JPH02234461A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02234461A
JPH02234461A JP1053808A JP5380889A JPH02234461A JP H02234461 A JPH02234461 A JP H02234461A JP 1053808 A JP1053808 A JP 1053808A JP 5380889 A JP5380889 A JP 5380889A JP H02234461 A JPH02234461 A JP H02234461A
Authority
JP
Japan
Prior art keywords
type well
type
well
channel mos
wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1053808A
Other languages
Japanese (ja)
Inventor
Masaaki Aoki
正明 青木
Tatsuya Ishii
達也 石井
Kazuo Yano
和男 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1053808A priority Critical patent/JPH02234461A/en
Publication of JPH02234461A publication Critical patent/JPH02234461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To realize a low threshold at a low temperature by a method wherein an n-type channel MOS is formed on an n-type well and a p-type channel MOS is formed on a p-type well to constitute a CMOS device and the n-type well and the p-type well are electrically isolated from each other. CONSTITUTION:A trench region 12 for isolating an n-type well and a p-type well from each other is made of polycrystalline silicon and an insulating film 13 covering the trench region 12 is provided. An n-type well 4 is formed by the ion implantation or thermal diffusion of phosphorus and a p-type well 3 is formed by the ion implantation or thermal diffusion of boron. Further, an n-type channel MOS-FET is formed on the surface region of the n-type well 4 by forming n-type high impurity concentration regions as a drain 7, a source 8, a gate oxide film 9 and a gate electrode layer 10 and a p-type channel MOS- FET is formed on the surface region of the p-type well 3 by forming p-type high impurity concentration regions as a drain 6, a source 5, a gate oxide film 9 and a gate electrode layer 11. With this constitution, the low threshold of a fine device which is so designed as to have high well concentrations can be realized at a low temperature not higher than 100 K can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCMOSデバイスに係り、特に低電圧動作に適
した低温用CMOSデバイス構造に関する. 〔従来の技術〕 従来のCMOSデバイスは第2図に断面図を示したよう
にチャネルMOSはpウェルにpチャネルMOSはnウ
ェルに作成されていた.このとき,n+P両チャネルM
OS(7)しきい値(Vt)はV.N.CarrとJ.
P.Mizeのr M O S / L S I  D
esign andApplicationJと題する
本の38頁に論じられているように、次式で表わされる
. ・・・(1) ・・・(2) ここでΦHaはpウェルまたはnウェルとゲート電極間
の仕事函数差、Coxは酸化膜容量(F/a#)、Qs
sは界面固定電荷(Goun/a#)、Qsは空乏層電
荷( Cou Q/ffl)、φFはフエルミポテンシ
ャルで真性エネルギーレベルとフエルミエネルギーの差
である.仕事函数差と界面固定電荷のない理想的な場合
には次のようになる. COχ Cox ここで空乏層電荷QBは(4εs東εoqNaφF)2
と近似される.また,εs1はSiの比誘電率、toは
真空誘電率、qは電子電荷、Naは基板不純物濃度であ
る.ところでφFは低温で増大するので式(3), (
4)で与えられる理論限界としてのVt値も0.3−0
.4V程度増大してしまう.(発明が解決しようとする
課題〕 該従来型デバイスで見られた低温でのφFの増大による
VT増加は、低温でCMOSデバイスを低電圧動作させ
る場合の重要問題であった.また微細デバイスでは短チ
ャネル効果を防止すべく,ウェルの不純物濃度(No 
)を増加する必要があるが,このNa増加でφFも大き
くなり低温でのVt増加が強められてしまう。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CMOS device, and particularly to a low temperature CMOS device structure suitable for low voltage operation. [Prior Art] In a conventional CMOS device, a channel MOS is formed in a p-well and a p-channel MOS is formed in an n-well, as shown in the cross-sectional view in FIG. At this time, both channels M
OS (7) threshold value (Vt) is V. N. Carr and J.
P. Mize's rMOS/LSID
As discussed on page 38 of the book entitled esign and Application J, it is expressed by the following equation. ...(1) ...(2) Here, ΦHa is the work function difference between the p-well or n-well and the gate electrode, Cox is the oxide film capacitance (F/a#), and Qs
s is the interface fixed charge (Goun/a#), Qs is the depletion layer charge (Cou Q/ffl), and φF is the Fermi potential, which is the difference between the intrinsic energy level and the Fermi energy. In the ideal case where there is no work function difference and no fixed charges at the interface, the equation is as follows. COχ Cox Here, the depletion layer charge QB is (4εs eastεoqNaφF)2
It is approximated as Further, εs1 is the relative permittivity of Si, to is the vacuum permittivity, q is the electron charge, and Na is the substrate impurity concentration. By the way, φF increases at low temperatures, so Equation (3), (
The Vt value as the theoretical limit given by 4) is also 0.3-0.
.. It increases by about 4V. (Problem to be Solved by the Invention) The increase in VT due to the increase in φF at low temperatures, which was observed in the conventional device, was an important problem when operating CMOS devices at low voltages at low temperatures. In order to prevent channel effects, the well impurity concentration (No.
), but this increase in Na also increases φF, which intensifies the increase in Vt at low temperatures.

本発明の目的は低温での上記したVT増加の問題を解決
した低電圧動作に適したCMOSデバイス構造を提供す
ることにある, 〔課題を解決するための手段〕 上記目的はnチャネルMOSをnウェルに、pチャネル
MOSをpウェルに作成してCMOSデバイスを楕成す
ること,及びn+P両ウェル間を電気的に絶縁分離する
ことにより達成される。
The purpose of the present invention is to provide a CMOS device structure suitable for low-voltage operation that solves the above-mentioned problem of VT increase at low temperatures. This is achieved by forming a p-channel MOS in the p-well to form a CMOS device, and by electrically insulating and separating both the n+p wells.

〔作用〕[Effect]

本発明のCMOSデバイスは樹造を第1図に示したよう
にnチャネルMOSFETがnウェルに,pチャネルM
OSFETがpウェルに作成されており、仕事函数差と
界面固定電荷密度のない理想的な場合の100K以下の
低温でのしきい値は次式で与えられる. ここで空乏M電荷Qaは と近似される。ここでEgはバンドギャップ値である。
The CMOS device of the present invention has an n-channel MOSFET in an n-well and a p-channel MOSFET as shown in FIG.
In an ideal case where the OSFET is fabricated in a p-well and there is no work function difference and no interface fixed charge density, the threshold at a low temperature of 100 K or less is given by the following equation. Here, the depletion M charge Qa is approximated as follows. Here, Eg is a bandgap value.

100K以下の低温ではフエルミポテンシャルφF値が
Et/2 に近づくので、式(5),(6)で与えられ
るv丁理論限界値も減少し,零に接近する.このように
して、従来型デバイスの低湿でのV丁増加の問題が解決
でき、た。また本発明構造は、キャリアフリーズアウト
が生ずる100K以下では両ウェル間の絶縁性が保てる
が,室温試験動作時の両者間のショートを防止すべく、
素子間分離用溝型領域とウェル下方にSiOz層を設け
た. また、ゲート電圧が零であると、neP両ウェルのキャ
リアフリーズアウト効果のため両MOSとも電流は流れ
ず、エンハンスメント動作が実現されている. また従来型CMOSデバイスでは微細デバイスの短チャ
ネル化防止のためウェル濃度(N}I)を増す必要があ
るが、このNB増加で低温のVTも増加してしまうとの
問題が有った。一方、本発明ではNaが増してもフエル
シポテンシャルφFが増加し、n型Siではフエルをレ
ベルが伝導帯端に接近し,p型Siでは価電子42端に
接近する結果,式(5), (6)で表わされるしきい
値(Vt)はほとんど変化しないとの利点がある。
At low temperatures below 100 K, the Fermi potential φF value approaches Et/2, so the theoretical limit value of v given by equations (5) and (6) also decreases and approaches zero. In this way, the problem of increased V at low humidity in conventional devices can be solved. In addition, the structure of the present invention can maintain insulation between both wells at temperatures below 100K, where carrier freeze-out occurs, but in order to prevent short circuits between the two wells during room temperature test operation,
A SiOz layer was provided in the trench-type region for element isolation and below the well. Furthermore, when the gate voltage is zero, no current flows in both MOSs due to carrier freeze-out effects in both neP wells, and enhancement operation is realized. Furthermore, in conventional CMOS devices, it is necessary to increase the well concentration (N}I) in order to prevent short channels in fine devices, but this increase in NB also causes a problem in that low-temperature VT also increases. On the other hand, in the present invention, even if Na increases, the fuel potential φF increases, and in n-type Si, the fuel level approaches the conduction band edge, and in p-type Si, the fuel level approaches the valence electron 42 edge, resulting in equation (5) , (6) has the advantage that the threshold value (Vt) hardly changes.

すなわち本発明はウェル濃度が高く設計されている微細
デバイスの低温での低VT化法として極めて有効である
. {実施例〕 以下、本発明の第1の実施例を第1図により説明する.
第1図において1はn型Si基板である。
In other words, the present invention is extremely effective as a low-temperature VT reduction method for fine devices designed with high well concentration. {Example} A first example of the present invention will be described below with reference to FIG.
In FIG. 1, 1 is an n-type Si substrate.

2は基板中に形成したSiOi層であり、酸素イオン1
80+を100KeVから500KeVの高エネルギー
で5 X 1 017/a#の量以上打込んだ後、11
50℃で2時間アニールして形成する。この条件で,S
i表面より深さ1μmから5μm以内の範囲に,厚さ0
.2 μmから0.4μmの8102層2が形成できる
.12は両ウエ゜ル分離用の溝型領域でポリシリコンよ
りなる。13は該溝型領域12を被覆する絶縁膜である
。3はボロンのイオンインプランテーションまたは熱拡
散法で形成したp形ウェルであり、4は燐のイオンイン
プランテーションまたは熱拡散法で形成したn形ウェル
である.nチャネルMOSFETはnウェル4の表面領
域に、7,8なるn型高濃度不純物領域をそれぞれドレ
イン,ソースとして.9.10をゲート酸化膜及びゲー
ト電極層として形成される。pチャネルMOSFETは
pウェル3の表面領域に6.5なるp型高濃度不純物領
域をそれぞれドレイン,ソースとして、9,11をゲー
ト酸化膜及びゲート電極層として形成される。10と1
1を接続して人力端子とし、6と7を接続して出力端子
として、5を電源端子、8を接地端子とすれば本発明の
CMOSインバータ回路を横成できる.14は素子分離
用の溝型領域であり、15はこれを被覆する絶縁膜であ
る. 本実施例によればnMOsトランジスタをn形ウェル表
面領域に.pMOSトランジスタをp形ウェル表面領域
に形成したので、それぞれのvTを従来型に比べてずつ
と小さくできた。本実施例ではn M O Sのゲート
にn+ポリシリコンを用い、pMOsのゲートにp+ポ
リシリコンを用いており、この時のIV特性結果を従来
型特性と比べて第3図に示す.ここで示した従来型でも
、nMOsゲートにn+ポリシリコンを,pMOsゲー
トにp+ポリシリコンを採用している。また本発明と従
来型では、それぞれのMOSトランジスタが形成される
ウェルの導電型が逆であることを除き,ウェル不純物濃
度、ゲート酸化膜厚、ドレイン・ソース拡散層深さなど
の仕様は同一とした6第3図の実験結果から明らかなよ
うに,従来型でVT絶対値が約0.5Vであったのに対
し、本発明では同値は約0.2vに低減できる。この結
果、Vccが0.5V程度の低電圧動作が実現できた。
2 is a SiOi layer formed in the substrate, and oxygen ions 1
After implanting 80+ at a high energy of 100 KeV to 500 KeV in an amount of 5
It is formed by annealing at 50° C. for 2 hours. Under this condition, S
The thickness is 0 in the range from 1 μm to 5 μm below the i surface.
.. An 8102 layer 2 with a thickness of 2 μm to 0.4 μm can be formed. Reference numeral 12 denotes a groove-type region for separating both wells and is made of polysilicon. Reference numeral 13 denotes an insulating film that covers the groove-shaped region 12. 3 is a p-type well formed by boron ion implantation or thermal diffusion method, and 4 is an n-type well formed by phosphorus ion implantation or thermal diffusion method. The n-channel MOSFET uses n-type high concentration impurity regions 7 and 8 as the drain and source, respectively, in the surface region of the n-well 4. 9.10 is formed as a gate oxide film and a gate electrode layer. The p-channel MOSFET is formed in the surface region of the p-well 3 with p-type high concentration impurity regions of 6.5 mm as the drain and source, respectively, and 9 and 11 as the gate oxide film and gate electrode layer. 10 and 1
The CMOS inverter circuit of the present invention can be constructed by connecting 1 as a human power terminal, connecting 6 and 7 as an output terminal, 5 as a power supply terminal, and 8 as a ground terminal. 14 is a groove type region for element isolation, and 15 is an insulating film covering this. According to this embodiment, an nMOS transistor is placed in the n-type well surface region. Since the pMOS transistors are formed in the p-well surface region, each vT can be made smaller than that of the conventional type. In this example, n+ polysilicon is used for the gate of nMOS, and p+ polysilicon is used for the gate of pMOS, and the results of the IV characteristics at this time are shown in FIG. 3 in comparison with the conventional characteristics. The conventional type shown here also uses n+ polysilicon for the nMOs gate and p+ polysilicon for the pMOS gate. In addition, the present invention and the conventional type have the same specifications such as well impurity concentration, gate oxide film thickness, and drain/source diffusion layer depth, except that the conductivity type of the well in which each MOS transistor is formed is opposite. As is clear from the experimental results shown in FIG. 3, the absolute value of VT in the conventional type was about 0.5V, whereas in the present invention, the same value can be reduced to about 0.2V. As a result, low voltage operation with Vcc of about 0.5V was realized.

また両ウェル間に絶縁分離領域を設けているので、室温
試験時の両ウェル間ショートを防止できた.また上記第
1の実施例では基板中に設けるSiOz層を酸素イオン
の高エネルギー打込みで形成する場合について述べたが
、本発明はSi基板を熱酸化しその上にSOI層を固相
エピタキシャル成長させるが、または熱酸化暎上に堆積
したポリSi層をレーザ光照射によって再結晶化するこ
とによっても実現可能であることは勿論である.本発明
の第2の実施例を第4図に示す。この実施例が第1の実
施例と異なる点は、基板中に設けるSi○2層2をpウ
ェル3下方に限って形成した点にある。この構造でもp
ウェル3とnウェル4を電気的に絶縁分離できた。本実
施例の効果は第1の実施例の効果と同じである。
Additionally, an insulating isolation region is provided between both wells, which prevents short circuits between both wells during room temperature tests. Furthermore, in the first embodiment described above, the case was described in which the SiOz layer provided in the substrate was formed by high-energy implantation of oxygen ions, but in the present invention, the Si substrate is thermally oxidized and the SOI layer is grown on it by solid phase epitaxial growth. Of course, this can also be achieved by recrystallizing a poly-Si layer deposited on a thermally oxidized layer by laser beam irradiation. A second embodiment of the invention is shown in FIG. This embodiment differs from the first embodiment in that the Si2 layer 2 provided in the substrate is formed only below the p-well 3. Even in this structure, p
Well 3 and n-well 4 could be electrically isolated. The effects of this embodiment are the same as those of the first embodiment.

本発明の第3の実施例を第5図に示す。この実施例が第
1及び第2の実施例と異なる点は、n,p両ウェル間の
溝型絶縁領域を除きまたウェル下方にSiOz層を形成
していない点である.この構造でもnyP両ウェルにキ
ャリアフリーズアウトの生ずる100K以下では、両ウ
ェル間の絶縁性が保てる.両ウェルは室温試験時にはシ
ョートしてしまうが,動作温度を100K以下に限定す
れば良い.本実施例によれば従来例デバイス作成技術で
簡単に本発明構造が実現でき、両MOSの低温での低v
T化が図れた。
A third embodiment of the invention is shown in FIG. This embodiment differs from the first and second embodiments in that no SiOz layer is formed below the wells, except for the groove-type insulating regions between the n and p wells. Even with this structure, insulation between both nyP wells can be maintained at temperatures below 100K, where carrier freeze-out occurs in both nyP wells. Both wells will be short-circuited during room temperature testing, but the operating temperature should be limited to 100K or less. According to this embodiment, the structure of the present invention can be easily realized using the conventional device fabrication technology, and both MOSs can have low v at low temperatures.
We were able to make it into a T.

上記実施例ではn基板を用いたCMOSデバイスの場合
について述べたが、本発明はp基板を用いて、nウェル
にn M O Sを、pウェルにPMOSを作成する場
合にも実現可能であることは勿論である. 〔発明の効果〕 本発明によれば.nMOSをnウェルに、pMOsをp
ウェルに形成することで100以下の低温での低VT化
を実現できたIIVT≦0.2■が実現でき、Vcc≦
0.5vの低電圧動作が達成される。
Although the above embodiment describes the case of a CMOS device using an n-substrate, the present invention can also be realized when using a p-substrate to create an n-MOS in the n-well and a PMOS in the p-well. Of course. [Effect of the invention] According to the present invention. nMOS to n well, pMOS to p
By forming it in the well, it is possible to achieve a low VT of 100 or less at low temperatures, IIVT≦0.2■, and Vcc≦
Low voltage operation of 0.5v is achieved.

そしてゲートに電圧を印加しないときは、n+P両ウェ
ルのフリーズアウト効果によって電流は流れず、エンハ
ンスメント動作が保証される.また従来型微細CMOS
デバイスでは短チャネル効果防止のためウェル濃度が高
く設計されるが、この時低温でのVT増加は大きくなり
問題であった.本発明ではウェル濃度が高くても,低温
での低V丁が可能である. またn+P両ウェル間の電気的絶縁分離は両ウェル間に
絶縁層を介在させなくとも,100K以下の低温ではキ
ャリアフリーズアウト効果により達成される.本発明で
は室温試験時の両ウェル間ショートを防止すべく,ウェ
ル間に絶縁層を介在させた。
When no voltage is applied to the gate, no current flows due to the freeze-out effect of both n+P wells, ensuring enhancement operation. Also, conventional micro CMOS
Devices are designed with a high well concentration to prevent short channel effects, but at this time the VT increase at low temperatures becomes large, which is a problem. In the present invention, even if the well concentration is high, low V-density can be achieved at low temperatures. Furthermore, electrical isolation between both the n+P wells can be achieved by the carrier freeze-out effect at a low temperature of 100 K or less without intervening an insulating layer between the two wells. In the present invention, an insulating layer is interposed between the wells in order to prevent short circuit between both wells during a room temperature test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す図、第2図は従来
型CMOSデバイス構造を示す図,第3図は本発明の効
果(IV特性)を示す図,第4図は本発明の第2の実施
例を示す図、第5図は本発明の第3の実施例を示す図で
ある. 1・・・Si基板,2・・・SiOz層、3・・・pウ
ェル、4・・・nウェル,5・・・pMOsソース,6
・・・pMOsドレイン、7・・・n M O Sドレ
イン、8・・・n M O Sソース、9・・・ゲート
酸化膜、10・・・n M O Sゲート電極層、11
・・・PMOSゲート電極層,12・・・ポリシリコン
,13・・・絶縁膜,14・・・ポリシリコン,第 国 第 閏 一352 Yムコ JA/ 箒5図 ノ^t
Fig. 1 is a diagram showing the first embodiment of the present invention, Fig. 2 is a diagram showing a conventional CMOS device structure, Fig. 3 is a diagram showing the effects (IV characteristics) of the present invention, and Fig. 4 is a diagram showing the present invention. FIG. 5 is a diagram showing a second embodiment of the invention, and FIG. 5 is a diagram showing a third embodiment of the invention. DESCRIPTION OF SYMBOLS 1...Si substrate, 2...SiOz layer, 3...p well, 4...n well, 5...pMOs source, 6
...pMOS drain, 7...n MOS drain, 8...n MOS source, 9... gate oxide film, 10...n MOS gate electrode layer, 11
... PMOS gate electrode layer, 12 ... polysilicon, 13 ... insulating film, 14 ... polysilicon, 352 Yamuko JA / Broom 5 Figure No.

Claims (1)

【特許請求の範囲】 1、半導体基板の第1導電型ウェルの表面領域に、第1
導電型の高濃度不純物領域によつてソース、ドレインが
形成されてなる第1のMOSトランジスタを有し、第2
導電型ウェルの表面領域に第2導電型の高濃度不純物領
域によつてソース、ドレインが形成されてなる第2のM
OSトランジスタを有し、100K以下の温度範囲で動
作させることを特徴とする半導体装置。 2、前記第1導電型ウェルと第2導電型ウェル間に絶縁
分離領域を有し、前記ウェルの少なくとも一方のウェル
の下方に、ウェル間を電気的に絶縁分離する絶縁膜を有
することを特徴とする特許請求の範囲第1項記載の半導
体装置。
[Claims] 1. In the surface region of the first conductivity type well of the semiconductor substrate, a first
It has a first MOS transistor whose source and drain are formed by conductivity type high concentration impurity regions, and a second MOS transistor.
A second M in which a source and a drain are formed by high concentration impurity regions of the second conductivity type in the surface region of the conductivity type well.
A semiconductor device comprising an OS transistor and operating in a temperature range of 100K or less. 2. An insulating isolation region is provided between the first conductivity type well and the second conductivity type well, and an insulating film is provided below at least one of the wells to electrically insulate and isolate the wells. A semiconductor device according to claim 1.
JP1053808A 1989-03-08 1989-03-08 Semiconductor device Pending JPH02234461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053808A JPH02234461A (en) 1989-03-08 1989-03-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053808A JPH02234461A (en) 1989-03-08 1989-03-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02234461A true JPH02234461A (en) 1990-09-17

Family

ID=12953093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053808A Pending JPH02234461A (en) 1989-03-08 1989-03-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02234461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007194A1 (en) * 1996-08-16 1998-02-19 Northrop Grumman Corporation Ultra-low power-delay product nnn/ppp logic devices
KR100382538B1 (en) * 1996-12-20 2003-07-18 주식회사 하이닉스반도체 Method for manufacturing cmos device
KR100444772B1 (en) * 1997-12-30 2004-10-14 주식회사 하이닉스반도체 Method of fabricating complementary mos transistor for removing latch-up phenomenon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007194A1 (en) * 1996-08-16 1998-02-19 Northrop Grumman Corporation Ultra-low power-delay product nnn/ppp logic devices
KR100382538B1 (en) * 1996-12-20 2003-07-18 주식회사 하이닉스반도체 Method for manufacturing cmos device
KR100444772B1 (en) * 1997-12-30 2004-10-14 주식회사 하이닉스반도체 Method of fabricating complementary mos transistor for removing latch-up phenomenon

Similar Documents

Publication Publication Date Title
US6674130B2 (en) High performance PD SOI tunneling-biased MOSFET
EP0661751B1 (en) Method of making a CMOS device with high and low voltage transistors
US4994866A (en) Complementary semiconductor device
US8685812B2 (en) Logic switch and circuits utilizing the switch
US5970338A (en) Method of producing an EEPROM semiconductor structure
JPH08227998A (en) Back source mosfet
US4853340A (en) Semiconductor device isolated by a pair of field oxide regions
JPS61248459A (en) Complementary type mis semiconductor integrated circuit
US20090170269A1 (en) High voltage mosfet devices containing tip compensation implant
KR920008120B1 (en) Mos type field effect transistor
JPH02234461A (en) Semiconductor device
EP0160183A2 (en) High voltage mos field effect transistor
JPH08293610A (en) Semiconductor device and manufacturing method thereof
JPH08293598A (en) Semiconductor device and manufacture thereof
EP0386779B1 (en) MOS field-effect transistor having a high breakdown voltage
JPH061826B2 (en) Solid-state imaging device
JPH08316335A (en) Semiconductor device and fabrication thereof
JP3413039B2 (en) Semiconductor device
JP3479066B2 (en) Semiconductor device having SOI structure and method of manufacturing the same
JPH022155A (en) Semiconductor integrated circuit
Rumennik et al. Integrated high and low voltage CMOS technology
JP2578757B2 (en) Semiconductor device
US20010044174A1 (en) Semiconductor device and method of fabricating the same
JPH06283713A (en) Semiconductor device and its manufacture
JPH0289358A (en) Complementary mis integrated circuit