JPH0550456B2 - - Google Patents
Info
- Publication number
- JPH0550456B2 JPH0550456B2 JP22384686A JP22384686A JPH0550456B2 JP H0550456 B2 JPH0550456 B2 JP H0550456B2 JP 22384686 A JP22384686 A JP 22384686A JP 22384686 A JP22384686 A JP 22384686A JP H0550456 B2 JPH0550456 B2 JP H0550456B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- weight
- powder
- pulverization
- inhibitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002893 slag Substances 0.000 claims description 89
- 238000000034 method Methods 0.000 claims description 23
- 238000010298 pulverizing process Methods 0.000 claims description 23
- 239000003112 inhibitor Substances 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 22
- 239000011521 glass Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 238000009628 steelmaking Methods 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 238000000227 grinding Methods 0.000 claims description 11
- 239000011734 sodium Substances 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 8
- 239000003513 alkali Substances 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 230000018044 dehydration Effects 0.000 claims description 7
- 238000006297 dehydration reaction Methods 0.000 claims description 7
- 239000004480 active ingredient Substances 0.000 claims description 6
- -1 aluminum silicates Chemical class 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 238000006114 decarboxylation reaction Methods 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 235000019738 Limestone Nutrition 0.000 claims description 4
- 229910021538 borax Inorganic materials 0.000 claims description 4
- 239000006028 limestone Substances 0.000 claims description 4
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910021540 colemanite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000004328 sodium tetraborate Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910021539 ulexite Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000440 bentonite Substances 0.000 claims description 2
- 229910000278 bentonite Inorganic materials 0.000 claims description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 4
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 239000006227 byproduct Substances 0.000 claims 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 238000010410 dusting Methods 0.000 description 8
- 239000000292 calcium oxide Substances 0.000 description 7
- 235000012255 calcium oxide Nutrition 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000007704 transition Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000567769 Isurus oxyrinchus Species 0.000 description 1
- 229910021537 Kernite Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910004844 Na2B4O7.10H2O Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Manufacture Of Iron (AREA)
Description
[産業上の利用分野]
本発明は製鋼スラグ、とりわけステンレス製鋼
スラグの冷却過程において自己崩壊、粉化を起す
現象を防止する為のホウ珪酸アルカリガラス
(B2O3−CaO−SiO2−Na2O系ガラス)のスラグ
粉化防止剤、その製造法およびその使用方法に関
する。
[従来の技術]
製鋼スラグ、とりわけステンレス製鋼スラグに
関し塩基度(CaO/SiO2重量比)約1.5以上のス
ラグは、その冷却過程において2CaO・SiO2の相
転移によりα型相よりα′型へ、更にγ型又はβ型
へと転移する性質があり、多くの場合α′よりγ型
へ転移する際、約14%の体積膨張を伴なう為にス
ラグ自体が自己崩壊し粉化することが知られてい
る。
この粉化現象が作業環境を悪化させ、さらにス
ラグ中のメタル回収時の回収後残渣としての脱水
ケーキが大量に発生する等の問題が、スラグ処理
に対するステンレスメーカーの負担増大の大きな
原因になつている。
このスラグの粉化を防止し固化させることは、
排出スラグを道路等の土木用骨材として有効に2
次利用出来ることもあつてステンレス鋼メーカー
の積年にわたる課題となつている。
スラグ粉化を抑制する方法としては次の方法が
挙げられる。
(1) スラグ出滓時に水砕ガラス化する方法。
(2) 2CaO・SiO2スラグにSiO2源を加えCaO・
SiO2を主体とした塩基度1.5以下(実質的には
スラグ組成によつて多少変動する)のスラグに
改質する方法。
(3) 密度変化の大きいα′型からγ型への相転移を
抑制し、密度変化の小さいα′型からβ型への相
転移を促進させる方法。
(1)の方法ではスラグ出滓時に随伴される溶融メ
タルにより水砕時に水蒸気爆発を発生する恐れの
ある点、水砕物では軟質により土木用骨材用途と
しての十分な強度を有し得ない点があり、一部で
実験的にテストされているが、実用化はされてい
ないのが現状である。
(2)の方法は、現在SiO2系改質剤として市販さ
れているものもあるが、溶融スラグに対し、約20
%もの大量のSiO2を必要とする為、投入設備、
攪拌設備設置の必要があり、更に添加に伴なう溶
滓の温度低下によるスラグの増粘を生じ、作業性
およびコスト面で不適当である。
(3)の方法、すなわちα′型からβ型への相転移に
ついては、かなり古くから研究が行なわれてお
り、種々の方法が提案されているが、これらの方
法の内スラグ中Si+4イオンよりイオン半径の小さ
いB+3でSi+4を置換する方法が、現在のところ最
も有効かつ確実な方法として提案されている。
(特開昭53−43690号公報、川鉄技報Vol.18,No.1
(1986)20−24)
しかしながら、かかる従来のホウ素系のスラグ
粉化防止剤は微粉末状で、かつそれ自体が含水物
であるため、溶融スラグと接触する際に脱水気化
反応とあいまつて、スラグ粉化防止剤の吹き上げ
現象を生じ、作業環境を著しく悪化させると共
に、ときには危険を伴うのでその操作が非常に難
かしい。更に、スラグ粉化防止剤自体の溶融温度
は低いものの粘性が高い為にスラグ顕熱だけでは
スラグ中への拡散、混合が不十分で、スラグ粉化
防止効果が発現し難いという問題がある。
また、従来のホウ素系のスラグ粉化防止剤はス
ラグとの化学組成が大幅に異なる為に、溶融スラ
グに対し、粘度、密度に差が生じ易く、いわゆる
スラグとスラグ粉化防止剤との親和性が悪く拡散
混合能力が小さいという欠点がある。
[発明が解決しようとする問題点]
ホウ素系のスラグ粉化防止剤の従来の欠点を解
消する為には、次の事項を考慮する必要がある。
(1) 溶滓への添加に伴ない、発塵、有害ガス発生
等による作業環境悪化を起こさず、かつ操作上
安全であること。
(2) 溶滓への添加によりスラグ温度の大幅な低
下、増粘を生じないよう添加量が少なくて済む
こと。
(3) 溶融スラグとの粘度、密度差が小さく、いわ
ゆる親和力の高い化学組成を有するものである
こと。
[問題点を解決するための手段]
本発明者らは前記の問題を鑑み、ホウ素系スラ
グ粉化防止剤の改良について鋭意研究を行い本発
明を完成した。
すなわち、本発明はホウ珪酸アルカリガラスの
砂状粉体を有効成分とする製鋼スラグの粉化防止
剤、その製造方法およびこれを用いた製鋼スラグ
の処理方法にかかるものである。
以下、本発明について説明する。
本発明にかかるホウ素系の製鋼スラグの粉化防
止剤(以下「スラグ粉化防止剤」という)は、従
来の結晶性ホウ酸塩化合物の粉末と異なり、ホウ
珪酸アルカリガラスの砂状粉体であることを特徴
とする。
このガラスは製鋼スラグ(以下単に「スラグ」
という)の溶融物との親和性は結晶性ホウ酸化合
物よりも優れているのであるが、よりその親和性
を図るために、溶融スラグと粘度、比重等が近似
するような化学組成を有することが望ましい。
従つて、前記ガラスは多くの場合化学組成とし
てB2O3:20〜50重量%、CaO:15〜35重量%、
SiO2:20〜40重量%およびNa2O:3〜15重量%
の範囲にある。
この範囲外であると粘性が高くなつたり、又は
ガラス化が困難となつて、粉化防止剤の性能が劣
化する傾向にある。なお、不可避的に混入される
不純物の存在は当然に許容できることはいうまで
もない。
次に、本発明にかかる前記ガラスの粉化防止剤
は砂状を呈する粒度分布を有していることであ
る。
この理由は溶融スラグへ添加する際、添加の態
様によつては、流動性をもつて速やかに添加でき
ると共に発塵の発生を抑制し又速やかな、かつ安
定した溶融性を与えることができるからである。
多くの場合、前記粒度は0.1〜5mmの範囲のも
のが少なくとも90%であることが好ましい。
本発明にかかる粉化防止剤は前記の如きガラス
砂状物を有効成分とするが、ここに有効成分と
は、ガラス砂状物自体の場合は勿論であるが以下
に述べる補助剤を含んだものをいう。すなわち、
溶融スラグへの添加態様によつては溶融スラグへ
の円滑な溶融が劣る場合があり、時には不溶融塊
いわゆる「ままこ」を生ずる場合がある。
従つて粉化防止剤の添加後速やかな溶融スラグ
への良好な溶融、拡散および混合効果を助長させ
るため必要に応じ、前記粉化防止剤に補助剤を配
合させることができる。
このような補助剤とは、加熱により、脱水又
は/及び脱炭酸反応を生ずるような粉末をいい、
かかる粉末としては例えば粘土類、活性白土、珪
藻土の如きアルミノシリケート、ベントナイト、
ゼオライトの如きアルミノシリケート、真珠岩、
石灰石、重炭酸ソーダ、ナトリウム、カリウム、
カルシウム、マグネシウム若しくはバリウム等の
炭酸塩、ホウ砂、カーナイト、ウレキサイト、コ
レマナイトの如きホウ酸塩から選ばれた少なくと
も1種又は2種以上が挙げられる。
これら補助剤の添加量はその種類の粉化防止剤
の添加方式あるいは、溶融スラグの物性や状態に
よつて一様ではないが、多くとも粉化防止剤に対
し30重量%まででよく、好ましくは5〜15重量%
の範囲にある。
なお、この補助剤の粒度は多くの場合、粉化防
止剤の粒度より小であることが好ましく、その平
均粒子径が粉化防止剤の下限値以下にある方がよ
い。
次に前記粉化防止剤はガラス組成としてB2
O3:20〜50重量%、CaO:15〜35重量%、
SiO2:20〜40重量%およびNa2O:3〜15重量%
となるようにホウ素、カルシウム、珪素およびナ
トリウムの1種又は2種以上を含有する原料を配
合し、次いで得られる調合物を加熱溶液した後、
急冷および粒度調整することにより製造すること
ができる。
ホウ素原料として例えば前記したような、ホウ
酸、ホウ酸ソーダの如き化成品又はコレマナイト
(colemanite)(Ca2B6O11・5H2O)、ウレキサイ
ト(ulexite)(NaCaB5O9・8H2O)、チンカル
(tincal)(Na2B4O7・10H2O)、カーナイト
(kernite)(Na2B4O7・4H2O)の如きホウ酸塩
鉱物などがあげられる。
カルシウム原料としては石灰石、消石灰、生石
灰、珪酸カルシウムなどがあげられ珪素原料とし
ては珪石、珪砂、珪華、珪酸アルミニウム、珪酸
カルシウムなどであり、ナトリウム原料として
は、ソーダ灰、珪酸ナトリウムガラスなどがあげ
られる。
これらの原料を適宜選択してガラス組成として
前記範囲になるように調合し、所望の溶融炉に投
入して加熱溶融する。次いで、融液を急冷後粒度
調整して製品とする。融液の急冷方法としては、
多くの場合、融液をタツプしながらこれに圧力水
をかけて水砕し、砂状のガラスとして回収する方
法が最も実用的で好ましが、他の方法としては、
タツプする融液をベルトコンベアーに乗せて、水
又は空気により冷却してカレツトとして回収する
方法がある。
次いで付着水を除くべく、乾燥後粒度調整する
が、水砕品の場合は必ずしも粉砕および篩分けに
よる粒度調整は必要でなく、乾燥品がそのまま製
品とすることができるので、粘度調整は必要に応
じて行えばよい。
この場合、所望により、前記の補助材料を配合
することもできる。
更に本発明は、前記粉化防止剤を用いる場合製
鋼行程、とりわけステンレス製鋼工程において、
副生する溶融スラグにホウ珪酸アルカリガラスを
有効成分とする砂状粉体をB2O3として少なくと
も0.2重量%含有するように添加することにより
該スラグの粉化防止を行うことができる。
本発明において対象とするスラグはステンレス
鋼などの製鋼スラグであるが、該スラグが冷却に
際しあるいは経時変化により崩壊し又は粉化する
現象を生ずるようなものであり、一般的には塩基
度CaO/SiO2(重量比)が1.5以上のものである。
また、本発明にかかる粉化防止剤を添加する態
様は添加後速やかに溶融スラグ中へ混合拡散する
ような方法を採れるものであれば特に限定する必
要はない。例えば溶融スラグ表面に散布する方
法、所望量を入れた袋毎投入する方法、圧力空気
で移送して溶融スラグへ吹付けるように添加する
方法があげられる。
本発明にかかる粉化防止剤のスラグに対する添
加量は前記のように少なくともB2O3として、0.2
重量%であり、好ましくは0.3〜1重量%の範囲
にある。約0.2重量%以下の場合は、スラグ粉化
防止に不充分であり、上限は主として経済上の理
由から自ずと限定される。
以下本発明につき実施例にて具体的に説明す
る。
[実施例]
実施例 1
下記の配合割合(重量部)原料配合物を
100KVA容量の抵抗式電気炉を用いて溶融した。
[Industrial Application Field] The present invention is a borosilicate alkali glass (B 2 O 3 −CaO−SiO 2 −Na This invention relates to a slag pulverization inhibitor for 2 O-based glass, a method for producing the same, and a method for using the same. [Prior art] Steelmaking slag, especially stainless steelmaking slag, with a basicity (CaO/SiO 2 weight ratio) of approximately 1.5 or more changes from an α-type phase to an α′-type phase due to a phase transition of 2CaO・SiO 2 during the cooling process. Furthermore, it has the property of transitioning to the γ-type or β-type, and in many cases, when the slag transitions from the α′ to the γ-type, it is accompanied by a volumetric expansion of about 14%, which causes the slag itself to disintegrate and become powder. It has been known. This pulverization phenomenon worsens the working environment, and problems such as the generation of a large amount of dehydrated cake as a residue after recovering the metal in slag have become a major cause of the increased burden on stainless steel manufacturers for slag processing. There is. To prevent this slag from turning into powder and solidify it,
Effective use of discharged slag as aggregate for civil engineering such as roads 2
This has been a long-standing challenge for stainless steel manufacturers, as it can be used for other purposes. Examples of methods for suppressing slag pulverization include the following methods. (1) A method of pulverizing and vitrifying slag during extraction. (2) Add SiO 2 source to 2CaO・SiO 2 slag and add CaO・
A method of reforming slag into a slag with a basicity of 1.5 or less (substantially varies depending on the slag composition), mainly composed of SiO 2 . (3) A method of suppressing the phase transition from the α′ type to the γ type, which has a large density change, and promoting the phase transition from the α′ type to the β type, which has a small density change. In method (1), the molten metal accompanying the slag sludge may cause a steam explosion during granulation, and the granulated material is too soft to have sufficient strength to be used as aggregate for civil engineering. Although it has been experimentally tested in some areas, it has not yet been put into practical use. In method (2), some SiO 2 -based modifiers are currently commercially available, but for molten slag approximately 20
Since it requires a large amount of SiO 2 , such as
It is necessary to install stirring equipment, and the slag increases in viscosity due to a drop in temperature of the slag that accompanies addition, making it unsuitable in terms of workability and cost. Method (3), that is, the phase transition from α′ type to β type, has been studied for a long time, and various methods have been proposed. The method of replacing Si +4 with B +3 , which has a smaller ionic radius than that of ions, is currently proposed as the most effective and reliable method.
(Unexamined Japanese Patent Publication No. 1983-43690, Kawatetsu Technical Report Vol. 18, No. 1
(1986) 20-24) However, since such conventional boron-based slag pulverization inhibitors are in the form of fine powder and contain water themselves, when they come into contact with molten slag, they undergo dehydration and vaporization reactions. The slag pulverization inhibitor is blown up, which significantly deteriorates the working environment and is sometimes dangerous, making the operation extremely difficult. Furthermore, although the melting temperature of the slag pulverization inhibitor itself is low, since the viscosity is high, diffusion and mixing into the slag is insufficient due to slag sensible heat alone, and there is a problem that it is difficult to exhibit the slag pulverization prevention effect. In addition, because the chemical composition of conventional boron-based slag pulverization inhibitors is significantly different from that of slag, differences in viscosity and density tend to occur with respect to molten slag. The drawbacks are poor performance and low diffusion mixing ability. [Problems to be Solved by the Invention] In order to eliminate the conventional drawbacks of boron-based slag pulverization inhibitors, it is necessary to consider the following matters. (1) When added to the slag, the working environment should not be degraded due to dust generation, harmful gas generation, etc., and the operation should be safe. (2) The amount added to the slag should be small enough to avoid a significant drop in slag temperature and thickening. (3) It must have a chemical composition with a small difference in viscosity and density and a high affinity with molten slag. [Means for Solving the Problems] In view of the above-mentioned problems, the present inventors conducted extensive research on improving boron-based slag pulverization inhibitors and completed the present invention. That is, the present invention relates to a steelmaking slag pulverization inhibitor containing sandy powder of borosilicate alkali glass as an active ingredient, a method for producing the same, and a method for treating steelmaking slag using the same. The present invention will be explained below. The boron-based steelmaking slag pulverization inhibitor (hereinafter referred to as "slag pulverization inhibitor") according to the present invention is a sandy powder of borosilicate alkali glass, unlike the conventional crystalline borate compound powder. characterized by something. This glass is made from steelmaking slag (hereinafter simply "slag").
) has a better affinity with the molten material than crystalline boric acid compounds, but in order to improve the affinity, it is necessary to have a chemical composition that is similar in viscosity, specific gravity, etc. to molten slag. is desirable. Therefore, the glass often has a chemical composition of B2O3 : 20-50% by weight, CaO: 15-35% by weight,
SiO2 : 20-40% by weight and Na2O : 3-15% by weight
within the range of Outside this range, the viscosity becomes high or vitrification becomes difficult, and the performance of the anti-dusting agent tends to deteriorate. It goes without saying that the presence of unavoidably mixed impurities is naturally acceptable. Next, the glass pulverization inhibitor according to the present invention has a sand-like particle size distribution. The reason for this is that when added to molten slag, depending on the mode of addition, it can be added quickly with fluidity, suppress generation of dust, and provide rapid and stable melting properties. It is. In many cases, it is preferred that the particle size is at least 90% in the range 0.1 to 5 mm. The anti-dusting agent according to the present invention has the above-mentioned glass sand-like material as an active ingredient, and the active ingredient here refers to not only the glass sand-like material itself, but also the auxiliary agents described below. say something That is,
Depending on the manner in which it is added to the molten slag, smooth melting into the molten slag may be poor, and in some cases, unmelted lumps, so-called "mako", may be formed. Therefore, in order to promote good melting, diffusion and mixing effects in the molten slag immediately after the addition of the powdering inhibitor, an adjuvant may be added to the powdering inhibitor as required. Such adjuvants refer to powders that cause dehydration and/or decarboxylation reactions when heated;
Such powders include, for example, clays, activated clay, aluminosilicates such as diatomaceous earth, bentonite,
Aluminosilicate like zeolite, nacre,
limestone, bicarbonate of soda, sodium, potassium,
At least one or more selected from carbonates such as calcium, magnesium or barium, borates such as borax, carnite, ulexite, and colemanite. The amount of these adjuvants added varies depending on the method of adding the type of anti-dusting agent or the physical properties and condition of the molten slag, but it may be at most 30% by weight of the anti-dusting agent, and is preferably is 5-15% by weight
within the range of In addition, the particle size of this adjuvant is preferably smaller than the particle size of the dusting inhibitor in most cases, and it is preferable that the average particle size is below the lower limit of the dusting preventive agent. Next, the anti-dusting agent has a glass composition of B 2
O3 : 20-50% by weight, CaO: 15-35% by weight,
SiO2 : 20-40% by weight and Na2O : 3-15% by weight
After blending raw materials containing one or more of boron, calcium, silicon, and sodium so that the resultant mixture is heated and dissolved,
It can be manufactured by rapid cooling and particle size adjustment. Examples of boron raw materials include boric acid, chemical products such as sodium borate, colemanite (Ca 2 B 6 O 11・5H 2 O), and ulexite (NaCaB 5 O 9・8H 2 O) as described above. ), tincal (Na 2 B 4 O 7 .10H 2 O), and kernite (Na 2 B 4 O 7 .4H 2 O). Calcium raw materials include limestone, slaked lime, quicklime, calcium silicate, etc. Silicon raw materials include silica stone, silica sand, silica, aluminum silicate, calcium silicate, etc. Sodium raw materials include soda ash, sodium silicate glass, etc. It will be done. These raw materials are appropriately selected and blended so that the glass composition falls within the above range, and the glass is charged into a desired melting furnace and heated and melted. Next, the melt is rapidly cooled and the particle size is adjusted to obtain a product. As a method for rapidly cooling the melt,
In many cases, the most practical and preferred method is to crush the melt by applying pressure water to it while tapping it and collect it as sand-like glass, but other methods include:
There is a method in which the tapped melt is placed on a belt conveyor, cooled with water or air, and collected as cullet. Next, the particle size is adjusted after drying to remove adhering water, but in the case of granulated products, particle size adjustment by crushing and sieving is not necessarily necessary, and the dried product can be made into a product as it is, so viscosity adjustment is not necessary. You can do it accordingly. In this case, the above-mentioned auxiliary materials may be added if desired. Furthermore, the present invention provides that when the anti-pulverization agent is used, in the steel manufacturing process, particularly in the stainless steel manufacturing process,
Powdering of the slag can be prevented by adding a sandy powder containing borosilicate alkali glass as an active ingredient to the by-produced molten slag in an amount of at least 0.2% by weight as B 2 O 3 . The slag targeted in the present invention is steel manufacturing slag such as stainless steel, but the slag tends to disintegrate or powder when cooled or due to changes over time, and generally has a basicity of CaO/ SiO 2 (weight ratio) is 1.5 or more. Further, the manner in which the anti-pulverization agent according to the present invention is added is not particularly limited as long as it can be mixed and diffused into the molten slag immediately after addition. Examples include a method of spraying it on the surface of the molten slag, a method of adding it to each bag containing the desired amount, and a method of adding it to the molten slag by transferring it with pressurized air and spraying it onto the molten slag. The amount of the anti-dusting agent according to the present invention added to the slag is at least 0.2 as B 2 O 3 as described above.
% by weight, preferably in the range of 0.3 to 1% by weight. If it is less than about 0.2% by weight, it is insufficient to prevent slag pulverization, and the upper limit is naturally limited mainly for economic reasons. The present invention will be specifically explained below with reference to Examples. [Example] Example 1 The following blending ratio (parts by weight) of the raw material blend
It was melted using a resistance electric furnace with a capacity of 100KVA.
【表】
得られた融液を水砕した後乾燥して次に示す組
成(wt%)を有する下記に示す水砕ガラス化物
を調製した。このものをおのおの10Kg宛ビニール
袋に密封し粉化防止剤試験試料とした。[Table] The obtained melt was crushed and dried to prepare the following crushed vitrified product having the following composition (wt%). This product was sealed in a plastic bag weighing 10 kg each and used as a powdering prevention agent test sample.
【表】
ある。
更にステンレス製鋼用電気炉(30t容量)より
製出された1回目出銑時のスラグ塩基度(CaO/
SiO2=1.62)を取鍋よりスラグポツトに除滓する
際、試験試料を10Kgビニール袋のまま60Kg同時投
入し、かかるスラグを放置冷却して固化した後に
常温に至るまでの状況を観察した。
試験時の条件は次の通りである。[Table] Yes.
Furthermore, the basicity (CaO/
SiO 2 = 1.62) When removing slag from a ladle into a slag pot, 60 kg of a 10 kg test sample was put into a plastic bag at the same time, and the slag was allowed to cool and solidify, and then the situation was observed until it reached room temperature. The conditions during the test were as follows.
【表】
かかる実験では溶融スラグに対する試験試料の
添加量は試験番号1では0.43B2O3重量%、試験
番号2では0.45B2O3重量%、試験番号3では0.46
重量%に相当する。試料添加に際しいずれの実験
においても発塵、ガス発生は全く見られず、添加
操作は安全であり、スラグポツト内へのスラグ注
湯時には良好な拡散混合が得られた。
更に試験時のスラグを常温まで放冷した後に、
状況を観察したところ、崩壊粉化現象は全く見ら
れなかつた。
尚、試験後のスラグ組成(重量%)は次の通り
であつた。[Table] In these experiments, the amount of the test sample added to the molten slag was 0.43B 2 O 3 % by weight in Test No. 1, 0.45B 2 O 3 % by weight in Test No. 2, and 0.46% in Test No. 3.
Corresponds to % by weight. During the sample addition, no dust or gas generation was observed in any of the experiments, the addition operation was safe, and good diffusion mixing was obtained when the slag was poured into the slag pot. Furthermore, after cooling the slag during the test to room temperature,
When the situation was observed, no disintegration and powdering phenomenon was observed. The slag composition (weight %) after the test was as follows.
【表】
なお、このスラグ自体は冷却すると自己崩壊し
て粉化するものである。
また、A,B,Cの試料添加のスラグ(改質
後)と無添加のスラグ(改質前)を以下の処理条
件でオートクレーブ処理によるスラグの崩壊率測
定を行つた。
処理条件:試料スラグ破砕後粒径10〜25mmに粒
度調整し、これを200℃,20Kg/cm2,3時間オー
トクレーブ内に保持し、次いで乾燥した後ふるい
分け、10mm未満の粒径のものを崩壊物とした。
上記オートクレーブ処理後の崩壊物の割合
(%)を示す。[Table] Note that this slag itself self-disintegrates and becomes powder when cooled. In addition, the slag disintegration rate of samples A, B, and C with added samples (after modification) and slag without additives (before modification) was subjected to autoclave treatment under the following treatment conditions. Processing conditions: After crushing the sample slag, adjust the particle size to 10 to 25 mm, hold it in an autoclave at 200℃, 20 Kg/cm 2 for 3 hours, then dry and sieve, disintegrating particles with a particle size of less than 10 mm. I made it into a thing. The ratio (%) of the disintegrated material after the above autoclave treatment is shown.
【表】
実施例 2
結合水および炭酸塩を併用する場合の効果をみ
るための実施例1で使用したサンプルA,B,C
に対して、活性白土(粒径1〜2φmm)、又は石灰
石(粒径1〜2φmm)又は炭酸水素ナトリウム
(粉末)を下表に示す割合で添加混合し10Kg宛ビ
ニール袋に密封して試験試料とした。当試料につ
いて実施例1と同様の方法に依り試験を行なつ
た。
試験時の条件は下記の通りである。[Table] Example 2 Samples A, B, and C used in Example 1 to see the effect of using bound water and carbonate together
Add and mix activated clay (particle size 1 to 2 φmm), limestone (particle size 1 to 2 φmm), or sodium bicarbonate (powder) in the proportions shown in the table below, and seal the test sample in a 10 kg plastic bag. And so. This sample was tested in the same manner as in Example 1. The conditions during the test were as follows.
【表】
試験時のスラグ組成分析値(重量%)は慨ね次
の通りである。[Table] The slag composition analysis values (weight %) during the test are generally as follows.
【表】
いずれの実験においても試料投入による発塵現
象は全く見られず脱水、脱炭酸反応に伴ない、溶
融スラグ上において、試料は瞬時の内に飛散流動
し、急速にスラグ内へと溶融拡散した。試験時の
スラグを常温まで放冷した後に状況を観察したと
ころ崩壊粉化の現象は全く見られず、スラグに対
する粉化防止剤使用量は0.30〜0.37B2O3重量%で
十分な効果を上げ得ることが判明した。
比較例
実施例1において、粉化防止剤として溶融スラ
グに対しホウ砂(Na2B4O7・10H2O)(B2O3:
37.00重量%、Na2O:16.5重量%)(0.2〜0.4mmの
ものが55%)を12Kg/tスラグ、ビニール袋毎投
入したところ、激しい飛散と吹き上げを生じ未溶
解の塊りが生じたので、投入を中止せざるを得な
かつた。
[発明の効果]
1 本発明品は、ガラス化したスラグ粉化防止剤
である為に炭酸ガス、水蒸気等の熱分解気化
熱、転移熱等溶融に伴なう吸熱量が小さく、溶
融速度が従来のものに比べ極めて速い。
2 溶融スラグに対する粘度、密度等の差の小さ
い親和性に富んだ化学組成に設計してある為
に、従来品に比べ本発明品は拡散混合の効果が
極めて大きい。さらに溶融に際して脱水又は脱
炭酸反応を伴なう物質を本発明品に混合して使
用する場合には、拡散、混合の効果は従来品と
混合使用する場合に比べ極めて向上する。
3 ガラス化したスラグ粉化防止剤であるため、
脱ガス反応を起こさず、更に砂状の大きさであ
ることから溶融スラグへの添加時に吹き上げ飛
塵等により作業環境を悪化させることがない。[Table] In all experiments, no dust generation phenomenon was observed when the sample was introduced.Due to the dehydration and decarboxylation reactions, the sample instantly scattered and flowed on top of the molten slag, and rapidly melted into the slag. It spread. When the slag during the test was allowed to cool to room temperature and then observed, no disintegration and powdering phenomenon was observed, and the amount of powdering inhibitor used for the slag was 0.30 to 0.37B 2 O 3 % by weight, which was sufficient to achieve sufficient effect. It turns out that it can be raised. Comparative Example In Example 1, borax (Na 2 B 4 O 7・10H 2 O) (B 2 O 3 :
When 12 kg/t of slag (37.00 wt%, Na 2 O: 16.5 wt%) (55% of which is 0.2 to 0.4 mm) was added to each plastic bag, violent scattering and blowing occurred, resulting in undissolved lumps. Therefore, we had no choice but to cancel the injection. [Effects of the invention] 1 Since the product of the present invention is a vitrified slag pulverization inhibitor, the amount of heat absorbed due to melting such as the thermal decomposition heat of vaporization of carbon dioxide gas, water vapor, heat of transition, etc. is small, and the melting rate is low. Extremely fast compared to conventional ones. 2. Since the chemical composition is designed to have a high affinity for molten slag with small differences in viscosity, density, etc., the product of the present invention has an extremely large diffusion-mixing effect compared to conventional products. Furthermore, when a substance that undergoes a dehydration or decarboxylation reaction upon melting is mixed with the product of the present invention, the diffusion and mixing effects are significantly improved compared to when mixed with a conventional product. 3. Because it is a vitrified slag powder prevention agent,
Since it does not cause a degassing reaction and has a sand-like size, it does not deteriorate the working environment due to flying dust when added to molten slag.
Claims (1)
分とする製鋼スラグの粉化防止剤。 2 ホウ珪酸アルカリガラスは化学組成として
B2O3:20〜50重量%、CaO:15〜35重量%、
SiO2:20〜40重量%およびNa2O:3〜15重量%
を含有する特許請求の範囲第1項記載の製鋼スラ
グの粉化防止剤。 3 他の成分として加熱により脱水又は/及び脱
炭酸反応を生ずる粉末を全重量当り多くとも30重
量%含有する特許請求の範囲第1項記載の製鋼ス
ラグの粉化防止剤。 4 ホウ珪酸アルカリガラスが砂状粉体は粒度が
0.1〜5mmの粒度範囲のものが90%以上である特
許請求の範囲第1項又は第2項記載の製鋼スラグ
の粉化防止剤。 5 ガラス組成としてB2O3:20〜50重量%、
CaO:15〜35重量%、SiO2:20〜40重量%およ
びNa2O:3〜15重量%となるようにホウ素、カ
ルシウム、珪素およびナトリウムの1種又は2種
以上含有する原料を調合し、次いで得られる調合
物を加熱溶融した後、急冷および粒度調整するこ
とを特徴とする製鋼スラグの粉化防止剤の製造方
法。 6 乾燥して得られるガラスの砂状粉体に加熱に
より脱水又は/及び脱炭酸反応を生ずる粉末を調
合する特許請求の範囲第5項記載の製鋼スラグの
粉化防止剤の製造方法。 7 加熱により脱水又は/及び脱炭酸反応を生ず
る粉末は粘土類、活性白土の如きアルミニウムシ
リケート、ベントナイト、ゼオライトの如きアル
ミノシリケート、真珠石、石灰石、重炭酸ソー
ダ、ナトリウム、カルシウム、マグネシウム若し
くはバリウム等の炭酸塩、ホウ砂、カーナイト、
ウレキサイト、コレマナイトの如きホウ酸塩から
選ばれた1種又は2種以上の粉末である特許請求
の範囲第6項記載の製鋼スラグの粉化防止剤の製
造方法。 8 製鋼行程において副生する溶融スラグにホウ
珪酸アルカリガラスを有効成分とする砂状粉体を
B2O3として少なくとも0.2重量%含有するように
添加することを特徴とする製鋼スラグの粉化防止
方法。[Scope of Claims] 1. An agent for preventing powdering of steelmaking slag, which contains sandy powder of borosilicate alkali glass as an active ingredient. 2 The chemical composition of borosilicate alkali glass
B2O3 : 20-50% by weight, CaO: 15-35% by weight,
SiO2 : 20-40% by weight and Na2O : 3-15% by weight
The steel-making slag pulverization inhibitor according to claim 1, which contains the following. 3. The steel-making slag pulverization inhibitor according to claim 1, which contains, as another component, at most 30% by weight of powder that causes dehydration and/or decarboxylation reaction upon heating. 4 The sand-like powder of borosilicate alkali glass has a particle size of
The steelmaking slag pulverization inhibitor according to claim 1 or 2, wherein 90% or more of the agent has a particle size in the range of 0.1 to 5 mm. 5 B2O3 : 20-50% by weight as glass composition,
Raw materials containing one or more of boron, calcium, silicon, and sodium are mixed so that CaO: 15 to 35% by weight, SiO 2 : 20 to 40% by weight, and Na 2 O: 3 to 15% by weight. A method for producing a powdering inhibitor for steelmaking slag, which comprises heating and melting the resulting mixture, followed by rapid cooling and particle size adjustment. 6. A method for producing a powdering inhibitor for steelmaking slag according to claim 5, which comprises blending a powder that causes dehydration and/or decarboxylation upon heating into the glass sandy powder obtained by drying. 7 Powders that cause dehydration and/or decarboxylation reactions upon heating include clays, aluminum silicates such as activated clay, aluminosilicates such as bentonite and zeolite, nacre, limestone, carbonates such as sodium bicarbonate, sodium, calcium, magnesium, or barium. , borax, carnite,
The method for producing a powdering inhibitor for steel slag according to claim 6, wherein the powder is one or more powders selected from borates such as ulexite and colemanite. 8. Adding sand-like powder containing borosilicate alkali glass as an active ingredient to molten slag, which is a by-product of the steelmaking process.
A method for preventing pulverization of steelmaking slag, which comprises adding B 2 O 3 in an amount of at least 0.2% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61223846A JPS6379743A (en) | 1986-09-24 | 1986-09-24 | Dustproofing agent for steel slag, manufacture and treatment of steel slag therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61223846A JPS6379743A (en) | 1986-09-24 | 1986-09-24 | Dustproofing agent for steel slag, manufacture and treatment of steel slag therewith |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6379743A JPS6379743A (en) | 1988-04-09 |
JPH0550456B2 true JPH0550456B2 (en) | 1993-07-29 |
Family
ID=16804638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61223846A Granted JPS6379743A (en) | 1986-09-24 | 1986-09-24 | Dustproofing agent for steel slag, manufacture and treatment of steel slag therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6379743A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062607B2 (en) * | 1987-08-04 | 1994-01-12 | 日本化学工業株式会社 | Slag treatment agent |
JPH062610B2 (en) * | 1987-08-04 | 1994-01-12 | 日本化学工業株式会社 | Slag treatment agent |
JPH062608B2 (en) * | 1987-08-04 | 1994-01-12 | 日本化学工業株式会社 | Slag treatment agent |
WO2010055830A1 (en) * | 2008-11-11 | 2010-05-20 | 株式会社Hi-Van | Method for treating metal-containing particles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55134116A (en) * | 1979-04-03 | 1980-10-18 | Kawasaki Steel Corp | Modifying method of converter slag |
-
1986
- 1986-09-24 JP JP61223846A patent/JPS6379743A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55134116A (en) * | 1979-04-03 | 1980-10-18 | Kawasaki Steel Corp | Modifying method of converter slag |
Also Published As
Publication number | Publication date |
---|---|
JPS6379743A (en) | 1988-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0428648B2 (en) | ||
CN101736131B (en) | Pre-melted desulfurizing agent for refining molten steel and preparation method thereof | |
US3441396A (en) | Process for making cellular materials | |
US3381064A (en) | Method of making pseudowollastonite clinker with the rotary kiln | |
JPH0152446B2 (en) | ||
JPH0550456B2 (en) | ||
JPH0415182B2 (en) | ||
US5019160A (en) | Method of modifying steel slag | |
EP0040044A1 (en) | Method for the manufacture of desulphurisation agents | |
JPS621446B2 (en) | ||
KR910008139B1 (en) | Modified steel slag and method of manufacturing the same | |
JPH0834643A (en) | Agent for preventing powdering of steelmaking slag and its production | |
US5187126A (en) | Slag treatment material | |
JPH062608B2 (en) | Slag treatment agent | |
JPH062609B2 (en) | Slag treatment agent | |
KR930011408B1 (en) | Slag treatment material | |
JPH062607B2 (en) | Slag treatment agent | |
JPH1111991A (en) | Slag powdering prevention agent and powdering prevention | |
JPH062610B2 (en) | Slag treatment agent | |
JPS6015562B2 (en) | Production method of yellow phosphorus and mold additive for steelmaking | |
JPH0132196B2 (en) | ||
JP3674365B2 (en) | Method for stabilizing steelmaking slag containing fluorine | |
USRE34912E (en) | Slag treatment material | |
JPS58167421A (en) | Preparation of zeolitic composition | |
JPH0645486B2 (en) | Modified steel slag cement and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |