JP5946721B2 - Method for producing phosphate fertilizer - Google Patents

Method for producing phosphate fertilizer Download PDF

Info

Publication number
JP5946721B2
JP5946721B2 JP2012183199A JP2012183199A JP5946721B2 JP 5946721 B2 JP5946721 B2 JP 5946721B2 JP 2012183199 A JP2012183199 A JP 2012183199A JP 2012183199 A JP2012183199 A JP 2012183199A JP 5946721 B2 JP5946721 B2 JP 5946721B2
Authority
JP
Japan
Prior art keywords
sludge
sewage
phosphate fertilizer
phosphorus
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012183199A
Other languages
Japanese (ja)
Other versions
JP2014040344A (en
Inventor
今井 敏夫
敏夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012183199A priority Critical patent/JP5946721B2/en
Publication of JP2014040344A publication Critical patent/JP2014040344A/en
Application granted granted Critical
Publication of JP5946721B2 publication Critical patent/JP5946721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

本発明は、りん酸肥料の製造方法に関し、特に、下水処理施設の汚水に含まれるリン及び下水処理過程で発生する汚泥に含まれるリンからりん酸肥料を製造する方法に関する。   The present invention relates to a method for producing phosphate fertilizer, and more particularly, to a method for producing phosphate fertilizer from phosphorus contained in sewage of a sewage treatment facility and phosphorus contained in sludge generated in the sewage treatment process.

肥料の三要素の1つであるリンは、その原料をリン鉱石に依存し、鉱物資源の乏しいわが国ではその全量を輸入している。リン鉱石は将来枯渇することが予想されるなど、今後入手が極めて困難になる可能性があり、リンを多量に含む下水等から如何に効率的に質のよいリンを回収するか、循環利用するかが、今般のわが国における技術開発の課題となっている。   Phosphorus, one of the three elements of fertilizer, depends on phosphate ore for its raw material, and in Japan, where mineral resources are scarce, all of it is imported. Phosphorite ore is expected to be depleted in the future and may become extremely difficult to obtain in the future. How to efficiently recover high-quality phosphorus from sewage containing a large amount of phosphorus, or recycle it However, this is an issue of technological development in Japan.

わが国の下水処理施設の中には、すでに溶融炉を所有しており、下水の脱水汚泥にカルシウム源又はマグネシウム源を添加して溶融温度を制御して溶融スラグ化しているところがある。しかしながら、この溶融スラグ化は肥料化を目的としたものではなく、路盤材などの土木資材化、あるいは単に最終処分量を削減するための減容化を目的としたものであり、リン資源の循環利用という上記課題は何ら考慮されてはいない。   Some of Japan's sewage treatment facilities already have melting furnaces, and add calcium sources or magnesium sources to the sewage dewatered sludge to control the melting temperature to make molten slag. However, this molten slag is not intended to be used as fertilizer, but is intended to be used for civil engineering materials such as roadbed materials or simply to reduce the volume to reduce the final disposal amount. The above problem of use is not considered at all.

そこで、肥料化を目的として、例えば、特許文献1には、鉄系凝集剤を汚水に添加し、汚水に含まれるリン成分を沈降させ、その沈降物を汚泥と共に収集し、これらを脱水、焼却してリン成分の濃度が高い汚泥焼却灰を得た後、この汚泥焼却灰に、コークス、酸化マグネシウム等を加えて溶融炉内で加熱し、溶融スラグを水砕槽へ選択的に出滓させて急冷して粒状とすることで、リン成分の濃度が高く、安全な肥料を製造する方法が記載されている。   Therefore, for the purpose of fertilization, for example, in Patent Document 1, an iron-based flocculant is added to sewage, the phosphorus component contained in the sewage is settled, the sediment is collected together with sludge, and these are dehydrated and incinerated. After obtaining sludge incineration ash with a high concentration of phosphorus component, add coke, magnesium oxide, etc. to this sludge incineration ash and heat it in a melting furnace to selectively discharge molten slag to the granulation tank. A method for producing a safe fertilizer having a high phosphorus component concentration by quenching and granulating is described.

特開2003−112988号公報Japanese Patent Laid-Open No. 2003-112988

しかし、上記特許文献に記載のりん肥料製造方法等では、脱水汚泥を焼却灰にする焼却工程と溶融して肥料化する溶融工程とが別々であるため、汚泥焼却灰を得るために熱エネルギーを用い、さらに高温の溶融工程で多量の熱エネルギーを必要とし、大量のエネルギーを消費するため、製造コストが高騰するという問題があった。   However, in the method for producing phosphorus fertilizer described in the above-mentioned patent document, the incineration step for converting dehydrated sludge into incineration ash and the melting step for melting into fertilizer are separate, so heat energy is used to obtain sludge incineration ash. In addition, since a large amount of heat energy is required in the melting process at a higher temperature and a large amount of energy is consumed, there is a problem that the manufacturing cost increases.

そこで、本発明は、上記解決課題に鑑みてなされたものであって、下水に含まれるリンを有効活用して、低コストで優れた品質の肥料を得ることができるりん酸肥料の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problem, and a phosphoric acid fertilizer manufacturing method capable of obtaining fertilizer of excellent quality at low cost by effectively utilizing phosphorus contained in sewage. The purpose is to provide.

上記目的を達成するため、本発明は、りん酸肥料の製造方法であって、下水処理施設で発生したリンを含む下水汚泥にカルシウム源を添加し、既設の下水処理施設の溶融炉を用いて、焼成温度1150℃以上1350℃以下で焼成することを特徴とする。 In order to achieve the above object, the present invention is a method for producing phosphate fertilizer, wherein a calcium source is added to sewage sludge containing phosphorus generated in a sewage treatment facility, and a melting furnace of an existing sewage treatment facility is used. And firing at a firing temperature of 1150 ° C. or higher and 1350 ° C. or lower .

本発明によれば、既設の溶融炉を利用してりん酸肥料を焼成するため、初期投資コストを大幅に削減することができる。   According to the present invention, since the phosphoric acid fertilizer is fired using an existing melting furnace, the initial investment cost can be greatly reduced.

すなわち、本発明は、既設の溶融炉を焼成炉として転用するだけであるから、カルシウム源又はマグネシウム源の添加設備も、既設のものをそのまま転用することができるため、追加の設備投資を必要としない。   That is, since the present invention only diverts the existing melting furnace as a firing furnace, the equipment for adding the calcium source or the magnesium source can be diverted as it is, so that additional capital investment is required. do not do.

また、従来ではリン回収物や下水汚泥を最終工程で溶融して肥料化していたが、本発明では、溶融より処理温度の低い焼成工程を採用したため、消費エネルギーを低減することができ、製造コストの大幅削減に繋がる。さらに、上記温度域で焼成することで、りん酸肥料のりん酸のく溶率(P 2 5 含有量のうちく溶性りん酸である割合)やけい酸の可溶率(SiO 2 含有量のうち可溶性けい酸である割合)を上昇させることができる。 Conventionally, phosphorus recovery products and sewage sludge were melted and fertilized in the final process, but in the present invention, a firing process having a processing temperature lower than that of melting is adopted, so that energy consumption can be reduced, and manufacturing costs can be reduced. Leading to a significant reduction. Furthermore, by firing in the above temperature range, the phosphoric acid fertilizer phosphoric acid solubility ( the proportion of P 2 O 5 content is soluble phosphoric acid) and silicic acid solubility (SiO 2 content) The ratio of soluble silicic acid among them can be increased.

上記りん酸肥料の製造方法において、前記りん酸肥料の酸化カルシウム(CaO)含有率を35質量%以上60質量%以下とすることができる。これによって、焼成によってでもりん酸可給性、けい酸可給性に優れたりん酸肥料を製造するのに好適な成分調整を行うことができる。   In the manufacturing method of the said phosphate fertilizer, the calcium oxide (CaO) content rate of the said phosphate fertilizer can be 35 mass% or more and 60 mass% or less. This makes it possible to adjust the components suitable for producing a phosphoric acid fertilizer excellent in phosphoric acid availability and silicic acid availability even by firing.

上記りん酸肥料の製造方法において、前記溶融炉を、コークスベッド炉、旋回溶融炉又は表面溶融炉とすることができる。   In the method for producing phosphate fertilizer, the melting furnace may be a coke bed furnace, a swirl melting furnace, or a surface melting furnace.

また、上記りん酸肥料の製造方法において、前記下水処理施設における汚水を濃縮し、濃縮した汚水にリン回収材を添加して該汚水中のリンを前記回収材と反応させた後、脱水して前記リン回収物及び下水汚泥を得ると共に、脱水により得られたリン回収物及び下水汚泥に前記カルシウム源を混合して焼成することもできる。   In the method for producing phosphate fertilizer, the sewage in the sewage treatment facility is concentrated, a phosphorus recovery material is added to the concentrated sewage, the phosphorus in the sewage is reacted with the recovery material, and then dehydrated. While obtaining the said phosphorus collection | recovery thing and sewage sludge, the said calcium source can also be mixed and baked with the phosphorus collection | recovery thing and sewage sludge obtained by dehydration.

以上のように、本発明によれば、下水から低コストでリンを回収することのできるりん酸肥料の製造方法を提供することができる。   As mentioned above, according to this invention, the manufacturing method of the phosphate fertilizer which can collect | recover phosphorus from sewage at low cost can be provided.

本発明にかかるりん酸肥料の製造方法を実施するシステムの一例を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows an example of the system which enforces the manufacturing method of the phosphate fertilizer concerning this invention. 焼成物のCaO濃度と溶融開始温度との関係を示すグラフである。It is a graph which shows the relationship between CaO density | concentration of a baked product, and a melting start temperature. 本発明にかかるりん酸肥料の製造方法を実施するシステムの他の例を示す全体構成図である。It is a whole block diagram which shows the other example of the system which enforces the manufacturing method of the phosphate fertilizer concerning this invention.

次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明にかかるりん酸肥料の製造方法を実施するシステムの一例を示し、このりん酸肥料製造システム1は、大別して、下水処理場へ持ち込まれた下水S1を濃縮し、脱水汚泥S9と脱水ろ液W3とに分離する水処理設備2と、水処理設備2で分離された脱水汚泥S9と、組成調整剤A2とを混合して焼成し、焼成物を粉砕する粉砕、整粒する混合焼成設備4からなる。   FIG. 1 shows an example of a system for carrying out a method for producing a phosphate fertilizer according to the present invention. This phosphate fertilizer production system 1 is roughly divided to concentrate sewage S1 brought into a sewage treatment plant, and dehydrated sludge. The water treatment equipment 2 separated into S9 and the dehydrated filtrate W3, the dewatered sludge S9 separated in the water treatment equipment 2 and the composition adjusting agent A2 are mixed and fired, and pulverized and sized to grind the fired product It consists of the mixed firing equipment 4 which performs

水処理設備2は、下水S1中の沈殿し易い浮遊物や泥を濃縮して重力濃縮槽19へ送る最初沈殿池5と、沈殿処理を終えた最初沈殿池5からの有機物、窒素、リン等を含む汚水S2を微生物等で処理する生物処理槽6と、生物処理槽6で処理された活性汚泥S3を時間をかけて沈殿させ、上澄み水Dを放流する最終沈殿池7と、最終沈殿池7からの余剰汚泥S4をさらに遠心力により濃縮する遠心濃縮機8と、遠心濃縮機8からの濃縮汚泥S5及び重力濃縮槽19からの濃縮汚泥S6を分解するメタン発酵槽9と、メタン発酵槽9から排出された汚泥S7を貯留する貯槽10と、貯槽10から排出された汚泥S8を脱水汚泥S9と脱水ろ液W3とに固液分離する脱水機11とで構成される。   The water treatment facility 2 concentrates the suspended sediment and mud in the sewage S1 and sends them to the gravity concentration tank 19, and the organic matter, nitrogen, phosphorus, etc. from the first sedimentation basin 5 after finishing the sedimentation treatment. A biological treatment tank 6 for treating sewage water S2 containing microorganisms, a final sedimentation tank 7 for precipitating the activated sludge S3 treated in the biological treatment tank 6 over time, and discharging the supernatant water D, and a final sedimentation tank Centrifugal concentrator 8 for further concentrating surplus sludge S4 from 7 by centrifugal force, methane fermentation tank 9 for decomposing concentrated sludge S5 from centrifugal concentrator 8 and concentrated sludge S6 from gravity concentration tank 19, and methane fermentation tank The storage tank 10 that stores the sludge S7 discharged from 9 and the dehydrator 11 that separates the sludge S8 discharged from the storage tank 10 into the dehydrated sludge S9 and the dehydrated filtrate W3.

混合焼成設備4は、濃縮分離設備2で分離された脱水汚泥S9に、カルシウム源である組成調整剤A2を添加して混合する混合機14と、混合機14から供給される混合物Mを焼却するストーカ式焼却炉15と、本来焼却物Iを溶融させる目的で設置された表面溶融炉を、焼却物Iを焼成するために用いる焼成炉16と、焼成物B1を所望の大きさに粉砕する粉砕機17と、粉砕された焼成物B2に造粒補助剤A3を添加して造粒するパンペレタイザー18とで構成される。   The mixing and firing facility 4 incinerates the mixer 14 for adding the composition regulator A2 as a calcium source to the dehydrated sludge S9 separated by the concentration and separation facility 2 and mixing the mixture M supplied from the mixer 14. Stoker-type incinerator 15 and a surface melting furnace originally installed for the purpose of melting incinerator I, calcination furnace 16 used for firing incinerator I, and pulverization that pulverizes calcined product B1 to a desired size The machine 17 and the pan pelletizer 18 which granulates by adding the granulation auxiliary agent A3 to the pulverized fired product B2.

ストーカ式焼却炉15は、脱水汚泥を焼却するために下水処理場に一般的に設置されているものであって、ストーカ式焼却炉15に代えて、流動床炉、多段炉等の焼却炉を利用することもできる。   The stoker-type incinerator 15 is generally installed in a sewage treatment plant in order to incinerate dehydrated sludge. Instead of the stoker-type incinerator 15, an incinerator such as a fluidized bed furnace or a multistage furnace is used. It can also be used.

本発明における下水汚泥は、前記脱水汚泥や下水処理施設の各種工程で得られた脱水する前の汚泥、脱水汚泥や前記汚泥を乾燥した乾燥汚泥、炭化した炭化汚泥、又は焼却した焼却汚泥である。   The sewage sludge in the present invention is the dehydrated sludge or sludge before dehydration obtained in various processes of the sewage treatment facility, the dehydrated sludge or the dried sludge obtained by drying the sludge, the carbonized sludge, or the incinerated sludge that has been incinerated. .

組成調整剤A2は、焼成可能なりん酸肥料を得るために添加されるカルシウム源であって、りん酸肥料の酸化カルシウム含有率を35質量%以上とするために用いられる。一般に、下水汚泥はカルシウムの含有率が低いため、カルシウム源を混合してりん酸肥料中のカルシウムを補う必要がある。下水汚泥等とカルシウム源を焼成すると、得られた焼成物(りん酸肥料)のりん酸のく溶率及びけい酸の可溶率が高くなる。一方、焼成物の酸化カルシウム含有率を60質量%以上とすると、りん酸肥料中のリン含有量自体が低くなって施肥効果が低下したり、農地に施肥した場合に土壌のpHが高くなり植物の生育を阻害するおそれがある。   The composition adjuster A2 is a calcium source added to obtain a calcinable phosphate fertilizer, and is used to make the calcium oxide content of the phosphate fertilizer 35% by mass or more. In general, since sewage sludge has a low calcium content, it is necessary to mix calcium sources to supplement calcium in the phosphate fertilizer. When sewage sludge and the calcium source are fired, the solubility of phosphoric acid and the solubility of silicic acid in the obtained fired product (phosphate fertilizer) are increased. On the other hand, when the calcium oxide content of the baked product is 60% by mass or more, the phosphorus content itself in the phosphate fertilizer is lowered and the fertilization effect is reduced, or the soil pH increases when fertilized on farmland. There is a risk of inhibiting the growth of.

上記カルシウム源として、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、リン酸カルシウム、塩化カルシウム、硫酸カルシウム、石灰石、生石灰、消石灰、セメント、鉄鋼スラグ、石膏、生コンスラッジ(その乾燥物も含む。)、廃モルタル、廃コンクリート、鶏糞等の畜産糞等を使用することができる。これらの中でも、炭酸カルシウムと石灰石は、入手が容易でカルシウムの含有率が高いため好ましい。   Examples of the calcium source include calcium carbonate, calcium oxide, calcium hydroxide, calcium phosphate, calcium chloride, calcium sulfate, limestone, quicklime, slaked lime, cement, steel slag, gypsum, quick-cone sludge (including its dry matter), waste mortar, Waste concrete, livestock droppings such as chicken droppings can be used. Among these, calcium carbonate and limestone are preferable because they are easily available and have a high calcium content.

組成調整剤A2に加えて、さらにシリカ源やマグネシウム源を添加してもよい。一般に、下水汚泥はシリカ(SiO)を多く含むためシリカ源を添加する場合は少ないが、けい酸の加給性も付与したいが下水汚泥のSiO含有量が少ない場合はシリカ源を補う必要がある。この場合のシリカ源は、珪石、珪砂、砂、珪藻土、シラス、生コンスラッジ、廃モルタル、廃コンクリート、酸性火山灰、酸性火山岩、及びケイ酸カルシウムから選ばれる少なくとも1種以上が挙げられる。 In addition to the composition modifier A2, a silica source or a magnesium source may be further added. In general, sewage sludge contains a large amount of silica (SiO 2 ), so there are few cases where a silica source is added. However, it is necessary to supplement the silica source when the sewage sludge has a low SiO 2 content. is there. Examples of the silica source in this case include at least one selected from silica, silica sand, sand, diatomaceous earth, shirasu, raw conslag, waste mortar, waste concrete, acidic volcanic ash, acidic volcanic rock, and calcium silicate.

りん酸肥料に苦土成分を補填する場合は、マグネシウム源として、水酸化マグネシウム、酸化マグネシウム、マグネシア、ドロマイト、フェロニッケルスラグ、橄欖岩、及び蛇紋岩等から選ばれる少なくとも1種以上が挙げられる。   When supplementing the phosphoric acid fertilizer with a bitter earth component, the magnesium source includes at least one selected from magnesium hydroxide, magnesium oxide, magnesia, dolomite, ferronickel slag, peridotite, serpentinite, and the like.

尚、各原料を調合する方法として、例えば、下水汚泥の一部を電気炉等で焼成した後、該焼成灰中の酸化物を定量し、該定量値と所定の配合に基づき、各原料を混合する方法が挙げられる。該酸化物の定量は、蛍光X線装置を用いてファンダメンタルパラメーター法により行うことができる。下水汚泥の灰分率及び灰分の化学組成は日々変動するため、これらの年間の変動幅、下水処理条件との相関を予め把握してから、下水汚泥に対する酸化カルシウムの添加率を決定することが望ましい。但し、正確を期すために、できるだけ高い頻度で下水汚泥の一部を電気炉等で焼成して、該焼成物中の化学組成に基づいて、目的とするりん酸肥料中の酸化カルシウム含有率になるように添加率を修正することが好ましい。   In addition, as a method of preparing each raw material, for example, after firing a part of sewage sludge in an electric furnace or the like, the oxide in the fired ash is quantified, and based on the quantitative value and a predetermined composition, each raw material is The method of mixing is mentioned. The oxide can be quantified by a fundamental parameter method using a fluorescent X-ray apparatus. Since the ash content of sewage sludge and the chemical composition of ash vary from day to day, it is desirable to determine the rate of addition of calcium oxide to sewage sludge after grasping the correlation between these annual fluctuation ranges and sewage treatment conditions. . However, for the sake of accuracy, a part of the sewage sludge is fired with an electric furnace or the like as frequently as possible, and based on the chemical composition in the fired product, the desired content of calcium oxide in the phosphate fertilizer is obtained. It is preferable to correct the addition rate so that

また、前記りん酸のく溶率とは、りん酸肥料中の全りん酸に対するく溶性りん酸の質量比(%)であり、前記けい酸の可溶率とは、りん酸肥料中の全けい酸に対する可溶性けい酸の質量比(%)である。く溶性りん酸量は肥料分析法(農林水産省 農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法により、可溶性けい酸量は同法に規定されている過塩素酸法により測定することができる。尚、原料やりん酸肥料中の酸化物の定量は、蛍光X線装置を用いてファンダメンタルパラメーター法により行うことができる。   The solubility of phosphoric acid is the mass ratio (%) of soluble phosphoric acid to the total phosphoric acid in phosphate fertilizer, and the solubility of silicic acid is the total solubility in phosphate fertilizer. It is a mass ratio (%) of soluble silicic acid to silicic acid. The amount of soluble phosphoric acid is determined by the ammonium vanadomolybdate method specified in the fertilizer analysis method (Agricultural and Environmental Technology Research Institute, Ministry of Agriculture, Forestry and Fisheries), and the amount of soluble silicic acid is determined by the perchloric acid method specified in the same method. Can be measured. In addition, quantification of the oxide in a raw material or a phosphate fertilizer can be performed by a fundamental parameter method using a fluorescent X-ray apparatus.

図2は、下水汚泥焼却灰a、下水汚泥焼却灰b及び下水汚泥焼却灰cについて、焼成物の酸化カルシウム(CaO)濃度と溶融開始温度との関係を示している。下水汚泥焼却灰aとは、CaO含有率が7.6質量%、P含有率が15.6質量%であり、下水汚泥焼却灰bとは、CaO含有率が12.6質量%、P含有率が25.5質量%であり、下水汚泥焼却灰cとは、CaO含有率が10.8質量%、P含有率が38.9質量%である。溶融開始温度は、上記下水汚泥焼却灰に炭酸カルシウムを添加して、円柱状に加圧成形した粉体ペレットの上部平坦面が、加熱により半球化した温度である。 FIG. 2 shows the relationship between the calcium oxide (CaO) concentration of the fired product and the melting start temperature for the sewage sludge incineration ash a, the sewage sludge incineration ash b, and the sewage sludge incineration ash c. The sewage sludge incineration ash a has a CaO content of 7.6% by mass and a P 2 O 5 content of 15.6% by mass, and the sewage sludge incineration ash b has a CaO content of 12.6% by mass. The P 2 O 5 content is 25.5% by mass, and the sewage sludge incinerated ash c has a CaO content of 10.8% by mass and a P 2 O 5 content of 38.9% by mass. The melting start temperature is a temperature at which the upper flat surface of the powder pellet formed by adding calcium carbonate to the sewage sludge incinerated ash and press-molded into a cylindrical shape is hemispherical by heating.

このグラフから明らかなように、焼成物の酸化カルシウム濃度が高くなるにつれて溶融開始温度が上昇し、焼成物の酸化カルシウム含有率を35質量%以上に高めれば、溶融させずに焼成物として取り出すことができる。   As is apparent from this graph, the melting start temperature rises as the calcium oxide concentration of the fired product increases, and if the calcium oxide content of the fired product is increased to 35% by mass or more, it can be taken out as a fired product without melting. Can do.

焼成炉16には、上述のように、例えば、この下水処理施設に設置された既設の表面溶融炉を利用する。コークスベッド炉、旋回溶融炉等が設置されている場合には、表面溶融炉に代えてこれらの炉を利用することもできる。これらの溶融炉は、本来溶融物を得るために上記焼成温度よりも高い温度で運転されていたため、焼成に利用しても耐熱構造としては問題ないが、本発明では、溶融物ではなく焼成物を得るため、必要であれば、混合物Mが炉内で滞留することがなく、炉内で均一に加熱され、円滑に焼成物が炉外に排出されるような構成に改変する必要がある。   As the firing furnace 16, for example, an existing surface melting furnace installed in this sewage treatment facility is used as described above. When a coke bed furnace, a swirl melting furnace or the like is installed, these furnaces can be used instead of the surface melting furnace. Since these melting furnaces were originally operated at a temperature higher than the above-mentioned calcination temperature in order to obtain a melt, there is no problem as a heat-resistant structure even if used for calcination. Therefore, if necessary, it is necessary to modify the structure so that the mixture M does not stay in the furnace, is uniformly heated in the furnace, and the fired product is smoothly discharged out of the furnace.

特に、旋回溶融炉や表面溶融炉を焼成炉として使用するにあたっては、焼成物を炉外に押し出すあるいは掻き出すための耐火性の高い可動装置を具備させる必要がある。また、コークスベッド炉を焼成炉として使用するにあたっては、焼成物自身の自重により炉の上部から下部に順次移動するため、排出口を大きく改造する必要がないため好ましい。この焼成炉16は、1150℃以上1350℃以下、好ましくは1200℃以上1300℃以下で下水汚泥等を焼成することができる。   In particular, when a swirl melting furnace or a surface melting furnace is used as a firing furnace, it is necessary to provide a highly fire-resistant movable device for extruding or scraping the fired product out of the furnace. Further, when the coke bed furnace is used as a firing furnace, it is preferable because the fired product itself moves sequentially from the upper part to the lower part of the furnace, so that it is not necessary to greatly modify the discharge port. The firing furnace 16 can sew sewage sludge and the like at 1150 ° C. or higher and 1350 ° C. or lower, preferably 1200 ° C. or higher and 1300 ° C. or lower.

必要に応じて焼成前の原料は、排出口からの流出防止や排出安定化のために造粒を行ってもよい。造粒装置として、例えば、パン型ペレタイザー、パン型ミキサー、撹拌造粒機、ブリケットマシン、ロールプレス、及び押出成形機等が挙げられるが、特に、利便性や生産効率に優れる点で、パン型ペレタイザーが好適である。尚、造粒性(成形性)を高めるため、造粒前の粉末状の焼成物にポリビニルアルコール、メチルセルロース等の賦形剤を添加してもよい。但し、これらの賦形剤は焼成炉16での焼成により燃焼消失する。焼成前の造粒は、焼結反応や焼成炉16からの排出性などを考慮して任意に選択される工程である。   If necessary, the raw material before firing may be granulated to prevent outflow from the discharge port and stabilize discharge. Examples of the granulating apparatus include a bread type pelletizer, a bread type mixer, an agitation granulator, a briquette machine, a roll press, and an extrusion molding machine. In particular, the bread type is superior in terms of convenience and production efficiency. A pelletizer is preferred. In addition, in order to improve granulation property (moldability), you may add excipient | fillers, such as polyvinyl alcohol and methylcellulose, to the powdery baked product before granulation. However, these excipients burn and disappear upon firing in the firing furnace 16. The granulation before firing is a step that is arbitrarily selected in consideration of the sintering reaction, dischargeability from the firing furnace 16, and the like.

焼成炉16(溶融炉)から排出される焼成物は、大きなものでは10cm程度小さなものでは1mm程度、平均で5cm程度の粒径を有する塊状の焼結物である。この粒径のままでは肥料製品として流通することができないため、粒度範囲を1mmから5mmの間が中心となるように粉砕機17で粗粉砕し、篩い分け等による整粒を行う。粉砕機17として、例えば、ジョークラッシャー、ハンマークラッシャー等が、焼成物が過度に粉砕されることを防止できるため好ましい。篩い分け操作には汎用の振動ふるいを用いることができる。   The fired product discharged from the firing furnace 16 (melting furnace) is a massive sintered product having a particle size of about 1 cm for a large one and about 5 cm on average for a small one about 10 cm. Since the particle size cannot be distributed as a fertilizer product, the particle size range is roughly pulverized by the pulverizer 17 so that the particle size range is between 1 mm and 5 mm, and sized by sieving or the like. As the pulverizer 17, for example, a jaw crusher, a hammer crusher, or the like is preferable because the baked product can be prevented from being excessively pulverized. A general-purpose vibrating screen can be used for the sieving operation.

前記焼成工程や前記粉砕工程においては粒径1mm以下の部分が発生する。そのような場合には、前記の整粒工程のふるい通過分、あるいは焼成物の全量を粉砕したものをパンペレタイザーにより粒度範囲を1mmから5mmの間が中心となるように造粒し、篩い分け等による整粒を行う。   In the firing step and the pulverization step, a portion having a particle size of 1 mm or less is generated. In such a case, the sieving part of the above sizing process or the pulverized whole amount of the baked product is granulated with a pan pelletizer so that the particle size range is centered between 1 mm and 5 mm, and sieved. Perform sizing by etc.

パンペレタイザー18に代えて、これと同様の造粒効果が期待できる装置を使用することができ、パン型ミキサー、撹拌造粒機、ブリケットマシン、ロールプレス又は押出成形機等を用いてもよい。利便性や生産効率に優れる点で、パン型ペレタイザーが好適である。造粒を行う場合は、整粒工程のふるい通過分、あるいは焼成物の全量を汎用のボールミルにて粒径100μm以下とするのが好適である。   Instead of the pan pelletizer 18, an apparatus that can be expected to have the same granulation effect can be used, and a bread mixer, a stirring granulator, a briquette machine, a roll press, an extrusion molding machine, or the like may be used. A bread-type pelletizer is preferable in terms of convenience and production efficiency. In the case of granulation, it is preferable that the particle passing through the sizing step or the total amount of the fired product is adjusted to a particle size of 100 μm or less with a general-purpose ball mill.

造粒補助剤A3には、ポリビニルアルコール、メチルセルロース等を用いることができる。また、該工程において、肥料の用途に応じて、適宜、けい酸やりん酸の成分を追加したり、窒素、加里、苦土等のその他の肥料成分を新たに添加することができる。整粒装置には市販の振動ふるい装置を用いることができる。   For the granulation aid A3, polyvinyl alcohol, methylcellulose, or the like can be used. Moreover, in this process, depending on the use of the fertilizer, components of silicic acid and phosphoric acid can be added as appropriate, and other fertilizer components such as nitrogen, potassium and bitter earth can be newly added. A commercially available vibration sieving device can be used as the sizing device.

該造粒成型や整粒工程は、農用地へ施肥する際に粉塵の発生を抑制して肥料の取り扱いを容易にするためや、肥料効果を十分に発揮させるために、肥料の粒度を調整する必要がある場合に選択される任意の工程である。   The granulation molding and sizing process is necessary to adjust the particle size of the fertilizer in order to suppress the generation of dust and facilitate the handling of the fertilizer when fertilizing agricultural land, and to fully demonstrate the fertilizer effect It is an optional step that is selected if there is.

次に、上記構成を有するりん酸肥料製造システム1の動作について、図1を参照しながら説明する。   Next, operation | movement of the phosphate fertilizer manufacturing system 1 which has the said structure is demonstrated, referring FIG.

りん酸肥料製造システム1に流入した下水S1を最初沈殿池5に導き、最初沈殿池5で沈殿し易い浮遊物や泥を濃縮して重力濃縮槽19へ送ると共に、有機物等を含む汚水S2を生物処理槽6に供給して微生物等で処理する。   The sewage S1 that has flowed into the phosphate fertilizer production system 1 is led to the first settling basin 5 and the suspended matter and mud that are likely to settle in the first settling basin 5 are concentrated and sent to the gravity concentration tank 19, and the sewage S2 containing organic matter etc. It supplies to the biological treatment tank 6 and processes with microorganisms.

生物処理槽6で生成された活性汚泥S3を最終沈殿池7で時間をかけて沈殿させ、沈殿した汚泥を余剰汚泥S4として遠心濃縮機8に供給すると共に、最終沈殿池7で得られた上澄み水Dを放流する。尚、通常余剰汚泥S4の一部は生物処理槽6へ返流される。   The activated sludge S3 generated in the biological treatment tank 6 is precipitated in the final sedimentation tank 7 over time, and the precipitated sludge is supplied to the centrifugal concentrator 8 as surplus sludge S4, and the supernatant obtained in the final sedimentation tank 7 is supplied. Release water D. A part of the excess sludge S4 is usually returned to the biological treatment tank 6.

最終沈殿池7からの余剰汚泥S4を遠心濃縮機8で濃縮し、重力濃縮槽19に貯留された濃縮汚泥S6と共に、メタン発酵槽9に供給する。メタン発酵槽9で、濃縮汚泥S5、S6を微生物によって分解し、発生した汚泥S7を貯槽10に一旦貯留した後、汚泥S8を脱水機11に供給し、固液分離して脱水汚泥S9を得る。   Excess sludge S4 from the final sedimentation basin 7 is concentrated by the centrifugal concentrator 8 and supplied to the methane fermentation tank 9 together with the concentrated sludge S6 stored in the gravity concentration tank 19. In the methane fermentation tank 9, the concentrated sludges S5 and S6 are decomposed by microorganisms, and the generated sludge S7 is temporarily stored in the storage tank 10, and then the sludge S8 is supplied to the dehydrator 11 and solid-liquid separated to obtain the dehydrated sludge S9. .

次に、脱水汚泥S9を、カルシウム源としての組成調整剤A2と共に混合機14へ供給して混合する。均質化した混合物Mをストーカ式焼却炉15に供給して焼却した後、焼却物Iを1150℃以上1350℃以下、好ましくは1200℃以上1300℃以下の温度域内で焼成炉16で焼成する。これらの温度域で焼成することで、得られたりん酸肥料のりん酸のく溶率やけい酸の可溶率が高まる。次に、焼成物B1を粉砕機17で粉砕し、後段のパンペレタイザー18で造粒補助剤A3と共に、所望の寸法となるように造粒成形する。   Next, the dewatered sludge S9 is supplied to the mixer 14 and mixed together with the composition regulator A2 as a calcium source. After the homogenized mixture M is supplied to the stoker incinerator 15 and incinerated, the incinerated material I is fired in the firing furnace 16 in a temperature range of 1150 ° C. to 1350 ° C., preferably 1200 ° C. to 1300 ° C. By baking in these temperature ranges, the phosphate solubility and the silicic acid solubility of the obtained phosphate fertilizer are increased. Next, the fired product B1 is pulverized by a pulverizer 17 and granulated and formed to have a desired size together with the granulation auxiliary agent A3 by a pan pelletizer 18 at a later stage.

尚、混合機14に投入する脱水汚泥S9は、乾燥や炭化、焼却した下水汚泥であってもよい。   The dewatered sludge S9 charged into the mixer 14 may be sewage sludge that has been dried, carbonized, or incinerated.

また、脱水汚泥S9と組成調整剤A2を混合してから焼却するのではなく、脱水汚泥を焼却してから組成調整剤A2を混合し、焼成炉16で焼成することもできる。   Further, instead of incineration after mixing the dewatered sludge S9 and the composition adjusting agent A2, the composition adjusting agent A2 may be mixed after incineration of the dehydrated sludge and fired in the firing furnace 16.

さらに、乾燥や炭化された下水汚泥に対しては混合機14にて組成調整剤A2を混合し、ストーカ式焼却炉15で焼却することなく直接焼成炉16で焼成することもできる。   Furthermore, the composition adjusting agent A2 can be mixed in the mixer 14 with respect to the dried or carbonized sewage sludge, and can be directly baked in the baking furnace 16 without being burned in the stoker type incinerator 15.

次に、本発明にかかるりん酸肥料の製造方法を実施するシステムの他の例について、図3を参照しながら説明する。   Next, another example of a system that implements the method for producing phosphate fertilizer according to the present invention will be described with reference to FIG.

具体的には、図3に記載のシステム21では、貯槽10に回収材A1を添加する。貯槽10に貯留されている汚泥S7は、システム21内の他の場所よりもリン濃度が高いため効率よくリンを回収することができる。尚、メタン発酵槽9で炭酸が発生し、炭酸を含む汚泥S7に回収材A1を添加するような場合には、回収材A1によるリン回収性能が低下するが、回収材A1を増量すること、又は汚泥S7に回収材A1を投入する前に、アルカリにより汚泥S7のpHを調整することなどで対処することができる。   Specifically, in the system 21 illustrated in FIG. 3, the recovered material A1 is added to the storage tank 10. Since the sludge S7 stored in the storage tank 10 has a higher phosphorus concentration than other places in the system 21, phosphorus can be efficiently recovered. In the case where carbon dioxide is generated in the methane fermentation tank 9 and the recovered material A1 is added to the sludge S7 containing carbonic acid, the phosphorus recovery performance by the recovered material A1 is reduced, but the amount of recovered material A1 is increased. Alternatively, this can be dealt with by adjusting the pH of the sludge S7 with alkali before introducing the recovered material A1 into the sludge S7.

回収材A1には、カルシウムを含む回収材、例えば、非晶質ケイ酸カルシウムを好適に用いることができ、この非晶質ケイ酸カルシウムは、リンとの親和性が高く、多孔質で比表面積が大きいため、リンの吸着能力が高く、選択的に効率よくリンを吸着することができる。その他に、水酸化カルシウム、塩化カルシウム等を用いることもできる。   As the recovery material A1, a recovery material containing calcium, for example, amorphous calcium silicate can be preferably used. This amorphous calcium silicate has high affinity with phosphorus, is porous, has a specific surface area. Therefore, phosphorus adsorption capacity is high and phosphorus can be selectively and efficiently adsorbed. In addition, calcium hydroxide, calcium chloride, and the like can be used.

次に、上記構成を有するりん酸肥料製造システム21の動作について、図3を参照しながら説明する。尚、メタン発酵槽9までの動作は、図1に記載のりん酸肥料製造システム1と同様であるため、その説明は割愛する。   Next, operation | movement of the phosphate fertilizer manufacturing system 21 which has the said structure is demonstrated, referring FIG. In addition, since the operation | movement to the methane fermenter 9 is the same as that of the phosphate fertilizer manufacturing system 1 of FIG. 1, the description is omitted.

メタン発酵槽9で発生した汚泥S7を貯槽10へ供給し、貯槽10にリン回収材A1を添加し、汚泥S7に含まれるリンをリン回収材A1に吸着させて沈降させる。次に、貯槽10からの汚泥S8を脱水機11に供給し、固液分離して脱水汚泥S9及びリン回収物APを得ると共に、得られた脱水ろ液W3は重力濃縮槽19からの返送水W1等と共に、最初沈殿池5へ返送する。   The sludge S7 generated in the methane fermentation tank 9 is supplied to the storage tank 10, the phosphorus recovery material A1 is added to the storage tank 10, and the phosphorus contained in the sludge S7 is adsorbed on the phosphorus recovery material A1 and settled. Next, the sludge S8 from the storage tank 10 is supplied to the dehydrator 11, and solid-liquid separation is performed to obtain the dehydrated sludge S9 and the phosphorus recovery product AP, and the obtained dehydrated filtrate W3 is returned to the gravity concentration tank 19. Return to sedimentation basin 5 together with W1 etc.

固液分離して得た脱水汚泥S9及びリン回収物APは、組成調整剤A2と共に混合機14で混合し、混合物Mをストーカ式焼却炉15に供給して焼却した後、焼却物Iを1150℃以上1350℃以下、好ましくは1200℃以上1300℃以下の温度域内で焼成する。これによって、得られたりん酸肥料のりん酸のく溶率やけい酸の可溶率が高まる。その後、焼成物B1を粉砕機17で粉砕し、後段のパンペレタイザー18で造粒補助剤A3と共に、所望の寸法となるように造粒成形や整粒を行う。   The dewatered sludge S9 and the phosphorus recovery product AP obtained by solid-liquid separation are mixed together with the composition adjusting agent A2 by the mixer 14, and the mixture M is supplied to the stoker incinerator 15 and incinerated. Firing is carried out in a temperature range of not less than 1 ° C and not more than 1350 ° C, preferably not less than 1200 ° C and not more than 1300 ° C. This increases the solubility of phosphoric acid and the solubility of silicic acid in the resulting phosphate fertilizer. Thereafter, the baked product B1 is pulverized by a pulverizer 17, and granulated and sized so as to have a desired size together with the granulation auxiliary agent A3 by a pan pelletizer 18 at a later stage.

上記例では、効率的にリンを回収し得る貯槽10にリン回収材A1を添加する場合について説明したが、本発明は、この添加場所に限定されるものではなく、この下水処理施設のさらに上流の工程とすることも可能である。例えば、メタン発酵槽9内、最終沈殿池7から遠心濃縮機8へ運ばれる余剰汚泥S4、生物処理槽6から最終沈殿池7へ運ばれる活性汚泥S3又は重力濃縮槽19からの返送水W1に添加することもできる。   In the above example, the case where the phosphorus recovery material A1 is added to the storage tank 10 that can efficiently recover phosphorus has been described. However, the present invention is not limited to this addition place, and is further upstream of this sewage treatment facility. It is also possible to use this process. For example, in the methane fermentation tank 9, surplus sludge S4 transported from the final sedimentation tank 7 to the centrifugal concentrator 8, activated sludge S3 transported from the biological treatment tank 6 to the final sedimentation tank 7, or return water W1 from the gravity concentration tank 19 It can also be added.

また、汚水に回収材A1を添加するのではなく、システム1における他の場所よりもリン濃度の高い脱水ろ液W3に回収材A1を添加し、回収材A1に脱水ろ液W3に含まれるリンを吸着させ、リンを吸着したリン回収物APを固液分離するなどして得て、リン回収物APと脱水汚泥S9とを組成調整剤A2と共に混合機14へ供給することもできる。   Further, instead of adding the recovered material A1 to the sewage, the recovered material A1 is added to the dehydrated filtrate W3 having a higher phosphorus concentration than other places in the system 1, and the phosphorus contained in the dehydrated filtrate W3 is added to the recovered material A1. The phosphorus recovery product AP adsorbing phosphorus can be obtained by solid-liquid separation, and the phosphorus recovery product AP and dehydrated sludge S9 can be supplied to the mixer 14 together with the composition modifier A2.

また、これらのシステムにおいて組成調整剤A2の添加位置は、混合機14に限定されず、貯槽10と脱水機11との間の汚泥S8に添加してもよく、その場合には、組成調整剤A2も脱水機11で固液分離の対象となるが、組成調整剤A2の添加量と汚泥S8の含水率を考慮すると脱水機11の負荷の増加は問題となる程度ではない。また、混合機14は不要となる。   In these systems, the addition position of the composition adjusting agent A2 is not limited to the mixer 14, and may be added to the sludge S8 between the storage tank 10 and the dehydrator 11, and in that case, the composition adjusting agent A2 is also subject to solid-liquid separation by the dehydrator 11, but an increase in the load on the dehydrator 11 is not a problem when the amount of the composition regulator A2 added and the moisture content of the sludge S8 are taken into consideration. Moreover, the mixer 14 becomes unnecessary.

尚、本発明では、リン回収物等を焼成してりん酸肥料を製造するため、溶融法に比べて低い温度で加熱処理することに加えて、塩素等を含有しないカルシウム系の成分調整剤を用いているため、焼成炉16の腐食が低減される。   In the present invention, in order to produce phosphoric acid fertilizer by firing the phosphorus recovery product and the like, in addition to heat treatment at a lower temperature than the melting method, a calcium-based component adjuster that does not contain chlorine or the like. Since it is used, corrosion of the firing furnace 16 is reduced.

1、21 りん酸肥料製造システム
2 水処理設備
4 混合焼成設備
5 最初沈殿池
6 生物処理槽
7 最終沈殿池
8 遠心濃縮機
9 メタン発酵槽
10 貯槽
11 脱水機
14 混合機
15 ストーカ式焼却炉
16 焼成炉
17 粉砕機
18 パンペレタイザー
19 重力濃縮槽
DESCRIPTION OF SYMBOLS 1,21 Phosphate fertilizer manufacturing system 2 Water treatment equipment 4 Mixed baking equipment 5 First sedimentation tank 6 Biological treatment tank 7 Final sedimentation tank 8 Centrifugal concentrator 9 Methane fermentation tank 10 Storage tank 11 Dehydrator 14 Mixer 15 Stoker type incinerator 16 Firing furnace 17 Pulverizer 18 Pamperetizer 19 Gravity concentration tank

Claims (4)

下水処理施設で発生した下水汚泥と、カルシウム源とを既設の下水処理施設の溶融炉を用いて、焼成温度1150℃以上1350℃以下で焼成することを特徴とするりん酸肥料の製造方法。 A method for producing a phosphate fertilizer, characterized in that sewage sludge generated in a sewage treatment facility and a calcium source are fired at a firing temperature of 1150 ° C or higher and 1350 ° C or lower using a melting furnace of an existing sewage treatment facility. 前記りん酸肥料の酸化カルシウム含有率が35質量%以上60質量%以下であることを特徴する請求項1に記載のりん酸肥料の製造方法。   2. The method for producing phosphate fertilizer according to claim 1, wherein the calcium oxide content of the phosphate fertilizer is 35 mass% or more and 60 mass% or less. 前記溶融炉は、コークスベッド炉、旋回溶融炉又は表面溶融炉であること特徴とする請求項1又は2に記載のりん酸肥料の製造方法。 The said melting furnace is a coke bed furnace, a swirl melting furnace, or a surface melting furnace, The manufacturing method of the phosphoric acid fertilizer of Claim 1 or 2 characterized by the above-mentioned. 前記下水処理施設における汚水を濃縮し、
濃縮した汚水に回収材を添加して該汚水中のリンを前記回収材と反応させた後、脱水してリン回収物及び下水汚泥を得ると共に、
脱水により得られた前記リン回収物及び下水汚泥に前記カルシウム源を混合して焼成することを特徴とする請求項1、2又は3に記載のりん酸肥料の製造方法。
Concentrate sewage in the sewage treatment facility,
After adding a recovery material to the concentrated sewage and reacting phosphorus in the sewage with the recovery material, dewatering to obtain a phosphorus recovery product and sewage sludge,
The method for producing a phosphate fertilizer according to claim 1 , 2 or 3 , wherein the calcium source is mixed with the phosphorus recovery product and sewage sludge obtained by dehydration and calcined.
JP2012183199A 2012-08-22 2012-08-22 Method for producing phosphate fertilizer Expired - Fee Related JP5946721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183199A JP5946721B2 (en) 2012-08-22 2012-08-22 Method for producing phosphate fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183199A JP5946721B2 (en) 2012-08-22 2012-08-22 Method for producing phosphate fertilizer

Publications (2)

Publication Number Publication Date
JP2014040344A JP2014040344A (en) 2014-03-06
JP5946721B2 true JP5946721B2 (en) 2016-07-06

Family

ID=50392955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183199A Expired - Fee Related JP5946721B2 (en) 2012-08-22 2012-08-22 Method for producing phosphate fertilizer

Country Status (1)

Country Link
JP (1) JP5946721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017019702A (en) * 2015-07-14 2017-01-26 三井造船株式会社 Method for producing liquid fertilizer
CN110790249B (en) * 2019-11-17 2024-02-27 南通职业大学 Method and equipment for treating phosphorus-containing wastewater

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3710552B2 (en) * 1996-05-09 2005-10-26 明治乳業株式会社 Easy firing method for difficult-to-fire materials
JP2001321749A (en) * 2000-05-18 2001-11-20 Nkk Corp Method for treating organic sludge
JP2002166165A (en) * 2000-12-04 2002-06-11 Kangen Yoyu Gijutsu Kenkyusho:Kk Method of decomposing fluorocarbon
JP2003145093A (en) * 2001-11-14 2003-05-20 Nkk Corp Method of manufacturing molten solidified body
JP4950609B2 (en) * 2006-09-13 2012-06-13 新日鉄エンジニアリング株式会社 Asbestos waste treatment equipment
JP5039634B2 (en) * 2008-05-30 2012-10-03 株式会社神鋼環境ソリューション Waste treatment facility and waste treatment method
JP5188640B2 (en) * 2011-06-27 2013-04-24 太平洋セメント株式会社 Phosphate fertilizer and method for producing the same
JP5988684B2 (en) * 2012-05-15 2016-09-07 太平洋セメント株式会社 Method for producing phosphate fertilizer
JP5984572B2 (en) * 2011-08-10 2016-09-06 太平洋セメント株式会社 Phosphate fertilizer and method for producing the same

Also Published As

Publication number Publication date
JP2014040344A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
KR101925418B1 (en) Method for producing phosphate fertilizer
KR101941319B1 (en) Phosphate fertilizer and method for producing phosphate fertilizer
JP6021181B2 (en) Phosphate fertilizer manufacturing apparatus and manufacturing method
JP6391142B2 (en) Method for producing phosphate fertilizer
JP5800388B2 (en) Phosphate fertilizer manufacturing system and manufacturing method
JP5946721B2 (en) Method for producing phosphate fertilizer
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
JP6804132B2 (en) Silicic acid fertilizer and its manufacturing method
JP5984572B2 (en) Phosphate fertilizer and method for producing the same
JP6722969B2 (en) Silicate fertilizer and method for producing the same
JP6022226B2 (en) Method for producing silicate phosphate fertilizer
JP3684410B2 (en) Sewage sludge treatment method and treated sewage sludge
JP6025540B2 (en) Method for producing phosphate fertilizer
JP5988684B2 (en) Method for producing phosphate fertilizer
JP5188640B2 (en) Phosphate fertilizer and method for producing the same
JP5954777B2 (en) Method for producing phosphate fertilizer
JP6021182B2 (en) Method for producing a bitter earth phosphate fertilizer
JP6804131B2 (en) Silicic acid fertilizer and its manufacturing method
JP7079101B2 (en) How to make silicic acid fertilizer
JP6282035B2 (en) Phosphate fertilizer and method for producing the same
WO2015039718A1 (en) Method for recovering phosphorous
TW201518213A (en) A method of fabricating a calcium compound and a neutral soil
JP2016138023A (en) Manufacturing method of phosphoric acid fertilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5946721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees