非晶質ケイ酸カルシウムを好適に用いることができ、非晶質ケイ酸カルシウムは、リンとの親和性が高く、多孔質で比表面積が大きいため、リンの吸着能力が高く、選択的に効率よくリンを吸着することができる。その他に、水酸化カルシウム、塩化カルシウム、酸化マグネシウム、水酸化マグネシウム、塩化マグネシウム等を用いることもできる。   As the phosphorus recovery material, a recovery material containing calcium, for example, amorphous calcium silicate can be preferably used. Amorphous calcium silicate has high affinity with phosphorus, is porous, has a specific surface area. Since it is large, it has a high phosphorus adsorption capacity and can selectively and efficiently adsorb phosphorus. In addition, calcium hydroxide, calcium chloride, magnesium oxide, magnesium hydroxide, magnesium chloride, and the like can be used.

また、上記実施の形態においては、混合機14から供給される混合物Mをストーカー炉15で焼却したが、ロータリー式や流動床式の焼却炉で焼成してもよい。ストーカー炉15に代わり流動床炉を用いる場合、流動床炉の入口に接続される脱水汚泥輸送手段にマグネシウム源MAを添加したり、直接流動床炉にマグネシウム源MAを添加することもできる。流動床炉で焼却すると、ストーカー炉で焼却した場合と異なり、マグネシウム源MAが均一に混合された状態になるので混合機14は不要となる。   Moreover, in the said embodiment, although the mixture M supplied from the mixer 14 was incinerated with the stalker furnace 15, you may bake with a rotary type or a fluid bed type incinerator. When a fluidized bed furnace is used instead of the stalker furnace 15, the magnesium source MA can be added to the dewatered sludge transport means connected to the inlet of the fluidized bed furnace, or the magnesium source MA can be added directly to the fluidized bed furnace. When incinerated in a fluidized bed furnace, unlike the case of incinerating in a stalker furnace, the magnesium source MA is in a uniformly mixed state, so the mixer 14 is not necessary.

さらに、これらの形式の炉で焼却するのではなく、これらを焼成炉として用いて混合物Mを焼成してもよい。焼成する場合でも、焼成物を後段の粉砕機16で粉砕し、さらに造粒機17で造粒補助剤Aと共に、所望の寸法となるように造粒成形して苦土りん酸肥料を製造することもできる。   Furthermore, instead of incinerating in these types of furnaces, the mixture M may be fired using these as a firing furnace. Even in the case of firing, the fired product is pulverized by the subsequent pulverizer 16 and further granulated and molded to a desired size together with the granulation auxiliary agent A by the granulator 17 to produce a clay clay phosphate fertilizer. You can also

上記実施の形態においては、本発明に係る苦土りん酸肥料の製造方法を下水処理施設に適用した場合について説明したが、し尿処理施設に適用することもできる。 In the said embodiment, although the case where the manufacturing method of the maternal phosphate fertilizer based on this invention was applied to the sewage treatment facility was demonstrated, it can also be applied to a human waste treatment facility.

し尿処理施設は、し尿の脱窒を行うための脱窒素槽及び硝化槽を備える点が下水処理施設とは異なるが、その他の装置は下水処理施設と共通する。そこで、図示を省略するが、し尿処理施設においても、上記下水処理施設1と同様の装置構成及び運転要領によって苦土りん酸肥料を製造することができる。   The human waste treatment facility is different from the sewage treatment facility in that it includes a denitrification tank and a nitrification tank for performing denitrification of human waste, but other devices are common to the sewage treatment facility. Therefore, although not shown in the drawings, even in the human waste treatment facility, the bitumen phosphate fertilizer can be manufactured by the same apparatus configuration and operation procedure as the sewage treatment facility 1.

尚、し尿は、陸上土壌成分の混合がないため、し尿を焼却した灰中にシリカ、アルミナ分が乏しいが、本発明によれば、下水汚泥と同様に苦土りん酸肥料を得ることができる。   In addition, since there is no mixing of land soil components, human waste is poor in silica and alumina in the ash incinerated with human waste, but according to the present invention, it is possible to obtain a bitumen phosphate fertilizer in the same manner as sewage sludge. .

表1に示す化学組成を有する下水汚泥焼却灰(A、B、C、E)とし尿汚泥(D)、マグネシウム源として試薬の水酸化マグネシウムとを用い、表2に示す実施例及び比較例の配合に従いビニール袋に入れて混合して原料を調製した。次に、該原料を用いて一軸加圧成形機により成形し、直径15mm、高さ20mmの円柱状の原料を作製した。さらに、該円柱状の原料を電気炉内に載置した後、昇温速度20℃/分で、表2に示す温度まで昇温し、該温度の下で10分間焼成して焼成物を得た。さらに、該焼成物を、鉄製乳鉢を用いて目開き212μmのふるいを全通するまで粉砕して粉末状の苦土りん酸肥料を製造した。また、比較例として、マグネシウム源の代わりに純度99%の炭酸カルシウムを原料に用い、前記と同様の方法により、りん酸肥料を製造した。原料や苦土りん酸肥料中の酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行った。りん酸肥料中のく溶性りん酸の測定は、肥料分析法(農林水産省農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法により、また、く溶性苦土は、同法に規定されている原子吸光光度法により測定した。また、これらの測定値を用いて、常法により、りん酸のく溶率及び苦土のく溶率を算出した。   Using the sewage sludge incineration ash (A, B, C, E) having the chemical composition shown in Table 1 as urine sludge (D), and magnesium hydroxide as a reagent as a magnesium source, Examples and Comparative Examples shown in Table 2 A raw material was prepared by mixing in a plastic bag according to the formulation. Next, the raw material was molded by a uniaxial pressure molding machine to produce a cylindrical raw material having a diameter of 15 mm and a height of 20 mm. Further, after the cylindrical raw material is placed in an electric furnace, the temperature is raised to a temperature shown in Table 2 at a temperature rising rate of 20 ° C./min, and baked for 10 minutes at the temperature to obtain a fired product. It was. Further, the fired product was pulverized using an iron mortar until it passed through a sieve having an opening of 212 μm, to produce a powdery clay earth phosphate fertilizer. As a comparative example, phosphoric acid fertilizer was produced by the same method as described above using calcium carbonate having a purity of 99% as a raw material instead of the magnesium source. The quantification of oxides in the raw material and the maternal phosphate fertilizer was performed by a fundamental parameter method using a fluorescent X-ray apparatus. The soluble phosphoric acid in phosphate fertilizer is measured by the ammonium vanadomolybdate method specified in the fertilizer analysis method (Agricultural and Environmental Technology Research Institute, Ministry of Agriculture, Forestry and Fisheries). Measured by atomic absorption spectrophotometry as defined in 1. Further, using these measured values, the solubility of phosphoric acid and the solubility of bitter earth were calculated by a conventional method.

Figure 0006021182
Figure 0006021182

Figure 0006021182
Figure 0006021182

表2に示されるように、各実施例では、焼成物のMgO濃度を10質量%以上25質量%以下、焼成温度950℃以上1100℃以下で焼成し、りん酸く溶率及び苦土く溶率の高い苦土りん酸肥料が得られることが判る。特に、原料のP/Siモル比を0.7以上とした場合に好ましい結果が得られる。一方、比較例では、記号Bで示す汚泥焼却灰にCa(OH)2を添加して、マグネシウム源に比べてより高い添加量かつ高い温度である1200℃で焼成したが、りん酸く溶率及び苦土く溶率の高い苦土りん酸肥料を焼成することができていない。 As shown in Table 2, in each example, the fired product was fired at a MgO concentration of 10 mass% to 25 mass% and a firing temperature of 950 ° C. to 1100 ° C. It can be seen that a high rate of mafic phosphate fertilizer is obtained. In particular, a preferable result is obtained when the P / Si molar ratio of the raw material is set to 0.7 or more. On the other hand, in the comparative example, Ca (OH) 2 was added to the sludge incinerated ash indicated by symbol B, and calcined at a higher addition amount and higher temperature of 1200 ° C. than the magnesium source. In addition, it has not been possible to burn a bitter clay phosphate fertilizer having a high dissolution rate.

計画処理人口45万人のA下水処理場は、分流式(一部合流式)の下水排除方式を採用し、処理方法は標準活性汚泥法である。A下水処理場では、日量80000m3の下水が流入し、最初沈殿池の汚泥(初沈汚泥)と最終沈殿池の汚泥(余剰汚泥)とは、重力濃縮槽で混合され、日量700m3が後段の濃縮汚泥貯槽へ送泥される。濃縮汚泥は、時間当たり30m3で引き抜かれ、凝集剤添加槽で高分子凝集剤が添加された後、後段の固液分離機へ給泥され、脱水汚泥と脱水ろ液とに分離される。濃縮汚泥の固形分濃度は、1.9%であった。 A sewage treatment plant with a planned treatment population of 450,000 employs a sewage draining method (partially combined), and the treatment method is the standard activated sludge method. In the sewage treatment plant A, sewage of 80,000 m 3 per day flows in, and the sludge in the first sedimentation basin (primary sludge) and the sludge in the final sedimentation basin (surplus sludge) are mixed in a gravity concentration tank, and 700 m 3 per day. Is sent to the subsequent concentrated sludge storage tank. The concentrated sludge is extracted at 30 m 3 per hour, and after the polymer flocculant is added in the flocculant addition tank, the sludge is fed to the subsequent solid-liquid separator and separated into dehydrated sludge and dehydrated filtrate. The solid content concentration of the concentrated sludge was 1.9%.

本実施例では凝集剤添加槽へ時間あたり23.2kgの純度90%の軽焼マグネサイト粉末(325メッシュ品、平均(中位)粒径8μm、90%通過粒子径35μm)を添加し、高分子凝集剤を添加して固液分離操作を行なった。固液分離で発生した脱水汚泥(含水率80%)は、パドル式撹拌乾燥機で含水率40%まで乾燥させ、スクリューフィーダーを介して、ストーカー焼却炉(炉幅1.5m×長さ3.5M)へ投入し毎時350kgで供給し、炉内最高温度950℃(熱電対を用いた測定では焼却物温度は1000℃)の条件下で焼却処理した。燃焼排気ガスの酸素濃度は5%、平均滞留時間は約60分であった。事前に採取し汚泥焼却灰の化学組成は表3に示すようなものであった。   In this example, 23.2 kg of lightly burnt magnesite powder (325 mesh product, average (medium) particle size of 8 μm, 90% passing particle size of 35 μm) of 23.2 kg per hour was added to the flocculant addition tank. A molecular flocculant was added to perform a solid-liquid separation operation. The dewatered sludge (water content 80%) generated in the solid-liquid separation is dried to a water content of 40% with a paddle type agitation dryer, and is connected to a stalker incinerator (furnace width 1.5 m × length 3. 5M) and supplied at 350 kg per hour, and incinerated under the conditions of a maximum temperature in the furnace of 950 ° C. (incinerator temperature is 1000 ° C. in the measurement using a thermocouple). The oxygen concentration of the combustion exhaust gas was 5%, and the average residence time was about 60 minutes. The chemical composition of the incinerated ash collected in advance was as shown in Table 3.

Figure 0006021182
Figure 0006021182

尚、焼却温度と焼却物の温度は異なり、ストーカー炉の通常温度は900〜950℃とされるが、それは燃焼室温度や出口温度を指すことが多く、実際には焼却物の温度は950℃以上に達するものとされ、本願に示した肥料が得られる。   The incineration temperature is different from the temperature of the incinerator, and the normal temperature of the stalker furnace is 900 to 950 ° C., which often refers to the combustion chamber temperature and the outlet temperature, and the temperature of the incinerator is actually 950 ° C. The fertilizer shown in the present application is obtained.

上記焼却により得られた肥料の特性を表4に示す。本実施例のく溶性りん酸は19.4質量%、りん酸く溶率は72%であった。また、く溶性苦土は18.8質量%、苦土く溶率は94%であった。このように、本発明により、りん酸及び苦土溶出特性に優れたりん酸質肥料が製造できることが示された。   Table 4 shows the characteristics of the fertilizer obtained by the incineration. In this example, the soluble phosphoric acid was 19.4% by mass, and the phosphoric acid solubility was 72%. Further, the soluble clay was 18.8% by mass, and the dissolution rate of the clay was 94%. Thus, according to the present invention, it was shown that a phosphate fertilizer excellent in elution characteristics of phosphoric acid and bitter earth can be produced.

Figure 0006021182
Figure 0006021182

以上、本発明の実施例及び比較例を説明したが、具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても構わない。   As mentioned above, although the Example and comparative example of this invention were described, the concrete structure is not restricted to this Example, The design change etc. of the range which does not deviate from the summary of this invention may be sufficient.

1 下水処理施設
2 水処理設備
4 混合焼却設備
5 最初沈殿池
6 生物処理槽
7 最終沈殿池
8 遠心濃縮機
9 メタン発酵槽
10 貯槽
11 固液分離機
12 重力濃縮槽
13 マグネシウム源添加装置
14 混合機
15 ストーカー炉
16 粉砕機
17 造粒機
1 Sewage treatment facility 2 Water treatment facility 4 Mixed incineration facility 5 First sedimentation tank 6 Biological treatment tank 7 Final sedimentation tank 8 Centrifugal concentrator 9 Methane fermentation tank 10 Storage tank 11 Solid-liquid separator 12 Gravity concentration tank 13 Magnesium source addition device 14 Mixing Machine 15 Stoker furnace 16 Crusher 17 Granulator

Claims (6)

下水汚泥又はし尿汚泥950℃以上1100℃以下で焼却又は焼成するにあたり、該焼却又は焼成により生じる焼却物又は焼成物のMgO濃度が10質量%以上25質量%以下になるように、前記下水汚泥又はし尿汚泥にマグネシウム源を添加することを特徴とする苦土りん酸肥料の製造方法。 When sewage sludge or human waste sludge is incinerated or calcined at 950 ° C. or higher and 1100 ° C. or lower, the sewage sludge is adjusted so that the MgO concentration of the incinerated product or calcined product generated by the incineration or calcining is 10% by mass or more and 25% by mass or less. Alternatively, a method for producing a maternal phosphate fertilizer, characterized by adding a magnesium source to human waste sludge . 前記マグネシウム源が添加された下水汚泥又はし尿汚泥のP/Siモル比が0.7以上となるように、前記下水汚泥又はし尿汚泥に前記マグネシウム源を添加することを特徴とする請求項1に記載の苦土りん酸肥料の製造方法。The magnesium source is added to the sewage sludge or human waste sludge so that the P / Si molar ratio of the sewage sludge or human waste sludge to which the magnesium source is added is 0.7 or more. The manufacturing method of the bitter-earth phosphate fertilizer of description. 前記マグネシウム源が添加された下水汚泥又はし尿汚泥を固液分離し、Solid-liquid separation of the sewage sludge or human waste sludge added with the magnesium source,
該固液分離により得られた脱水汚泥を焼却又は焼成することを特徴とする請求項1又は2に記載の苦土りん酸肥料の製造方法。3. The method for producing a bituminous phosphate fertilizer according to claim 1 or 2, wherein the dewatered sludge obtained by the solid-liquid separation is incinerated or calcined.
前記下水汚泥又はし尿汚泥を固液分離し、Solid-liquid separation of the sewage sludge or human waste sludge,
該固液分離により得られた脱水汚泥に前記マグネシウム源を添加することを特徴とする請求項1又は2に記載の苦土りん酸肥料の製造方法。3. The method for producing a bituminous phosphate fertilizer according to claim 1 or 2, wherein the magnesium source is added to the dewatered sludge obtained by the solid-liquid separation.
前記マグネシウム源は、平均粒径が100μm以下であることを特徴とする請求項1乃至4のいずれかに記載の苦土りん酸肥料の製造方法。 The said magnesium source is 100 micrometers or less in average particle diameter, The manufacturing method of the bituminous-phosphate fertilizer in any one of the Claims 1 thru | or 4 characterized by the above-mentioned. 前記マグネシウム源を、前記下水汚泥又はし尿汚泥を貯留する貯留槽、該貯留槽から下水汚泥又はし尿汚泥を固液分離する固液分離機、該固液分離機の入口に接続される汚泥輸送手段、該固液分離機から排出された脱水汚泥を焼却又は焼成する焼却炉又は焼成炉の入口に接続される脱水汚泥輸送手段から選択される少なくとも一箇所に添加することを特徴とする請求項乃至のいずれかに記載の苦土りん酸肥料の製造方法。 A storage tank for storing the sewage sludge or human waste sludge, a solid-liquid separator for solid-liquid separation of the sewage sludge or human waste sludge from the storage tank, and a sludge transporting means connected to the inlet of the solid-liquid separator. , claim 1, characterized in that the addition of at least one location selected from dewatered sludge transport means connected to the inlet of the incinerator or a baking furnace to burn or firing dewatered sludge discharged from the solid-liquid separator The manufacturing method of the bitter-earth phosphate fertilizer in any one of thru | or 5 .
JP2012273036A 2012-12-14 2012-12-14 Method for producing a bitter earth phosphate fertilizer Expired - Fee Related JP6021182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273036A JP6021182B2 (en) 2012-12-14 2012-12-14 Method for producing a bitter earth phosphate fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273036A JP6021182B2 (en) 2012-12-14 2012-12-14 Method for producing a bitter earth phosphate fertilizer

Publications (2)

Publication Number Publication Date
JP2014118312A JP2014118312A (en) 2014-06-30
JP6021182B2 true JP6021182B2 (en) 2016-11-09

Family

ID=51173481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273036A Expired - Fee Related JP6021182B2 (en) 2012-12-14 2012-12-14 Method for producing a bitter earth phosphate fertilizer

Country Status (1)

Country Link
JP (1) JP6021182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7210049B2 (en) * 2018-03-30 2023-01-23 国立大学法人 新潟大学 Sludge treatment method, sludge treatment system and adsorbent manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2729277A1 (en) * 1977-06-29 1979-01-04 Saarberg Fernwaerme Gmbh METHODS FOR TREATMENT OF SLUDGE OR ASH, IN PARTICULAR OF SEWING SLUDGE OR SEWING SLUDGE ASH
JPS5864294A (en) * 1981-10-10 1983-04-16 栗原 英明 Dry mixed phosphate
JPH0693260A (en) * 1992-09-10 1994-04-05 Toyota Motor Corp Soil additive
JP6025540B2 (en) * 2012-12-11 2016-11-16 太平洋セメント株式会社 Method for producing phosphate fertilizer

Also Published As

Publication number Publication date
JP2014118312A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
WO2013002250A1 (en) Phosphate fertilizer, and method for producing phosphate fertilizer
KR101925418B1 (en) Method for producing phosphate fertilizer
CN105800892A (en) Blue-green algae and excess sludge resourceful treatment method
CN104446064A (en) Device and method for producing cement by virtue of flue gas desulfurization
JP6021181B2 (en) Phosphate fertilizer manufacturing apparatus and manufacturing method
JP6391142B2 (en) Method for producing phosphate fertilizer
JP5800388B2 (en) Phosphate fertilizer manufacturing system and manufacturing method
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
JP5984572B2 (en) Phosphate fertilizer and method for producing the same
JP6804132B2 (en) Silicic acid fertilizer and its manufacturing method
JP6025540B2 (en) Method for producing phosphate fertilizer
JP5946721B2 (en) Method for producing phosphate fertilizer
JP6021182B2 (en) Method for producing a bitter earth phosphate fertilizer
JP6722969B2 (en) Silicate fertilizer and method for producing the same
JP6022226B2 (en) Method for producing silicate phosphate fertilizer
JP5188640B2 (en) Phosphate fertilizer and method for producing the same
JP5988684B2 (en) Method for producing phosphate fertilizer
JP5954777B2 (en) Method for producing phosphate fertilizer
CN104529205A (en) Cement production apparatus and method
JP6804131B2 (en) Silicic acid fertilizer and its manufacturing method
JP6282035B2 (en) Phosphate fertilizer and method for producing the same
JP6672052B2 (en) Manufacturing method of molten product
JP2012020257A (en) Sintered material generation method and sintered material
JP2016138023A (en) Manufacturing method of phosphoric acid fertilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6021182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees