JP5800388B2 - Phosphate fertilizer manufacturing system and manufacturing method - Google Patents

Phosphate fertilizer manufacturing system and manufacturing method Download PDF

Info

Publication number
JP5800388B2
JP5800388B2 JP2011226063A JP2011226063A JP5800388B2 JP 5800388 B2 JP5800388 B2 JP 5800388B2 JP 2011226063 A JP2011226063 A JP 2011226063A JP 2011226063 A JP2011226063 A JP 2011226063A JP 5800388 B2 JP5800388 B2 JP 5800388B2
Authority
JP
Japan
Prior art keywords
raw material
incineration
phosphate fertilizer
firing
fertilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011226063A
Other languages
Japanese (ja)
Other versions
JP2013086981A (en
Inventor
野村 幸治
幸治 野村
今井 敏夫
敏夫 今井
雅也 戸田
雅也 戸田
信孝 美濃和
信孝 美濃和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Original Assignee
Taiheiyo Cement Corp
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Onoda Chemical Industry Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2011226063A priority Critical patent/JP5800388B2/en
Publication of JP2013086981A publication Critical patent/JP2013086981A/en
Application granted granted Critical
Publication of JP5800388B2 publication Critical patent/JP5800388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Description

本発明は、下水汚泥および/またはその由来物を原料とした、りん酸肥料の製造システムおよび製造方法に関する。   The present invention relates to a phosphate fertilizer manufacturing system and manufacturing method using sewage sludge and / or a derivative thereof as a raw material.

従来、我が国は、天然資源として、りんが産出されないため、ほぼ全量を輸入に頼っていた。しかし、近年、天然のりん資源は世界的にも枯渇しつつあり、りんの価格が高騰しているため、りんの確保は難しくなっている。そこで、りん酸肥料の製造分野では、天然のりん資源を補完または代替するものとして、りんを多量に含む下水汚泥やその由来物が考えられている。ここで、該由来物とは、例えば、下水汚泥を処理して得られる脱水汚泥、乾燥汚泥および炭化汚泥などが挙げられる。
ところで、我が国において、該由来物は、現在、合計で約900万トン/年と大量に発生し、この減容化のために、通常は焼却されているが、焼却後に残る焼却灰でも、約30万トン/年にも達する。そして、近年、この焼却灰の埋め立てに使う最終処分場はひっ迫しており、焼却灰の処理が更なる課題となっている。
したがって、肥料の原料として、下水汚泥および/またはその由来物(以下「下水汚泥等」という。)を活用する技術は、天然りん資源の枯渇問題のほかに、下水汚泥等の最終処分という社会的要請に応え得る手段としても、極めて重要である。
Traditionally, Japan has relied on imports for almost all the amount of phosphorus because it does not produce phosphorus as a natural resource. However, in recent years, natural phosphorus resources have been depleted worldwide, and the price of phosphorus has soared, making it difficult to secure phosphorus. Therefore, in the field of manufacturing phosphate fertilizers, sewage sludge containing a large amount of phosphorus and its derived substances are considered as a supplement or substitute for natural phosphorus resources. Here, examples of the derived material include dehydrated sludge, dried sludge and carbonized sludge obtained by treating sewage sludge.
By the way, in Japan, the derived substances are currently generated in a large amount of about 9 million tons / year, and in order to reduce the volume, they are usually incinerated. It reaches 300,000 tons / year. In recent years, the final disposal site used for incineration of incineration ash has become tight, and the treatment of incineration ash has become a further issue.
Therefore, the technology that uses sewage sludge and / or its derived material (hereinafter referred to as “sewage sludge”) as a raw material for fertilizers is a social problem of final disposal of sewage sludge in addition to the problem of exhaustion of natural phosphorus resources. It is also extremely important as a means of responding to requests.

かかる状況を受けて、下水汚泥等をりん酸肥料として有効利用する方法が、いくつか提案されている。
例えば、特許文献1には、下水等を浄化する際に発生するスラリー状汚泥を、濃縮、脱水し、脱水した汚泥を溶融し、次いで冷却固化するか、または、前記脱水汚泥を焼却し、その焼却灰を溶融し、次いで冷却固化するなどして、溶成リン肥(汚泥溶融固化体)を製造する方法が提案されている。
また、特許文献2には、下水等を浄化する際に発生するスラリー状汚泥を、濃縮、脱水し、脱水した汚泥を脱硫剤(CaO等)の存在下で焼却して生じる焼却灰を原料に用い、前記原料にMgO等を添加し、酸化雰囲気で1350℃以上で熔融した後、冷却固化して、肥料(熔融固化体)を製造する方法が提案されている。
In response to this situation, several methods for effectively using sewage sludge as phosphate fertilizer have been proposed.
For example, in Patent Document 1, slurry sludge generated when purifying sewage or the like is concentrated and dewatered, and the dewatered sludge is melted and then cooled and solidified, or the dewatered sludge is incinerated. There has been proposed a method for producing dissolved phosphorus fertilizer (sludge melt solidified body) by melting incinerated ash and then solidifying by cooling.
Patent Document 2 also uses incinerated ash generated by concentrating and dewatering sludge sludge generated when purifying sewage, etc., and incinerating the dewatered sludge in the presence of a desulfurizing agent (CaO, etc.) as a raw material. A method has been proposed in which MgO or the like is added to the raw material, melted at 1350 ° C. or higher in an oxidizing atmosphere, and then cooled and solidified to produce a fertilizer (melted solid).

特開平09−328384号公報JP 09-328384 A 特開2003−145093号公報JP 2003-145093 A

しかし、いずれの製造方法も、溶融法を用いているため、溶融によるエネルギーの消費量が多く、また、連続生産ができないため、生産効率が低いという課題があるにもかかわらず、前記文献のいずれにも、省エネルギーや生産性向上の手段について何ら記載されていない。
また、下水汚泥、脱水ケーキ等では、焼却処理において発生する熱エネルギーが、その後の肥料化工程において有効利用されないという、エネルギーの有効利用上の課題もある。
したがって、本発明は、下水汚泥等を原料とし、エネルギー効率や生産効率が高い、りん酸肥料の製造システムおよび製造方法を提供することを目的とする。
However, since any manufacturing method uses a melting method, energy consumption due to melting is large, and continuous production is not possible. In addition, there is no description on energy saving or productivity improvement means.
In addition, in sewage sludge, dehydrated cake, and the like, there is a problem in the effective use of energy that the thermal energy generated in the incineration process is not effectively used in the subsequent fertilizer process.
Accordingly, an object of the present invention is to provide a phosphate fertilizer manufacturing system and method using sewage sludge and the like as raw materials and having high energy efficiency and production efficiency.

本発明者は、前記目的を達成するために鋭意検討した結果、原料としての下水汚泥等と、カルシウム源を混合して混合原料を得るための手段と、該混合原料に対し焼却および焼成を連続して行ってりん酸肥料を得るための手段とを、少なくとも含むりん酸肥料の製造システムは、前記溶融法と比べて、エネルギー効率および生産効率が高く、かつ焼成に用いるエネルギーを有効に利用することができること見い出し、本発明を完成させた。   As a result of intensive studies to achieve the above-mentioned object, the present inventor, as a raw material, sewage sludge, etc., a means for mixing a calcium source to obtain a mixed raw material, and continuously incinerating and firing the mixed raw material And the phosphate fertilizer manufacturing system including at least a means for obtaining the phosphate fertilizer is higher in energy efficiency and production efficiency than the melting method, and effectively uses the energy used for firing. The present invention has been completed.

すなわち、本発明は、以下の[1]〜[12]を提供する。
[1]下水汚泥および/またはその由来物と、カルシウム源を混合して、混合原料を得るための原料混合手段と、
該混合原料に対し、焼却温度が800〜900℃、および焼成温度が1200〜1300℃で、焼却および焼成を連続して行って、りん酸肥料を得るための焼却焼成手段であって、混合原料を仮焼するための仮焼手段を有してなる焼却焼成手段とを、
少なくとも含む、りん酸肥料の製造システム。
[2]前記原料混合手段が、混合原料を造粒または成形するための造粒成形手段を併有する、前記[1]に記載のりん酸肥料の製造システム。
[3]前記焼却焼成手段が、重金属を揮発させて除去するための塩化揮発手段、塩素を除去するための塩素バイパス手段、および、還元雰囲気下で焼成して重金属を除去するための還元焼成手段から選ばれる、少なくとも1つ以上の手段を併有する、前記[1]または[2]のいずれか1項に記載のりん酸肥料の製造システム。
[4]前記焼却焼成手段において、焼却手段が流動床式焼却炉であり、焼成手段がロータリーキルンである、前記[1]〜[3]に記載のりん酸肥料の製造システム。
[5]さらに、原料が下水汚泥および/または脱水汚泥である場合において、該原料または混合原料を乾燥するための乾燥手段を含む、前期[1]〜[4]のいずれか1項に記載のりん酸肥料の製造システム。
That is, the present invention provides the following [1] to [12].
[1] Raw material mixing means for mixing a sewage sludge and / or a derivative thereof and a calcium source to obtain a mixed raw material,
An incineration and burning means for obtaining phosphoric acid fertilizer by continuously performing incineration and firing at an incineration temperature of 800 to 900 ° C and a firing temperature of 1200 to 1300 ° C with respect to the mixed raw material, An incineration calcination means having a calcination means for calcination ,
A phosphate fertilizer manufacturing system including at least.
[2] The phosphate fertilizer manufacturing system according to [1], wherein the raw material mixing unit includes a granulation forming unit for granulating or forming the mixed raw material.
[3] The incineration and firing means includes a chlorination and volatilization means for volatilizing and removing heavy metals, a chlorine bypass means for removing chlorine, and a reduction firing hand for firing and removing heavy metals in a reducing atmosphere. stage or al selected, having both at least one or more means, the [1] or [2] production systems phosphate fertilizer according to any one of.
[4] The phosphate fertilizer manufacturing system according to [1] to [3], wherein the incineration and firing unit is a fluidized bed incinerator and the firing unit is a rotary kiln.
[5] Furthermore, when the raw material is sewage sludge and / or dewatered sludge, the method according to any one of [1] to [4], further comprising a drying means for drying the raw material or the mixed raw material. Phosphate fertilizer production system.

[6]前記乾燥手段が、前記原料または前記混合原料を造粒または成形するための造粒成形手段を併有する、前記[5]に記載のりん酸肥料の製造システム。
[7]前記乾燥手段において、前記原料または前記混合原料を乾燥するための熱の一部または全部に、前記焼却焼成手段において発生する排ガスの熱を用いる、前記[5]または[6]に記載のりん酸肥料の製造システム。
[8]カルシウム源の添加が、前記乾燥手段、前記原料混合手段、および、前記焼却焼成手段から選ばれる、少なくとも1つ以上の手段において行われる、前記[1]〜[7]のいずれか1項に記載のりん酸肥料の製造システム。
[9]さらに、前記焼却焼成手段および/または前記乾燥手段において発生する排ガスを、処理するための排ガス処理手段を含む、前記[1]〜[8]のいずれか1項に記載のりん酸肥料の製造システム。
なお、前記の乾燥手段において発生する排ガスは、水蒸気を含むガスである。
[10]前記排ガス処理手段が、排ガスを急冷するための排ガス急冷手段を併有する、前記[1]〜[9]のいずれか1項に記載のりん酸肥料の製造システム。
[11]前記[1]〜[10]のいずれか1項に記載のりん酸肥料の製造システムを用いたりん酸肥料の製造方法であって、前記焼却焼成手段における焼却温度が700〜1000℃、および、焼成温度が1150〜1350℃である、りん酸肥料の製造方法。
[12]前記リン酸肥料中のCaO含有率が30〜55質量%となるように調製した混合原料を、前記焼却温度および前記焼成温度で焼却および焼成する、前記[11]に記載のりん酸肥料の製造方法。
[6] The phosphate fertilizer manufacturing system according to [5], wherein the drying means includes granulation molding means for granulating or molding the raw material or the mixed raw material.
[7] The above [5] or [6], wherein in the drying means, heat of exhaust gas generated in the incineration and firing means is used as a part or all of heat for drying the raw material or the mixed raw material. Phosphate fertilizer manufacturing system.
[8] Any one of the above [1] to [7], wherein the calcium source is added in at least one means selected from the drying means, the raw material mixing means, and the incineration firing means. The manufacturing system of the phosphoric acid fertilizer of clause.
[9] The phosphate fertilizer according to any one of [1] to [8], further including an exhaust gas treatment means for treating exhaust gas generated in the incineration and firing means and / or the drying means. Manufacturing system.
The exhaust gas generated in the drying means is a gas containing water vapor.
[10] The phosphate fertilizer manufacturing system according to any one of [1] to [9], wherein the exhaust gas treatment unit includes an exhaust gas quenching unit for rapidly cooling the exhaust gas.
[11] A method for producing phosphate fertilizer using the phosphate fertilizer production system according to any one of [1] to [10], wherein the incineration temperature in the incineration and firing means is 700 to 1000 ° C. And the manufacturing method of phosphoric acid fertilizer whose baking temperature is 1150-1350 degreeC.
[12] The phosphoric acid according to [11], wherein the mixed raw material prepared so that the CaO content in the phosphate fertilizer is 30 to 55% by mass is incinerated and calcined at the incineration temperature and the calcining temperature. Fertilizer manufacturing method.

本発明のりん酸肥料の製造システムは、エネルギー効率および生産効率が高い。また、本発明のりん酸肥料の製造方法によれば、りん酸のく溶率やけい酸の可溶率が高いりん酸肥料を製造することができる。   The phosphate fertilizer manufacturing system of the present invention has high energy efficiency and production efficiency. Moreover, according to the manufacturing method of the phosphate fertilizer of this invention, the phosphate fertilizer with the high solubility rate of phosphoric acid and the solubility rate of a silicic acid can be manufactured.

本発明のりん酸肥料の製造システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing system of the phosphate fertilizer of this invention.

本発明のりん酸肥料の製造システムは、前記のとおり、原料混合手段と焼却焼成手段を、必須の手段として含み、これらに、さらに乾燥手段や排ガス処理手段などを、任意の手段として含むものである。また、本発明のりん酸肥料の製造方法は、前記りん酸肥料の製造システムを用いた製造方法であって、焼却温度および焼成温度が特定の範囲にあるもの等である。
以下に、本発明について、概ね、前記[1]〜[12]に記載の発明の構成要素ごとに、詳細に説明する。
As described above, the phosphate fertilizer manufacturing system of the present invention includes the raw material mixing means and the incineration firing means as essential means, and further includes a drying means, an exhaust gas treatment means, and the like as optional means. Moreover, the manufacturing method of the phosphate fertilizer of this invention is a manufacturing method using the manufacturing system of the said phosphate fertilizer, Comprising: An incineration temperature and a calcination temperature are in a specific range.
Hereinafter, the present invention will be described in detail for each component of the invention described in [1] to [12].

1.りん酸肥料の製造システム
(1)原料混合手段
該手段は、原料である下水汚泥等と、カルシウム源とを混合して、混合原料を調製するための手段であり、具体的には、ミキサー、混練機、および、エアーブレンディング等が挙げられる。一般に、下水汚泥等はカルシウムの含有率が低いため、カルシウム源を混合してりん酸肥料中のカルシウムを補う必要があり、りん酸肥料中のカルシウムの含有率が前記範囲内にあれば、りん酸肥料中のりん酸のく溶率や、けい酸の可溶率が高くなる傾向がある。
1. Phosphate fertilizer manufacturing system (1) Raw material mixing means The means is a means for preparing a mixed raw material by mixing raw material sewage sludge and the like with a calcium source. Specifically, a mixer, Examples thereof include a kneader and air blending. In general, since sewage sludge has a low calcium content, it is necessary to mix calcium sources to supplement calcium in the phosphate fertilizer. If the calcium content in the phosphate fertilizer is within the above range, phosphorus There exists a tendency for the solubility of phosphoric acid in acid fertilizer and the solubility of silicic acid to become high.

ここで、下水汚泥等やカルシウム源の添加方法として、下水汚泥等に対して、カルシウム源を添加するほか、反対に、カルシウム源に対して、下水汚泥等を添加してもよい。また、該添加の作業は、りん酸肥料の製造工場において行うほかに、下水処理場において実施されている流入水処理あるいは下水汚泥の濃縮、混合、消化、脱水、乾燥、および焼却等の各工程の前後において行ってもよい。含水率が高い下水汚泥と、カルシウム源との混合は、比較的容易に行うことができ、また、均質な混合原料が得られるため、原料混合手段の簡素化や、製造システムのエネルギー効率および生産効率の向上を図ることができる。
また、カルシウム源の添加は、前記の原料混合手段、乾燥手段および焼却焼成手段から選ばれる、少なくとも1つ以上の手段において行ってもよい。
Here, as a method for adding sewage sludge and the calcium source, in addition to adding the calcium source to the sewage sludge, the sewage sludge may be added to the calcium source. In addition to the addition of phosphate fertilizer at the manufacturing plant, each process of inflow water treatment or sewage sludge concentration, mixing, digestion, dehydration, drying, incineration, etc. performed in a sewage treatment plant. You may carry out before and after. Mixing of sewage sludge with a high water content and calcium source is relatively easy, and since a homogeneous mixed raw material is obtained, the raw material mixing means can be simplified and the energy efficiency and production of the manufacturing system can be achieved. Efficiency can be improved.
The calcium source may be added in at least one means selected from the raw material mixing means, drying means, and incineration firing means.

また、前記原料混合手段は、混合原料を造粒または成形するための造粒成形手段を併有するものが好ましい。混合原料の造粒物や成形物の焼成は、安定的な肥料化物の生成にすぐれており、また、製造システムのエネルギー効率や生産効率を高めることができる。造粒成形手段として、例えば、パンペレタイザー、パン型ミキサー、撹拌造粒機、ブリケットマシン、ロールプレス、押し出し成型機などが挙げられる。なお、造粒成形の際に、ベントナイト、セメント、固化材、増粘剤等の賦形剤を添加したり、また、肥料の用途に応じて、カリやマグネシウム等のその他の肥料成分を新たに添加してもよい。   Further, the raw material mixing means preferably has a granulating and forming means for granulating or forming the mixed raw material. Sintering of the granulated product or molded product of the mixed raw material is excellent in producing a stable fertilizer, and can increase the energy efficiency and production efficiency of the production system. Examples of the granulating and forming means include a bread pelletizer, a bread type mixer, a stirring granulator, a briquette machine, a roll press, and an extrusion molding machine. During granulation molding, excipients such as bentonite, cement, solidifying material, thickener, etc. are added, and other fertilizer components such as potash and magnesium are newly added according to the use of fertilizer. It may be added.

次に、下水汚泥等とカルシウム源について説明する。
(i)下水汚泥等(下水汚泥、その由来物)
下水汚泥等として、下水汚泥、脱水汚泥、乾燥汚泥および炭化汚泥から選ばれる、少なくとも1種以上が挙げられる。
前記下水汚泥は、下水処理場における、下水や排水などの汚水を処理する過程において、汚水から沈殿や濾過などにより分離して得た、有機物や無機物を含む泥状物である。下水汚泥には、該泥状物を嫌気性条件下で微生物処理(消化)して得られる消化汚泥も含む。また、一般に、下水処理場において、汚水は最初沈澱池に導かれ、汚水中の土砂や固形物を沈澱させて一次分離した後、曝気設備において曝気され、さらに最終沈澱池に導かれるが、前記下水汚泥の分離は、それぞれの沈殿池に残存する汚泥を沈澱させて濾過等することにより行われる。
Next, the sewage sludge and the calcium source will be described.
(I) Sewage sludge, etc. (sewage sludge, its origin)
Examples of the sewage sludge include at least one selected from sewage sludge, dewatered sludge, dried sludge, and carbonized sludge.
The sewage sludge is a mud containing organic matter and inorganic matter obtained by separating from sewage by sedimentation or filtration in the process of treating sewage such as sewage or drainage in a sewage treatment plant. Sewage sludge also includes digested sludge obtained by microbial treatment (digestion) of the sludge under anaerobic conditions. Further, generally, in a sewage treatment plant, sewage is first led to a sedimentation basin, sedimented sediment and solids in the sewage and primarily separated, then aerated in an aeration facility, and further led to a final sedimentation basin. Separation of sewage sludge is performed by precipitating sludge remaining in each sedimentation basin and filtering.

ここで、前記脱水汚泥は、下水汚泥を遠心分離等により脱水して得られる、含水率が70〜90質量%程度の汚泥である。脱水汚泥は、下水汚泥の一種として下水汚泥に含める場合もあるが、本発明では、脱水汚泥を下水汚泥とは別物として扱う。
また、前記乾燥汚泥は、前記下水汚泥または脱水汚泥を、天日干しまたは乾燥機により乾燥して得られる、含水率が概ね50質量%以下の汚泥である。
また、前記炭化汚泥は、下水汚泥、脱水汚泥または乾燥汚泥を加熱して、これらに含まれる有機物の一部または全部を炭化物としたものである。該加熱温度は、一般に、低酸素状態において200〜800℃である。炭化汚泥は、原料のほかに、りん酸肥料の製造(焼成)において燃料の一部にもなるため、その分、焼成に要するエネルギーを節約することができる。
Here, the dewatered sludge is a sludge having a water content of about 70 to 90% by mass obtained by dewatering sewage sludge by centrifugation or the like. The dewatered sludge may be included in the sewage sludge as a kind of sewage sludge, but in the present invention, the dewatered sludge is handled separately from the sewage sludge.
The dried sludge is a sludge having a water content of approximately 50% by mass or less, obtained by drying the sewage sludge or dewatered sludge by sun drying or drying.
The carbonized sludge is obtained by heating sewage sludge, dewatered sludge, or dried sludge so that part or all of the organic matter contained therein is converted to carbide. The heating temperature is generally 200 to 800 ° C. in a low oxygen state. Since the carbonized sludge becomes a part of the fuel in the production (calcination) of phosphate fertilizer in addition to the raw material, the energy required for the calcination can be saved correspondingly.

(ii)カルシウム源
カルシウム源は、りん酸肥料中のCaOの含有率が、前記の特定の範囲内になるように調整するために用いられる。カルシウム源として、例えば、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、りん酸カルシウム、塩化カルシウム、硫酸カルシウム、石灰石、生石灰、消石灰、セメント、鉄鋼スラグ、石膏、生コンプラントから発生するスラッジ、および、鶏糞等の畜産糞やその由来物などから選ばれる、少なくとも1種以上が挙げられる。これらの中でも、炭酸カルシウムや石灰石は、入手が容易でカルシウムの含有率が高いため好ましい。また、鶏糞およびその由来物は、カルシウムのほか、りんやカリの含有率が高いため、下水汚泥等と混合しても、混合原料中のりんの含有率は高く維持できるほか、肥料の他の重要成分であるカリを、りん酸肥料に加えることができるため好ましい。ここで、鶏糞の由来物として、例えば、発酵鶏糞、乾燥鶏糞、炭化鶏糞、鶏糞焼却灰、および、鶏糞溶融スラグから選ばれる、少なくとも1種以上が挙げられる。
(Ii) Calcium source The calcium source is used to adjust the CaO content in the phosphate fertilizer to be within the specific range. As calcium sources, for example, calcium carbonate, calcium oxide, calcium hydroxide, calcium phosphate, calcium chloride, calcium sulfate, limestone, quicklime, slaked lime, cement, steel slag, gypsum, sludge generated from raw concrete, chicken manure, etc. And at least one selected from livestock excrement and its derivatives. Among these, calcium carbonate and limestone are preferable because they are easily available and have a high calcium content. In addition to calcium, the poultry manure and its derivatives have a high content of phosphorus and potash, so even if mixed with sewage sludge, etc., the content of phosphorus in the mixed raw material can be kept high. Potash, which is an important component, is preferable because it can be added to the phosphate fertilizer. Here, examples of the derived material of chicken dung include at least one selected from fermented chicken dung, dried chicken dung, carbonized chicken dung, chicken dung incineration ash, and chicken dung molten slag.

一般に、下水汚泥等はSiOを多く含むため、通常、シリカ源を添加する場合は少ないが、SiOの含有率が少ない場合は、適宜、けい石やけい酸カルシウムなどのシリカ源を添加してもよい。 In general, since sewage sludge contains a large amount of SiO 2 , the silica source is usually added in a small amount. However, when the content of SiO 2 is low, a silica source such as silica or calcium silicate is appropriately added. May be.

(2)焼却焼成手段
該手段は、混合原料に対し焼却および焼成を連続して行って、りん酸肥料を得るための手段であり、焼却手段として焼却炉が、焼成手段として焼成炉が挙げられる。さらに具体的には、焼却炉として、乾溜ガス化炉、ストーカー式焼却炉、流動床式焼却炉、ロータリーキルン式焼却炉などが挙げられ、また、焼成炉として、ロータリーキルン、電気炉などが挙げられる。
ここで、前記の「焼却および焼成を連続して行って」とは、焼却焼成手段において、混合原料を焼却して得た灰が冷却した後に、該灰を焼成するという態様を排除する主旨である。したがって、焼却および焼成を連続して行うためには、前記焼却炉と前記焼成炉が連結しているか、または、一体となっていることが好ましい。具体的には、焼却炉と焼成炉が連結した焼却焼成手段として、流動床式焼却炉とロータリーキルンが連結した炉や、立型多段式焼却炉とロータリーキルンが連結した炉、または、ロータリーキルン式焼却炉とロータリーキルンが連結した炉が好ましい。また、焼却炉と焼成炉が一体となった焼却焼成手段として、前記焼却温度および前記焼成温度の範囲に温度領域を設けたロータリーキルン内を、混合原料を移動させながら、焼却と焼成を順次行う方式の炉が好ましい。これらの炉を用いることにより、製造システムのエネルギー効率や生産効率は飛躍的に向上する。
(2) Incineration and firing means The means is a means for continuously incinerating and firing the mixed raw material to obtain a phosphate fertilizer. An incinerator is used as the incineration means, and a firing furnace is used as the firing means. . More specifically, examples of the incinerator include a dry distillation gasification furnace, a stalker type incinerator, a fluidized bed type incinerator, and a rotary kiln type incinerator, and examples of the firing furnace include a rotary kiln and an electric furnace.
Here, “continuously performing incineration and calcination” is intended to exclude an aspect in which incineration and calcination means, after the ash obtained by incineration of the mixed raw material is cooled, the ash is calcined. is there. Therefore, in order to continuously perform incineration and firing, it is preferable that the incinerator and the firing furnace are connected or integrated. Specifically, as an incineration and burning means in which an incinerator and a firing furnace are connected, a fluidized bed incinerator and a rotary kiln connected furnace, a vertical multistage incinerator and a rotary kiln connected furnace, or a rotary kiln type incinerator And a kiln connected with a rotary kiln are preferred. Further, as an incineration and firing means in which an incinerator and a firing furnace are integrated, a method of sequentially performing incineration and firing while moving a mixed raw material in a rotary kiln provided with a temperature region in the range of the incineration temperature and the firing temperature. The furnace is preferred. By using these furnaces, the energy efficiency and production efficiency of the manufacturing system are dramatically improved.

また、前記焼却焼成手段は、塩化揮発手段、塩素バイパス手段、還元焼成手段、および、仮焼手段から選ばれる、少なくとも1つ以上の手段を併有することが好ましい。
ここで、塩化揮発手段とは、主として、非鉄精錬分野において、精錬副産物である残渣を有効利用するために、これらに不純物として含まれている銅、鉛、亜鉛等を、沸点の低い塩化物の形で揮発させて回収するものである。具体的には、塩化カルシム等の塩素源を添加し、ロータリーキルン等の焼成炉を用いて高温で加熱処理することにより前記重金属が得られる。従って、このような技術を組み合わせることにより、下水汚泥等に含まれる鉛や亜鉛などの重金属を、沸点が比較的低い重金属塩化物とし、該塩化物を揮発させて回収することができる。
塩素バイパス手段とは、主として、セメント製造分野において培われた基本技術であって、燃料や原料中に含まれている塩素源が、同じく、燃料や原料中に含まれているアルカリ源とともに、高温の焼成キルン中で揮発し、焼成工程の一部において、これらが濃縮するという性質を利用したものである。具体的には、塩素バイパス手段は、下水汚泥等に含まれる塩素が揮発した状態で含まれている燃焼ガスの一部を、焼却炉または焼成炉の排ガスの流路から抽気し冷却して生成する塩素を含むダストを、分離して回収するための手段であり、下水汚泥等中の塩素やアルカリ源の抑制に資するものである。前記塩素源またはアルカリ源に過不足がある場合は、外部から塩素源またはアルカリ源を添加して調整してもよい。
還元焼成手段とは、前記塩化揮発法と同様に、主として、非鉄製錬の分野において、低品位の原料を亜鉛や鉛等を除去するために開発された技術であって、下水汚泥等を還元雰囲気下で焼成して重金属を還元し、該重金属を揮発させて回収するための手段であり、塩化揮発法と同様に、下水汚泥等中の重金属類の除去に資するものである。また、仮焼手段は、焼成工程全体のエネルギー効率を高めるために、排ガス等の各種廃棄エネルギーを活用して混合原料全体またはその一部を800〜1000℃で、予め仮焼するための手段であり、例えば、焼成手段に併設された仮焼炉が好ましく、該仮焼炉の中でも、セメント製造工程等で活用されているサスペンションプレヒータは、脱硫塔として機能し、汚泥の焼却や焼成により発生するSOxが、大気中へ放出されることを抑制するため、より好ましい。
Moreover, it is preferable that the said incineration baking means has at least 1 or more means chosen from a chlorination volatilization means, a chlorine bypass means, a reduction baking means, and a calcination means.
Here, the chlorination volatilization means mainly in the field of non-ferrous refining, in order to effectively use the residue that is a by-product of refining, copper, lead, zinc, etc. contained therein as impurities, It is volatilized and recovered in the form. Specifically, the heavy metal is obtained by adding a chlorine source such as calcium chloride and heat-treating it at a high temperature using a firing furnace such as a rotary kiln. Therefore, by combining such techniques, heavy metals such as lead and zinc contained in sewage sludge and the like can be converted into heavy metal chlorides having a relatively low boiling point, and the chlorides can be volatilized and recovered.
Chlorine bypass means is a basic technology cultivated mainly in the cement manufacturing field, where chlorine sources contained in fuels and raw materials are similarly heated together with alkali sources contained in fuels and raw materials. It volatilizes in the firing kiln and utilizes the property that they are concentrated in part of the firing process. Specifically, the chlorine bypass means generates a part of the combustion gas contained in the volatile state of chlorine contained in the sewage sludge by extracting it from the incinerator or the exhaust gas flow path of the kiln and cooling it. This is a means for separating and recovering dust containing chlorine, which contributes to suppression of chlorine and alkali sources in sewage sludge and the like. When the chlorine source or alkali source is excessive or deficient, it may be adjusted by adding a chlorine source or alkali source from the outside.
Like the chlorination volatilization method, the reduction firing means is a technology developed to remove zinc and lead from low-grade raw materials mainly in the field of non-ferrous smelting, and reduces sewage sludge and the like. It is a means for reducing the heavy metal by calcination in the atmosphere and volatilizing and recovering the heavy metal, and contributes to the removal of heavy metals in sewage sludge and the like, similar to the chlorination volatilization method. The calcining means is a means for calcining the entire mixed raw material or a part thereof at 800 to 1000 ° C. in advance using various waste energies such as exhaust gas in order to increase the energy efficiency of the entire firing process. Yes, for example, a calcining furnace attached to the calcining means is preferable, and among these calcining furnaces, the suspension preheater utilized in the cement manufacturing process or the like functions as a desulfurization tower and is generated by incineration or firing of sludge. SOx is more preferable because it suppresses release into the atmosphere.

(3)乾燥手段
該手段は、原料が下水汚泥および/または脱水汚泥である場合に、該原料または混合原料を乾燥するための手段である。該手段を用いて、予め原料等を乾燥させることにより、その後に続く焼却焼成手段において、焼却に要するエネルギーを大幅に節減することができる。具体的には、該手段として、箱型乾燥機、気流乾燥機などの対流伝熱乾燥機、振動乾燥器、回転乾燥機などの伝導伝熱乾燥機、赤外線−遠赤外線乾燥機などの輻射伝熱乾燥機などが挙げられる。
(3) Drying means The means is means for drying the raw material or the mixed raw material when the raw material is sewage sludge and / or dehydrated sludge. By using this means to dry the raw materials and the like in advance, the energy required for incineration can be greatly reduced in the subsequent incineration and firing means. Specifically, as such means, convection heat transfer dryers such as box-type dryers and airflow dryers, conduction heat transfer dryers such as vibration dryers and rotary dryers, and radiation transfer such as infrared-far infrared dryers. Examples include a heat dryer.

また、前記乾燥手段は、混合原料を造粒または成形するための造粒成形手段を併有してもよい。かかる場合に、前記と同様に、製造システムのエネルギー効率や生産効率を高めることができる。かかる造粒成形手段として、例えば、パンペレタイザー、パン型ミキサー、撹拌造粒機、ブリケットマシン、ロールプレス、押し出し成型機などが挙げられる。なお、造粒成形の際に、ベントナイト、セメント、固化材、増粘剤等の賦形剤を添加したり、また、肥料の用途に応じて、カリやマグネシウム等のその他の肥料成分を新たに添加してもよい。   Further, the drying means may have a granulation forming means for granulating or forming the mixed raw material. In such a case, the energy efficiency and production efficiency of the manufacturing system can be increased as described above. Examples of the granulating and forming means include a bread pelletizer, a bread type mixer, a stirring granulator, a briquette machine, a roll press, and an extrusion molding machine. During granulation molding, excipients such as bentonite, cement, solidifying material, thickener, etc. are added, and other fertilizer components such as potash and magnesium are newly added according to the use of fertilizer. It may be added.

前記乾燥手段において、前記原料または混合原料を乾燥するための熱の一部または全部に、前記焼却焼成手段において発生する排ガスの熱を用いるのが好ましい。これにより、乾燥に用いる熱エネルギーを節減することができる。   In the drying means, it is preferable to use the heat of the exhaust gas generated in the incineration and firing means for part or all of the heat for drying the raw material or the mixed raw material. Thereby, the thermal energy used for drying can be saved.

(4)排ガス処理手段
該手段は、前記焼却焼成手段において発生する排ガスや、また、前記乾燥手段を含む製造システムの場合には、さらに乾燥手段において発生する排ガスも、合わせて処理するための手段である。排ガス処理工程での除去対象物質は、ばいじん、硫黄酸化物、塩化水素、窒素酸化物、アンモニア、ダイオキシン類、揮発性有機化合物、およびアンモニア等の悪臭物質などで、これら焼却焼成手段や乾燥手段において発生する排ガスを、同時に1つの排ガス処理手段で処理することにより、排ガス処理手段の一元化や簡素化を図ることができる。特に、汚泥を焼却する場合には、温暖化物質である一酸化二窒素の発生を、後段の焼成炉の高温の熱により大幅に抑制できるという副次的効果も奏することができる。
具体的な排ガス処理手段として、冷却装置、吸着装置、凝縮装置、脱臭装置のほか、ばいじん除去のためのバグフィルターや電気集塵機、硫黄酸化物や塩化水素の対策としての石灰等のアルカリ添加を行う脱硫・脱塩化水素装置、スクラバ、窒素対策としての無触媒脱硝装置、アンモニア触媒還元装置、および、未燃分の完全燃焼のための再燃焼装置等から選ばれる、少なくとも1種以上の装置が挙げられる。
(4) Exhaust gas treatment means The means is a means for treating exhaust gas generated in the incineration and firing means, and in the case of a production system including the drying means, further treating exhaust gas generated in the drying means. It is. Substances to be removed in the exhaust gas treatment process include soot, sulfur oxides, hydrogen chloride, nitrogen oxides, ammonia, dioxins, volatile organic compounds, and malodorous substances such as ammonia. By treating the generated exhaust gas simultaneously with one exhaust gas processing means, the exhaust gas processing means can be unified and simplified. In particular, when incinerating sludge, the secondary effect that generation of dinitrogen monoxide, which is a warming substance, can be significantly suppressed by the high-temperature heat of the subsequent baking furnace can be achieved.
In addition to cooling devices, adsorption devices, condensing devices, and deodorizing devices as specific exhaust gas treatment means, addition of alkali such as bag filters and electrostatic precipitators for dust removal, lime as a countermeasure against sulfur oxides and hydrogen chloride At least one or more devices selected from a desulfurization / dehydrochlorination device, a scrubber, a non-catalytic denitration device as a nitrogen countermeasure, an ammonia catalytic reduction device, a re-combustion device for complete combustion of unburned components, etc. It is done.

また、前記排ガス処理手段は、ダイオキシンの再合成を防止するために、排ガス急冷手段を併有するものが好ましい。ここで排ガス急冷手段とは、排ガスの温度を300℃未満、好ましくは200℃以下に急冷するための手段である。具体的には、排ガス急冷手段として、大気式冷却塔、強制通気冷却塔およびスプレイ冷却塔などの冷却塔や、熱交換器等が挙げられる。   The exhaust gas treatment means preferably has an exhaust gas quenching means in order to prevent re-synthesis of dioxins. Here, the exhaust gas quenching means is a means for rapidly cooling the exhaust gas temperature to less than 300 ° C., preferably 200 ° C. or less. Specifically, the exhaust gas quenching means includes a cooling tower such as an atmospheric cooling tower, a forced ventilation cooling tower and a spray cooling tower, a heat exchanger, and the like.

2.りん酸肥料の製造方法
次に、りん酸肥料の製造方法について説明する。
(1)焼却温度、焼成温度
該方法は、前記りん酸肥料の製造システムを用いたりん酸肥料の製造方法であって、前記焼却焼成手段における焼却温度は700〜1000℃であり、好ましくは800〜900℃であり、また、焼成温度は1150〜1350℃であり、好ましくは1200〜1300℃である。焼却温度が700〜1000℃の範囲にあれば、温室効果ガスである一酸化二窒素の発生が少なくなる傾向がある。また、焼成温度が1150〜1350℃の範囲にあれば、得られたりん酸肥料のりん酸のく溶率やけい酸の可溶率が、高くなる傾向がある。
また、焼却時間やキルン内滞留時間は、混合原料の供給量にもよるが、一般に、10〜60分が好ましく、20〜40分がより好ましい。該時間が10分未満では、焼却や焼成が不十分になり易く、60分を超えると生産効率が低下する。
なお、本発明の製造方法において、焼成後に、必要に応じて、窒素、カリ、マグネシウム等のその他の肥料成分を、得られたりん酸肥料に添加し混合してもよく、さらに、該混合物をハンドリング性向上等の観点から造粒してもよい。
2. Next, a method for manufacturing phosphate fertilizer will be described.
(1) Incineration temperature, calcination temperature The method is a method for producing phosphate fertilizer using the phosphate fertilizer production system, wherein the incineration temperature in the incineration and firing means is 700 to 1000 ° C., preferably 800 The firing temperature is 1150 to 1350 ° C, preferably 1200 to 1300 ° C. If the incineration temperature is in the range of 700 to 1000 ° C., the generation of dinitrogen monoxide, which is a greenhouse gas, tends to be reduced. Moreover, if a calcination temperature exists in the range of 1150-1350 degreeC, there exists a tendency for the solubility rate of the phosphoric acid of the obtained phosphate fertilizer and the solubility rate of a silicic acid to become high.
The incineration time and the residence time in the kiln are generally preferably 10 to 60 minutes and more preferably 20 to 40 minutes, although depending on the supply amount of the mixed raw material. If the time is less than 10 minutes, incineration or firing tends to be insufficient, and if it exceeds 60 minutes, the production efficiency decreases.
In the production method of the present invention, after firing, if necessary, other fertilizer components such as nitrogen, potash, and magnesium may be added to and mixed with the obtained phosphate fertilizer. You may granulate from viewpoints, such as a handleability improvement.

(2)りん酸肥料中のCaOの含有率
本発明の製造方法により製造(焼成)したりん酸肥料中のCaOの含有率は、好ましくは、30〜55質量%であり、より好ましくは38〜52質量%であり、さらに好ましくは40〜50質量%である。該値が30〜55%の範囲にあれば、後記の製造例に示すように、りん酸肥料中のりん酸のく溶率は60%以上で、けい酸の可溶率は40%以上と高くなる。
ここで、りん酸のく溶率とは、りん酸肥料中の全りん酸に対する、く溶性りん酸の質量比(%)であり、けい酸の可溶率とは、りん酸肥料中の全けい酸に対する、可溶性けい酸の質量比(%)である。また、く溶性りん酸は、肥料分析法(農林水産省農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法により、また、可溶性けい酸は、同法に規定されている過塩素酸法により、定量することができる。
なお、原料やりん酸肥料中の酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。
(2) Content of CaO in phosphate fertilizer The content of CaO in phosphate fertilizer manufactured (fired) by the manufacturing method of the present invention is preferably 30 to 55% by mass, more preferably 38 to It is 52 mass%, More preferably, it is 40-50 mass%. If the value is in the range of 30 to 55%, as shown in the production examples described later, the solubility of phosphoric acid in the phosphate fertilizer is 60% or more, and the solubility of silicic acid is 40% or more. Get higher.
Here, the solubility of phosphoric acid is the mass ratio (%) of soluble phosphoric acid to the total phosphoric acid in phosphate fertilizer, and the solubility of silicic acid is the total solubility in phosphate fertilizer. It is a mass ratio (%) of soluble silicic acid to silicic acid. Soluble phosphoric acid is obtained by the ammonium vanadomolybdate method specified in the fertilizer analysis method (Agricultural and Environmental Technology Research Institute Act of the Ministry of Agriculture, Forestry and Fisheries). It can be quantified by the chloric acid method.
The quantification of the oxide in the raw material and phosphate fertilizer can be performed by a fundamental parameter method using a fluorescent X-ray apparatus.

(3)混合原料の調製方法
混合原料の調製方法として、例えば、原料やカルシウム源の一部を電気炉等で焼成した後、該焼成灰中の酸化物を定量し、該定量値と所定の配合に基づき、原料とカルシウム源を混合して調製する方法が挙げられる。該酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。焼成前の混合原料の化学組成は、焼成後のりん酸肥料の化学組成とほぼ同一であるから、CaOの含有率が前記範囲にあるりん酸肥料を得るためには、通常、CaOの含有率が前記範囲を満たす混合原料を用いれば十分である。ただし、正確を期すためには、該混合原料の一部を電気炉等で焼成して、該混合原料中のCaOの含有率と、該焼成物(りん酸肥料)中のCaOの含有率との相関を事前に把握しておき、該相関に基づき、原料とカルシウム源の混合割合を、目的とするりん酸肥料中のCaOの含有率になるように修正することが好ましい。
(3) Preparation method of mixed raw material As a preparation method of the mixed raw material, for example, after calcining a part of the raw material and the calcium source in an electric furnace or the like, the oxide in the calcined ash is quantified, and the quantitative value and a predetermined value are determined. Based on the formulation, a method of mixing and preparing the raw material and the calcium source can be mentioned. The oxide can be quantified by a fundamental parameter method using a fluorescent X-ray apparatus. Since the chemical composition of the mixed raw material before firing is substantially the same as the chemical composition of the phosphate fertilizer after firing, in order to obtain a phosphate fertilizer having a CaO content in the above range, the CaO content is usually It is sufficient to use a mixed raw material satisfying the above range. However, for the sake of accuracy, a part of the mixed raw material is fired in an electric furnace or the like, and the CaO content in the mixed raw material and the CaO content in the fired product (phosphate fertilizer) It is preferable to grasp the correlation in advance and correct the mixing ratio of the raw material and the calcium source so as to be the CaO content in the target phosphate fertilizer based on the correlation.

(4)りん酸肥料の製造例
焼却灰の状態において、CaOが7.6質量%、Pが15.6質量%、SiOが36質量%である乾燥汚泥と、カルシウム源として試薬のリン酸三カルシウムを混合し、焼却灰の状態において、CaOが50質量%、Pが9質量%、SiOが20質量%である混合原料を調製した。
次に、流動床式焼却炉とロータリーキルンが連結した焼却焼成炉を用いて、前記混合原料を焼却温度850℃、焼却炉内滞留時間20分で焼却し、続けて、焼成温度1300℃、キルン内滞留時間40分で焼成してりん酸肥料を得た。
得られたりん酸肥料について、肥料分析法(農林水産省農業環境技術研究所法)に規定されているバナドモリブデン酸アンモニウム法によりく溶性りん酸を、また、同法に規定されている過塩素酸法により可溶性けい酸を測定したところ、りん酸のく溶率は84%、けい酸の可溶率は100%と、いずれも高かった。
(4) Production Example of Phosphate Fertilizer In the state of incinerated ash, dry sludge containing 7.6% by mass of CaO, 15.6% by mass of P 2 O 5 and 36% by mass of SiO 2 and a reagent as a calcium source A mixed raw material containing 50 mass% CaO, 9 mass% P 2 O 5 and 20 mass% SiO 2 in the state of incinerated ash was prepared.
Next, the mixed raw material is incinerated at an incineration temperature of 850 ° C. and a residence time in the incinerator of 20 minutes using an incineration baking furnace in which a fluidized bed incinerator and a rotary kiln are connected. The phosphoric acid fertilizer was obtained by firing at a residence time of 40 minutes.
For the obtained phosphate fertilizer, soluble phosphoric acid dissolved by the ammonium vanadmolybdate method specified in the Fertilizer Analysis Method (Agricultural Environmental Technology Research Institute Act of the Ministry of Agriculture, Forestry and Fisheries) is used. When soluble silicic acid was measured by the chloric acid method, the solubility of phosphoric acid was 84% and the solubility of silicic acid was 100%, both high.

以下、図1を参照しながら、本発明のりん酸肥料の製造システムの一例を説明する。
(i)原料等の流れ
原料である脱水汚泥は、乾燥機1に供給され乾燥されて乾燥汚泥となる。次に、該乾燥汚泥は、流通路11を通って混合機2に入り、カルシウム源と混合されて混合原料となる。さらに、該混合原料は、混合原料の流通路21を通って、焼却焼成炉3に入り、焼却および焼成されてりん酸肥料となる。最後に、該りん酸肥料は、りん酸肥料の流通路31を通って排出される。
一方、カルシウム源は、カルシウム源の供給路51を通って、混合機2に供給され乾燥汚泥と混合されるほか、乾燥機1や焼却焼成炉3が混合機能を有する場合は、カルシウム源の供給路52や53を通って、それぞれ乾燥機1や焼却焼成炉3にも供給され、脱水汚泥等と混合される。
Hereinafter, an example of the phosphate fertilizer manufacturing system of the present invention will be described with reference to FIG.
(I) Flow of raw materials, etc. The dehydrated sludge as the raw material is supplied to the dryer 1 and dried to become dry sludge. Next, the dried sludge enters the mixer 2 through the flow passage 11 and is mixed with a calcium source to become a mixed raw material. Further, the mixed raw material passes through the mixed raw material flow passage 21 and enters the incineration and firing furnace 3, where it is incinerated and fired to become phosphate fertilizer. Finally, the phosphate fertilizer is discharged through the phosphate fertilizer flow passage 31.
On the other hand, the calcium source is supplied to the mixer 2 through the calcium source supply channel 51 and mixed with the dried sludge, and when the dryer 1 and the incineration firing furnace 3 have a mixing function, the calcium source is supplied. Through the paths 52 and 53, they are also supplied to the dryer 1 and the incineration and firing furnace 3, respectively, and mixed with dewatered sludge and the like.

(ii)排ガスの流れ
乾燥機1の排ガスと、焼却焼成炉3の排ガスの一部または全部は、それぞれ排ガスの流路12および32を通って排ガス処理装置4に入り、一元的に排ガス処理された後、排ガスの流路41を通って大気中に放出される。また、焼却焼成炉3の排ガスの一部または全部は、排ガスの流路33を通って乾燥機1に入り、排ガスの熱が脱水汚泥の乾燥に使われる。
(Ii) Flow of exhaust gas Part or all of the exhaust gas of the dryer 1 and the exhaust gas of the incineration and firing furnace 3 enters the exhaust gas treatment device 4 through the exhaust gas flow paths 12 and 32, respectively, and is exhaustively treated. After that, it is discharged into the atmosphere through the exhaust gas passage 41. Part or all of the exhaust gas in the incineration and firing furnace 3 enters the dryer 1 through the exhaust gas flow path 33, and the heat of the exhaust gas is used to dry the dewatered sludge.

1 乾燥機(乾燥手段)
11 乾燥汚泥の流通路
12、32、33、41 排ガスの流路
2 混合機(原料混合手段)
21 混合原料の流通路
3 焼却焼成炉(焼却焼成手段)
3a 焼却炉
3b 焼成炉
31 りん酸肥料の流通路
4 排ガス処理装置(排ガス処理手段)
51、52、53 カルシウム源の供給路
1 dryer (drying means)
11 Flow path of dried sludge 12, 32, 33, 41 Flow path of exhaust gas 2 Mixer (raw material mixing means)
21 Mixed material flow passage 3 Incineration and firing furnace (incineration and firing means)
3a Incinerator 3b Firing furnace 31 Flow path of phosphate fertilizer 4 Exhaust gas treatment device (exhaust gas treatment means)
51, 52, 53 Calcium source supply path

Claims (12)

下水汚泥および/またはその由来物と、カルシウム源を混合して、混合原料を得るための原料混合手段と、
該混合原料に対し、焼却温度が800〜900℃、および焼成温度が1200〜1300℃で、焼却および焼成を連続して行って、りん酸肥料を得るための焼却焼成手段であって、混合原料を仮焼するための仮焼手段を有してなる焼却焼成手段とを、
少なくとも含む、りん酸肥料の製造システム。
Raw material mixing means for obtaining a mixed raw material by mixing sewage sludge and / or a derivative thereof and a calcium source;
An incineration and burning means for obtaining phosphoric acid fertilizer by continuously performing incineration and firing at an incineration temperature of 800 to 900 ° C and a firing temperature of 1200 to 1300 ° C with respect to the mixed raw material, An incineration calcination means having a calcination means for calcination ,
A phosphate fertilizer manufacturing system including at least.
前記原料混合手段が、混合原料を造粒または成形するための造粒成形手段を併有する、請求項1に記載のりん酸肥料の製造システム。   The phosphate fertilizer manufacturing system according to claim 1, wherein the raw material mixing unit has a granulation forming unit for granulating or forming the mixed raw material. 前記焼却焼成手段が、重金属を揮発させて除去するための塩化揮発手段、塩素を除去するための塩素バイパス手段、および、還元雰囲気下で焼成して重金属を除去するための還元焼成手段から選ばれる、少なくとも1つ以上の手段を併有する、請求項1または2に記載のりん酸肥料の製造システム。
The incineration firing means, chloride volatilization means for removing by volatilizing heavy metals, chlorine bypass means for removing chlorine and reduction firing hand stage or these for removing heavy metals by firing in a reducing atmosphere The manufacturing system of the phosphate fertilizer of Claim 1 or 2 which has at least 1 or more means chosen together.
前記焼却焼成手段において、焼却手段が流動床式焼却炉であり、焼成手段がロータリーキルンである、請求項1〜3のいずれか1項に記載のりん酸肥料の製造システム。   The said incineration baking means WHEREIN: The manufacturing system of the phosphate fertilizer of any one of Claims 1-3 whose incineration means is a fluid bed type incinerator and whose baking means is a rotary kiln. さらに、原料が下水汚泥および/または脱水汚泥である場合において、該原料または混合原料を乾燥するための乾燥手段を含む、請求項1〜4のいずれか1項に記載のりん酸肥料の製造システム。   Furthermore, when the raw material is sewage sludge and / or dewatered sludge, the phosphate fertilizer production system according to any one of claims 1 to 4, further comprising a drying means for drying the raw material or the mixed raw material. . 前記乾燥手段が、前記原料または前記混合原料を造粒または成形するための造粒成形手段を併有する、請求項5に記載のりん酸肥料の製造システム。   The phosphate fertilizer manufacturing system according to claim 5, wherein the drying unit has a granulation and molding unit for granulating or molding the raw material or the mixed raw material. 前記乾燥手段において、前記原料または前記混合原料を乾燥するための熱の一部または全部に、前記焼却焼成手段において発生する排ガスの熱を用いる、請求項5または6に記載のりん酸肥料の製造システム。   The phosphate fertilizer production according to claim 5 or 6, wherein in the drying means, heat of exhaust gas generated in the incineration and firing means is used as a part or all of heat for drying the raw material or the mixed raw material. system. カルシウム源の添加が、前記乾燥手段、前記原料混合手段、および、前記焼却焼成手段から選ばれる、少なくとも1つ以上の手段において行われる、請求項1〜7のいずれか1項に記載のりん酸肥料の製造システム。   The phosphoric acid according to any one of claims 1 to 7, wherein the calcium source is added in at least one means selected from the drying means, the raw material mixing means, and the incineration and firing means. Fertilizer production system. さらに、前記焼却焼成手段および/または前記乾燥手段において発生する排ガスを、処理するための排ガス処理手段を含む、請求項1〜8のいずれか1項に記載のりん酸肥料の製造システム。   Furthermore, the manufacturing system of the phosphoric acid fertilizer of any one of Claims 1-8 containing the waste gas processing means for processing the waste gas generated in the said incineration baking means and / or the said drying means. 前記排ガス処理手段が、排ガスを急冷するための排ガス急冷手段を併有する、請求項1〜9のいずれか1項に記載のりん酸肥料の製造システム。   The phosphoric acid fertilizer manufacturing system according to any one of claims 1 to 9, wherein the exhaust gas treatment means has exhaust gas quenching means for rapidly cooling the exhaust gas. 請求項1〜10のいずれか1項に記載のりん酸肥料の製造システムを用いたりん酸肥料の製造方法であって、前記焼却焼成手段における焼却温度が700〜1000℃、および、焼成温度が1150〜1350℃である、りん酸肥料の製造方法。   It is a manufacturing method of the phosphate fertilizer using the manufacturing system of the phosphate fertilizer of any one of Claims 1-10, Comprising: The incineration temperature in the said incineration baking means is 700-1000 degreeC, and a baking temperature is. The manufacturing method of the phosphoric acid fertilizer which is 1150-1350 degreeC. 前記りん酸肥料中のCaO含有率が30〜55質量%となるように調製した混合原料を、前記焼却温度および前記焼成温度で焼却および焼成する、請求項11に記載のりん酸肥料の製造方法。   The method for producing a phosphate fertilizer according to claim 11, wherein the mixed raw material prepared so that the CaO content in the phosphate fertilizer is 30 to 55 mass% is incinerated and fired at the incineration temperature and the firing temperature. .
JP2011226063A 2011-10-13 2011-10-13 Phosphate fertilizer manufacturing system and manufacturing method Active JP5800388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226063A JP5800388B2 (en) 2011-10-13 2011-10-13 Phosphate fertilizer manufacturing system and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226063A JP5800388B2 (en) 2011-10-13 2011-10-13 Phosphate fertilizer manufacturing system and manufacturing method

Publications (2)

Publication Number Publication Date
JP2013086981A JP2013086981A (en) 2013-05-13
JP5800388B2 true JP5800388B2 (en) 2015-10-28

Family

ID=48531266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226063A Active JP5800388B2 (en) 2011-10-13 2011-10-13 Phosphate fertilizer manufacturing system and manufacturing method

Country Status (1)

Country Link
JP (1) JP5800388B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021181B2 (en) * 2012-12-14 2016-11-09 太平洋セメント株式会社 Phosphate fertilizer manufacturing apparatus and manufacturing method
WO2014189433A1 (en) * 2013-05-24 2014-11-27 Ekobalans Fenix Ab Production of nutrient-rich biochar from a residual material
JP2015123402A (en) * 2013-12-26 2015-07-06 山建プラント株式会社 Waste treatment method, waste treatment apparatus for executing the method, fired pellets manufactured by the method or the apparatus, and bottom sediment improving method using the fired pellets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2601676A1 (en) * 1976-01-17 1977-07-21 Ruediger Lothar Von Reppert Prodn. of phosphate fertilisers from waste prods - by incineration followed by calcination or fusing
JP2000169269A (en) * 1998-12-04 2000-06-20 Nkk Plant Engineering Corp Production of molten and solidified material of sludge
JP3905682B2 (en) * 2000-04-13 2007-04-18 カワサキプラントシステムズ株式会社 Method and apparatus for manufacturing ground improvement material

Also Published As

Publication number Publication date
JP2013086981A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
Donatello et al. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA)
KR101925418B1 (en) Method for producing phosphate fertilizer
WO2013002250A1 (en) Phosphate fertilizer, and method for producing phosphate fertilizer
US20050066860A1 (en) Use of organic waste/mineral by-product mixtures in cement manufacturing processes
CN105819644B (en) A kind of oily sludge innocuity disposal system and method
CN106064019A (en) Circulating flue gas desulfurization technology in nsp kiln
JP5800388B2 (en) Phosphate fertilizer manufacturing system and manufacturing method
CN103506372B (en) Coal-fired furnace slag processing method
JP5984572B2 (en) Phosphate fertilizer and method for producing the same
JP6391142B2 (en) Method for producing phosphate fertilizer
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
JP3684410B2 (en) Sewage sludge treatment method and treated sewage sludge
CN102753497B (en) The method utilizing phosphorous alternative fuel in manufacture of cement
JP5988684B2 (en) Method for producing phosphate fertilizer
JP2018135237A (en) Method of producing phosphorous silicate fertilizer
RU2532198C1 (en) Method of producing phosphorus-containing fertiliser from sludge of urban water treatment plants and fertiliser produced using said method
JP5188640B2 (en) Phosphate fertilizer and method for producing the same
JP4040035B2 (en) Sewage sludge treatment method and apparatus
JP5946721B2 (en) Method for producing phosphate fertilizer
CN106007274A (en) Deep treatment method of sludge
JP2014114190A (en) Phosphate fertilizer and production method thereof
JP2013253000A (en) Method for producing phosphate fertilizer
JP6021182B2 (en) Method for producing a bitter earth phosphate fertilizer
CN106006643A (en) Method for preparing calcium carbide from yellow phosphorus tail gas and phosphogypsum
JP5878276B2 (en) Fertilizer manufacturing method and fertilizer manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5800388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250