JPH02229403A - Manufacture of resistance array - Google Patents

Manufacture of resistance array

Info

Publication number
JPH02229403A
JPH02229403A JP1249649A JP24964989A JPH02229403A JP H02229403 A JPH02229403 A JP H02229403A JP 1249649 A JP1249649 A JP 1249649A JP 24964989 A JP24964989 A JP 24964989A JP H02229403 A JPH02229403 A JP H02229403A
Authority
JP
Japan
Prior art keywords
green sheet
insulating
resistor
multilayer body
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1249649A
Other languages
Japanese (ja)
Other versions
JPH0435886B2 (en
Inventor
Takeshi Nishizawa
西澤 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1249649A priority Critical patent/JPH02229403A/en
Publication of JPH02229403A publication Critical patent/JPH02229403A/en
Publication of JPH0435886B2 publication Critical patent/JPH0435886B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a resistance array of a multilayer body by a method wherein individual pieces of a resistance green sheet are arranged and installed between a plurality of insulating green sheet layers and the multilayer body obtained by thermally pressure- bonding this assembly is baked. CONSTITUTION:The insulating layers 6 are an alumina-glass ceramic complex; resistors 7 which have been installed at the inside are structured in such a way that ruthenium dioxide as a main component is mixed with a glass frit. The insulating layers and the resistors are prepared in advance as respectively unbaked films 0.1 to 0.03 mm thick. A silver-palladium paste is applied, to be a rectangular shape, to an insulating green sheet 10, in which fine holes 11 have been made, in positions of the fine holes 11 and in positions in which the fine holes come into contact with the resistors externally; internal electrodes 12 are formed. Then, individual pieces 13 of a resistance green sheet are arranged and installed so as to come into contact with two adjacent internal electrodes 12 externally; they are pressure-bonded thermally for one minute by using a thermal press machine. Twenty-one sheets are laminated in such a way that the fine holes 11 filled with the silver-palladium paste are connected mutually; the sheets are pressure-bonded thermally; a multilayer body 14 is formed. Then, external electrodes 8 are formed by a screen-printing operation so as to be connected to wiring parts 9.

Description

【発明の詳細な説明】 本発明は抵抗アレーの製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a resistor array.

最近、抵抗器の実装密度を大きくすることを目的に数個
の抵抗体を1つの絶縁基板上に一体化した抵抗アレーが
幅広く電子機器に活用されている。
Recently, resistor arrays in which several resistors are integrated on one insulating substrate have been widely used in electronic devices in order to increase the packaging density of resistors.

一般に抵抗アレーの殆どは純度95〜99%のアルミナ
からなるセラミック基板上に形成されており、その基板
上に2酸化ルテニウムを主成分とする抵抗ペーストをス
クリーン印刷法を用いて被着し、温度800〜1000
℃の空気雰囲気中で約1時間焼成して抵抗体を形成して
いる。この抵抗体をレーザートリミング法などにより所
望の抵抗値に修正している.これらの通常市販されてい
る抵抗アレーの抵抗体は通常平面的に構成されている。
Generally, most resistor arrays are formed on a ceramic substrate made of alumina with a purity of 95 to 99%, and a resistor paste containing ruthenium dioxide as a main component is applied onto the substrate using a screen printing method, and then 800-1000
The resistor was formed by firing in an air atmosphere at .degree. C. for about 1 hour. This resistor is modified to the desired resistance value using a laser trimming method. The resistors of these commonly commercially available resistor arrays are usually configured in a planar manner.

しかし電子機器の小型化が進行している現在、より多く
の抵抗体を多層状に一体化した抵抗アレーが必要になっ
て来ている。この要求に対して従来用いられてきた抵抗
アレーの上述した製造手段では次に述べる理由により多
層化は困難であった.従来、抵抗体の2層化まで試みら
れた手段を用いて、より多層化した抵抗アレーの断面図
を第1図に示す。(実際には多層化のメリットが出ない
ので市販品としては出廻っていない。)この構造を有す
る抵抗アレーの製造を簡単に説明すると、アルミナセラ
ミック基板1上にサーメット抵抗体2が印刷、焼成され
る。同時に電極3も形成される。次いで抵抗体2とほぼ
同一の温度で焼成できる絶縁ペーストを用い、印刷、焼
成して絶縁膜4を形成する.多層化は抵抗体2及び絶縁
膜4を繰返して形成して行う。この場合、第1図にも示
してあるように最後に行う抵抗値のトリミング用の窓5
を設けておかなければならないので、抵抗体はほとんど
それよりも下層に設けられた抵抗体と重畳することはで
きない.抵抗体を重畳することができなければ、多層化
して小形化するという目的を足させることは出来ない。
However, as electronic equipment continues to become smaller, there is a growing need for resistor arrays that integrate more resistors into a multilayer structure. In response to this requirement, it has been difficult to create multiple layers using the above-mentioned manufacturing methods for resistor arrays that have been conventionally used for the following reasons. FIG. 1 shows a cross-sectional view of a multi-layered resistor array using the conventional method of creating two layers of resistors. (Actually, it is not available as a commercial product because it does not have the advantage of multilayering.) To briefly explain the manufacturing of a resistor array with this structure, a cermet resistor 2 is printed and fired on an alumina ceramic substrate 1. be done. At the same time, electrode 3 is also formed. Next, an insulation film 4 is formed by printing and firing using an insulation paste that can be fired at approximately the same temperature as the resistor 2. Multilayering is achieved by repeatedly forming the resistor 2 and the insulating film 4. In this case, as shown in FIG.
Therefore, it is almost impossible for a resistor to overlap with a resistor installed in a lower layer. If it is not possible to overlap resistors, the purpose of multilayering and miniaturization cannot be achieved.

この原因の主たるものはこのように多層化された抵抗ア
レーを製造する上で、焼成後抵抗値のトリミングが必要
であるからである. 発明者らは特願昭55−156369に於いて開示した
抵抗グリーンシートを用いて抵抗値偏差のきわめて小さ
い抵抗器の製造方法を提案しており、この製造方法を抵
抗アレーの製造方法に適用することにより、まったく新
規な構造をもつ抵抗アレーが可能であることが発明でき
た。
The main reason for this is that in manufacturing such a multilayered resistor array, it is necessary to trim the resistance value after firing. The inventors have proposed a method for manufacturing a resistor with extremely small deviation in resistance value using the resistor green sheet disclosed in Japanese Patent Application No. 55-156369, and this manufacturing method is applied to a method for manufacturing a resistor array. As a result, we were able to invent a resistor array with a completely new structure.

本発明の目的は多層状の抵抗アレーの製造方法を提供す
ることにある. 本発明によればあらかじめ形成された抵抗グリーンシー
トの個片を複数の絶縁グリーンシートの層間に配置後、
熱圧着して多層体を得る工程と、前記多層体を焼成する
工程とを有することを特徴とする抵抗アレーの製造方法
が得られる.以下本発明を第2図〜第5図を参照して詳
細に説明する. 第2図は本発明抵抗アレーの一実施例の断面図を示す.
絶縁層6はアルミナーガラスセラミック複合物(絶縁層
5a,・・・・・・,6nは均一組成)であり、内装化
された抵抗体7は2酸化ルテニウムを主成分としてガラ
スフリフトを混合した構造にしている.外部電極8およ
び外部電極8と内装の抵抗体7とを電気的に接続する配
線9は絶縁層6に設けられた数百ミクロンメーター細孔
を金、銀、銀一パラジウムなどの金属で埋めることによ
り形成する.本発明実施例の抵抗アレーは複数の抵抗体
および均一組成を持つ複数の絶縁層を多層化して焼結し
た一体物であり、その抵抗強度は約2000kg/am
”という大きな値を示している。
An object of the present invention is to provide a method for manufacturing a multilayer resistor array. According to the present invention, after placing individual pieces of preformed resistive green sheets between layers of a plurality of insulating green sheets,
A method for manufacturing a resistor array is obtained, which comprises the steps of: obtaining a multilayer body by thermocompression bonding; and firing the multilayer body. The present invention will be explained in detail below with reference to FIGS. 2 to 5. FIG. 2 shows a cross-sectional view of one embodiment of the resistor array of the present invention.
The insulating layer 6 is an alumina glass ceramic composite (insulating layers 5a, . . . , 6n have a uniform composition), and the internal resistor 7 is made of ruthenium dioxide as a main component mixed with glass drift. It has a similar structure. The external electrode 8 and the wiring 9 that electrically connects the external electrode 8 and the internal resistor 7 are made by filling pores of several hundred micrometers provided in the insulating layer 6 with metal such as gold, silver, silver-palladium, etc. Formed by. The resistor array according to the embodiment of the present invention is an integrated product made by laminating and sintering a plurality of resistors and a plurality of insulating layers having a uniform composition, and its resistance strength is approximately 2000 kg/am.
” indicates a large value.

第3図(al. (b). (Q)は本発明抵抗アレー
の一実施例の製造工程の一部を示すものである.第2図
に示した絶縁層および抵抗体はそれぞれ厚さ0. 1 
m・〜0.03mの未焼成膜(以下グリーンシートと呼
ぶ)の形で予め準備される. 絶縁グリーンシートおよび抵抗グリーンシートの組成比
は第1表および第2表の通りである。
Figure 3 (al. (b). (Q) shows a part of the manufacturing process of one embodiment of the resistor array of the present invention. The insulating layer and the resistor shown in Figure 2 each have a thickness of 0. .1
It is prepared in advance in the form of an unfired film (hereinafter referred to as a green sheet) with a thickness of ~0.03 m. The composition ratios of the insulating green sheet and the resistive green sheet are shown in Tables 1 and 2.

第1表(絶縁グリーンシートの組成) 第3表(グリーンシートの特性) 第2表(抵抗グリーンシートの組成) それぞれのグリーンシートの特性は第3表の通りであっ
た。
Table 1 (Composition of insulating green sheet) Table 3 (Characteristics of green sheet) Table 2 (Composition of resistive green sheet) The characteristics of each green sheet were as shown in Table 3.

この2種類のグリーンシートを多層化して抵抗アレーを
製造する. 第3図(a)は絶縁グリーンシート10に金型を用いて
直径約150,iJmの複数の細孔11を形成した状態
を示す。この細孔11の位置は後述するように多層化し
た時に、抵抗体と接続する位置にそれぞれ形成されてい
る。
A resistor array is manufactured by layering these two types of green sheets. FIG. 3(a) shows a state in which a plurality of pores 11 having a diameter of about 150, iJm are formed in the insulating green sheet 10 using a mold. The pores 11 are formed at positions where they will be connected to resistors when multilayered, as will be described later.

本実施例の抵抗アレーは絶縁層21層とし、その層間に
20枚の抵抗シートの個片を配置して、最終出来上がり
抵抗アレーは素子数20になるようにした.また抵抗ア
レ−1個の外形寸法は10vaa X 5. O m 
X 2. O tmになるようにした。
The resistor array of this example had 21 insulating layers, and 20 pieces of resistor sheets were arranged between the layers, so that the final completed resistor array had 20 elements. Also, the external dimensions of one resistor array are 10 vaa x 5. O m
X 2. I tried to make it O tm.

本実施例では抵抗グリーンシートの目標抵抗値を1kΩ
1種頻に設定しこの抵抗グリーンシートを長さ3m,輻
1flに切断して抵抗グリーンシートの個片(図示省略
)を形成してお《.次に細孔l1を形成した絶縁グリー
ンシート10に細孔11および細孔11が抵抗体と外接
する位置、すなわち細孔11の近傍の上面に銀一パラジ
ウムペーストをスクリーン印刷法を用いて矩形状に被着
させ、内部電極12を形成する。この時細孔10内には
銀−パラジウムペーストが充填され絶縁グリーンシート
の表裏が電気的に導通される。このような方法で内部電
極l2が形成された絶縁グリーンシ−}10上にあらか
じめ形成しておいた抵抗グリーンシートの個片13を第
3図(b)に示すように隣接する2個の内部電極l2に
外接するように配置し、熱プレス機で温度115℃,圧
力50kg/cm”で1分間熱圧着を行う。このように
して抵抗グリーンシートの個片13を圧着した絶縁グリ
ーンシートを銀−パラジウムペーストが埋められた細孔
11が互に接続するように位置合せして21枚積層し、
熱プレス機で温度115℃,圧力2501g/cs=”
 ,  2 0分間熱圧着を行い第3図(C)に示す多
層体14にする。
In this example, the target resistance value of the resistor green sheet is 1kΩ.
The resistance green sheet is cut into pieces of 3 m in length and 1 fl in width to form individual pieces of resistance green sheet (not shown). Next, a silver-palladium paste is applied to the insulating green sheet 10 in which the pores l1 are formed using a screen printing method to form a rectangular shape on the pores 11 and the upper surface near the pores 11, where the pores 11 circumscribe the resistor. to form the internal electrodes 12. At this time, the pores 10 are filled with silver-palladium paste, and the front and back surfaces of the insulating green sheet are electrically connected. As shown in FIG. 3(b), the individual pieces 13 of the resistive green sheet formed in advance on the insulating green sheet 10 on which the internal electrode l2 has been formed in this manner are placed between two adjacent internal parts. The insulating green sheet with the individual pieces 13 of the resistive green sheet crimped in this way is then bonded using a heat press machine at a temperature of 115°C and a pressure of 50 kg/cm for 1 minute. - Align and stack 21 sheets so that the pores 11 filled with palladium paste are connected to each other,
Temperature: 115℃, pressure: 2501g/cs=”
, 20 minutes of thermocompression bonding is performed to form the multilayer body 14 shown in FIG. 3(C).

次にこの多層体14の上部表面に内部の配腺9(第2図
参照)に接続するように外部電極8をスクリーン印刷方
法を用いて形成する. 次に第3図(C)に示すように切断線A−A.BBに沿
ってナイフなどにより多層体14を切断して個片14a
とする。
Next, external electrodes 8 are formed on the upper surface of this multilayer body 14 using a screen printing method so as to be connected to internal glands 9 (see FIG. 2). Next, as shown in FIG. 3(C), cut line A-A. The multilayer body 14 is cut along BB with a knife or the like to form individual pieces 14a.
shall be.

次いでこの個片14aを第4図に示す温度曲線を有する
焼成炉(図示省略)中で焼成した。
Next, this individual piece 14a was fired in a firing furnace (not shown) having a temperature curve shown in FIG.

このようにして製作された抵抗アレーは第2図に示す断
面形状を有しその特性は第4表に示す結果であった. 第4表(抵抗アレーの特性) この特性は現在市販されている抵抗アレーの特性に匹敵
する。
The resistor array thus fabricated had the cross-sectional shape shown in Figure 2, and its characteristics were shown in Table 4. Table 4 (Characteristics of resistor array) These characteristics are comparable to those of resistor arrays currently on the market.

以上、本発明による抵抗アレーの特性は従来品と同等で
あり、かつ外形は約1/4以下ときわめて小型化された
効果は大きい.
As described above, the characteristics of the resistor array according to the present invention are the same as those of conventional products, and the external size is approximately 1/4 or less, which is extremely compact, which has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来手段を用いて製作した抵抗アレーの縦断面
図、第2図は本発明の一実施例によって得られる抵抗ア
レーの縦断面図、第3図(a)は絶縁グリーンシートに
細孔を設けた状態を示す斜視図、第3図山)は第2図(
alの絶縁グリーンシート上に内部電極および抵抗グリ
ーンシートを被着した状態を示す斜視図、第3図(C)
は第2図(b)の絶縁グリーンシートを積層し多層体と
した斜視図、第4図は本発明の一実施例で使用した焼成
炉の温度曲線図。 6・・・絶縁層、7・・・抵抗体、8・・・外部電極、
9・・・配線、10・・・絶縁グリーンシート、11・
・・細孔、12・・・内部電極、13・・・抵抗グリー
ンシートの個片、14・・・多層体、14a・・・(多
層体の)個片。 1・・・アルミナセラミック基板、2・・・サーメット
抵抗体、3・・・電極、4・・・絶縁膜、5・・・窓。 第1区 第 図 第 図(α) 1フ 第 図(b) 第 図(c)
FIG. 1 is a longitudinal sectional view of a resistor array manufactured using conventional means, FIG. 2 is a longitudinal sectional view of a resistor array obtained by an embodiment of the present invention, and FIG. A perspective view showing the state in which holes are provided, Figure 3) is shown in Figure 2 (
Figure 3 (C) is a perspective view showing a state in which internal electrodes and resistance green sheets are covered on an Al insulating green sheet.
2(b) is a perspective view of the insulating green sheets laminated to form a multilayer body, and FIG. 4 is a temperature curve diagram of a firing furnace used in an embodiment of the present invention. 6... Insulating layer, 7... Resistor, 8... External electrode,
9... Wiring, 10... Insulating green sheet, 11.
... Pore, 12... Internal electrode, 13... Individual piece of resistive green sheet, 14... Multilayer body, 14a... Individual piece (of multilayer body). DESCRIPTION OF SYMBOLS 1... Alumina ceramic substrate, 2... Cermet resistor, 3... Electrode, 4... Insulating film, 5... Window. 1st section diagram (α) 1st floor diagram (b) Figure (c)

Claims (1)

【特許請求の範囲】[Claims] あらかじめ形成しておいた抵抗グリーンシートの個片を
複数の絶縁グリーンシートの層間に配置後、熱圧着して
多層体を得る工程と、前記多層体を焼成する工程とを有
することを特徴とする抵抗アレーの製造方法。
The method is characterized by comprising the steps of: obtaining a multilayer body by arranging individual pieces of resistive green sheets formed in advance between layers of a plurality of insulating green sheets and bonding them by thermocompression; and firing the multilayer body. Method of manufacturing a resistor array.
JP1249649A 1989-09-25 1989-09-25 Manufacture of resistance array Granted JPH02229403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249649A JPH02229403A (en) 1989-09-25 1989-09-25 Manufacture of resistance array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249649A JPH02229403A (en) 1989-09-25 1989-09-25 Manufacture of resistance array

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56156671A Division JPS5857703A (en) 1981-10-01 1981-10-01 Resistor array

Publications (2)

Publication Number Publication Date
JPH02229403A true JPH02229403A (en) 1990-09-12
JPH0435886B2 JPH0435886B2 (en) 1992-06-12

Family

ID=17196163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249649A Granted JPH02229403A (en) 1989-09-25 1989-09-25 Manufacture of resistance array

Country Status (1)

Country Link
JP (1) JPH02229403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491543A2 (en) * 1990-12-17 1992-06-24 Hughes Aircraft Company Via resistors within multilayer 3-dimensional structures/substrates
JP2000182811A (en) * 1998-12-21 2000-06-30 Alps Electric Co Ltd Resistance attenuator
JP2005045257A (en) * 2003-07-23 2005-02-17 Robert Bosch Gmbh Method for fabricating hybrid product comprising several wiring planes
JP2006186038A (en) * 2004-12-27 2006-07-13 Oki Electric Ind Co Ltd Resistor chip and its packaging method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119815A (en) * 1974-03-08 1975-09-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119815A (en) * 1974-03-08 1975-09-19

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491543A2 (en) * 1990-12-17 1992-06-24 Hughes Aircraft Company Via resistors within multilayer 3-dimensional structures/substrates
JP2000182811A (en) * 1998-12-21 2000-06-30 Alps Electric Co Ltd Resistance attenuator
JP2005045257A (en) * 2003-07-23 2005-02-17 Robert Bosch Gmbh Method for fabricating hybrid product comprising several wiring planes
JP2006186038A (en) * 2004-12-27 2006-07-13 Oki Electric Ind Co Ltd Resistor chip and its packaging method
JP4644482B2 (en) * 2004-12-27 2011-03-02 Okiセミコンダクタ株式会社 Resistor chip and mounting method thereof

Also Published As

Publication number Publication date
JPH0435886B2 (en) 1992-06-12

Similar Documents

Publication Publication Date Title
EP0285873B1 (en) Method of producing a multi-layered ceramic capacitor
JPS6486510A (en) Laminated ceramic capacitor and manufacture thereof
JPH03126206A (en) Manufacture of laminated capacitor
JPH02229403A (en) Manufacture of resistance array
JP2742414B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0521635A (en) Multilayered substrate
JPS6210986Y2 (en)
JP2756745B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0563007B2 (en)
JPH06283375A (en) Manufacture of layered electronic components
JP3058305B2 (en) Thermistor and manufacturing method thereof
JPS6152969B2 (en)
JPS5857703A (en) Resistor array
JPH0217957B2 (en)
JPS5857704A (en) Resistor array
JPH07235448A (en) Production of complex electronic component
JPH0738217A (en) Ceramic board
JPH0828311B2 (en) Method for manufacturing capacitor-embedded multilayer ceramic substrate
JPH04243173A (en) Electrostrictive effect element
JPH02239697A (en) Manufacture of circuit board
JP4383141B2 (en) Manufacturing method of multilayer ceramic parts
JPS6235253B2 (en)
JP3042463B2 (en) Manufacturing method of ceramic electronic components
JPH06140764A (en) Multilayer circuit board provided with built-in capacitor
JPH04288854A (en) Ceramic substrate for mounting semiconductor and manufacture thereof