JPH02225647A - High strength and high ductility stainless steel material and its manufacture - Google Patents
High strength and high ductility stainless steel material and its manufactureInfo
- Publication number
- JPH02225647A JPH02225647A JP4323789A JP4323789A JPH02225647A JP H02225647 A JPH02225647 A JP H02225647A JP 4323789 A JP4323789 A JP 4323789A JP 4323789 A JP4323789 A JP 4323789A JP H02225647 A JPH02225647 A JP H02225647A
- Authority
- JP
- Japan
- Prior art keywords
- less
- phase
- stainless steel
- equivalent
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 28
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 28
- 239000010935 stainless steel Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 35
- 239000010959 steel Substances 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 238000005097 cold rolling Methods 0.000 claims description 27
- 229910001566 austenite Inorganic materials 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000005728 strengthening Methods 0.000 abstract description 9
- 229910000963 austenitic stainless steel Inorganic materials 0.000 abstract description 7
- 230000009466 transformation Effects 0.000 abstract description 7
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 238000005482 strain hardening Methods 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004881 precipitation hardening Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
C産業上の利用分野〕
本発明は耐食性および延性に優れた高強度高延性ステン
レス鋼材およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-strength, high-ductility stainless steel material with excellent corrosion resistance and ductility, and a method for manufacturing the same.
従来、耐食性と高強度を必要とするばね材料や構造材料
用高強度ステンレス鋼として(a) 5US301鋼に
代表される加工硬化型ステンレス鋼、(b) 17−4
PH,1,77−7P)Iに代表される析出硬化型ステ
ンレス鋼が使用されている。Conventionally, high-strength stainless steels for spring materials and structural materials that require corrosion resistance and high strength include (a) work-hardening stainless steels such as 5US301 steel, and (b) 17-4.
Precipitation hardening stainless steel typified by PH, 1,77-7P)I is used.
加工硬化型オーステナイト系ステンレス鋼は5US30
111.5US30411;表すレル準安定オーステナ
イト相を有するステンレス鋼であり、冷間加工により硬
質のマルテンサイト(α′)相を誘起させ高強度を得る
ものである。しかしなから、高強度を得るためには高い
冷間圧延率を付与し多量のα′相を生成させなければな
らないため延性が著しく低下するようになる。Work hardening type austenitic stainless steel is 5US30
No. 111.5 US30411: This is a stainless steel having a metastable austenite phase, and high strength is obtained by inducing a hard martensitic (α') phase through cold working. However, in order to obtain high strength, a high cold rolling rate must be applied to generate a large amount of α' phase, resulting in a significant decrease in ductility.
析出硬化型ステンレス鋼はA0. Cuなどの析出硬化
元素を添加して時効処理により金属間化合物を析出させ
て高強度を得るものである。 17−JPH鋼の組織は
マルテンサイトで時効処理により高強度は得られるもの
の延性に乏しい欠点を有している。Precipitation hardening stainless steel has A0. High strength is obtained by adding precipitation hardening elements such as Cu and precipitating intermetallic compounds through aging treatment. The structure of 17-JPH steel is martensite, and although high strength can be obtained through aging treatment, it has the drawback of poor ductility.
一方、x7−7pn 鋼は冷間加工を施しα′相を生成
させた後時効硬化させるものであり前述の加工硬化型ス
テンレス鋼と同様に延性の低下はまぬがれない。On the other hand, x7-7pn steel is subjected to cold working to generate the α' phase and then age hardened, and as with the work hardening type stainless steel described above, a decrease in ductility is inevitable.
そこで、上述した高強度ステンレス鋼と別に適度な熱処
理を施すことによりマルテンサイト相から、オーステナ
イト粒を生成させる高強度TI延性ステンレス鋼材の製
造方法が特開昭62−124218に開示されている。Therefore, JP-A-62-124218 discloses a method for producing a high-strength TI ductile stainless steel material in which austenite grains are generated from the martensitic phase by subjecting the high-strength stainless steel to appropriate heat treatment separately from the above-mentioned high-strength stainless steel.
該発明は焼鈍状態でマルテンサイトm織を有しこれに適
度の熱処理を施すことによりマルテンサイト単相または
マルテンサイト相と微細なオーステナイト相の複相組織
とすることにより高強度と高延性を得るものである。し
かしなから本手段により得られる特性は耐力100kg
/am’で伸びが高々20%と高延性とは言い難い。The invention has a martensitic m weave in an annealed state, and by subjecting it to appropriate heat treatment, it becomes a single martensite phase or a multi-phase structure of a martensite phase and a fine austenite phase, thereby obtaining high strength and high ductility. It is something. However, the property obtained by this method is a yield strength of 100 kg.
/am', the elongation is at most 20%, which cannot be said to be highly ductile.
「鉄と鋼J74(1988)6.p、105111には
オーステナイト系ステンレス鋼に高い冷間圧延率を付与
しα′相とした(α′相相遇処理称す)後、適度な熱処
理を施し α′相をオーステナイト相へ逆変態させるこ
とで微細なオーステナイト粒を得、高強度と高延性を得
ようという試みが開示されている0本手法は素材が延性
に富むオーステナイト組織であり高延性を得るに有効な
手段と考えられるがα′相相遇処理は90%という極め
て高い冷間圧延率を与えなければならず圧延中に破断す
る危険性があり。"Tetsu-to-Hagane J74 (1988) 6.p, 105111, austenitic stainless steel is given a high cold rolling rate to form the α' phase (referred to as α' phase mutual treatment), and then subjected to appropriate heat treatment. This method discloses an attempt to obtain high strength and high ductility by obtaining fine austenite grains by reversely transforming the phase into an austenite phase.This method uses a highly ductile austenite structure, and is difficult to obtain high ductility. Although it is considered to be an effective method, the α' phase treatment requires an extremely high cold rolling rate of 90% and there is a risk of breakage during rolling.
また良好な表面性状あるいは形状を得ることができず製
造上困難である。In addition, it is difficult to obtain good surface texture or shape, making it difficult to manufacture.
Cr−Niオーステナイト系ステンレス鋼において焼鈍
状態でオーステナイト組織を得るにはMs点を室温以下
にしなければならず、 Ni、 Crなどのオーステナ
イト相安定化元素を多く含有させる必要がある。しかし
なから、これらの元素の含有量が多くなると冷間圧延に
より α′相の生成が抑制されるため α′相相遇処理
行うには高い冷間圧延率を付与する必要がある。In order to obtain an austenitic structure in the annealed state in Cr-Ni austenitic stainless steel, the Ms point must be lower than room temperature, and it is necessary to contain a large amount of austenite phase stabilizing elements such as Ni and Cr. However, if the content of these elements increases, the formation of the α' phase is suppressed by cold rolling, so it is necessary to apply a high cold rolling rate to carry out the α' phase mutual treatment.
そこで1本発明者等がCr−Ni系準安定ステンレス鋼
における α′変態に対するγ安定度と機械的性質に及
ぼす合金元素、加工熱処理法の影響について鋭意研究を
重ねた結果、Siはγ安定度を低下させα′相の生成を
促進することによりα′相相遇処理容品ならしめること
を見出した。さらに、高Si含有Cr−Niオーステナ
イト系ステンレス鋼にα相化処理後適度の熱処理を施す
ことによりSi含有量が低い場合に比べてより微細粒か
ら成るオーステナイト組織が得られ、しかもSiはγ相
の固溶強化に効しまたSiは伸びの改善にも寄与するこ
とから高強度、高延性化を図れることを知見し本発明に
至った。Therefore, the present inventors conducted extensive research on the effects of alloying elements and processing heat treatment methods on the γ stability against α' transformation and mechanical properties in Cr-Ni metastable stainless steel. It has been found that by reducing the α' phase and promoting the formation of the α' phase, the product can be made into an α' phase mutually treated container. Furthermore, by subjecting high Si-containing Cr-Ni austenitic stainless steel to an appropriate heat treatment after α-phase treatment, an austenitic structure consisting of finer grains can be obtained compared to when the Si content is low, and Si is in the γ phase. The present inventors have discovered that Si is effective in solid solution strengthening and also contributes to improving elongation, making it possible to achieve high strength and high ductility.
本発明は重量%で
C:0.15%以下
Si:3.0〜7.0%
Mn:8.0%以下
Ni:8.0〜13,0%
Cr:12.Q 〜17.0%
N :0. IO%以下
を含有し、残部がFeならびに不可避的不純物から成り
、かつ。In the present invention, C: 0.15% or less Si: 3.0 to 7.0% Mn: 8.0% or less Ni: 8.0 to 13.0% Cr: 12. Q ~17.0% N: 0. IO% or less, and the remainder consists of Fe and unavoidable impurities.
Ni当量=Ni(%)+0.608n(%)+9.69
(C+N)(%)+0.18Cr(%)−0,115i
(%)8で定義されるNi当量の値が8.0〜14.0
であり、オーステナイト(γ)単相あるいはγ相とマル
テンサイト(α′)相の混合組織を有することを特徴と
する高強度高延性ステンレス鋼材を提供する。Ni equivalent = Ni (%) + 0.608n (%) + 9.69
(C+N)(%)+0.18Cr(%)-0,115i
(%) Ni equivalent value defined as 8 is 8.0 to 14.0
The present invention provides a high-strength, high-ductility stainless steel material having a single austenite (γ) phase or a mixed structure of a γ phase and a martensite (α') phase.
本発明はまた重量%で
c:o、xs%以下
Si:3.0〜7.0%
Mn:8.0%以下
Ni:8.0〜13,0%
Cr:12.0〜17.0%
N:0.10%以下
を含有し、残部がFeならびに不可避的不純物からなり
、かつ、
Ni当量=Ni(%)+0.6ONo(%)+9.69
(C+N)(%)+0.t8Cr(%)−0,11Si
(%)1で定義されるNi当量の値が8.0〜14.0
の範囲内にある鋼に実質的にα′単相となるまで冷間圧
延(α′相化処理)を施した後、600〜900℃の温
度範囲内で熱処理を施しγ単相あるいはγ相と α′相
の混合組織を有することを特徴とする高強度高延性ステ
ンレス鋼材の製造方法を提供する。The present invention also provides c:o, xs% or less in weight% Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13,0% Cr: 12.0-17.0 % N: Contains 0.10% or less, the remainder consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.6ONo (%) + 9.69
(C+N)(%)+0. t8Cr(%)-0,11Si
(%) Ni equivalent value defined as 1 is 8.0 to 14.0
After cold-rolling (α' phase treatment) the steel in the range of Provided is a method for producing a high-strength, high-ductility stainless steel material characterized by having a mixed structure of α' phase and α' phase.
本発明はまた重量%で
c:o、is%以下
Si:3.0〜7.0%
Mn:8.0%以下
Ni:8.G〜13.0%
Cr:12.0〜17.0%
N:0.fO%以下
を含有し、さらに、
Nb:1.0%以下、Ti:1.0%以下、V:1.0
%以下、 Zr:1.0%以下の1種または2種以上を
含有し、残部がFeならびに不可避的不純物から成り、
かつ、Ni当量=Ni(%)+0.6ONo(%)+9
.69(C+N)(%)+0.18Cr(%) −0,
11Si(%)’ +0.60(Nb+τi+v+Zr
)(%)
で定義されるNi当量の値が8.0〜14.0でありγ
単相あるいはγ相と α′相の混合組織を有することを
特徴とする高強度高延性ステンレス鋼材を提供する。The present invention also provides c:o, is% or less Si: 3.0 to 7.0% Mn: 8.0% or less Ni: 8. G~13.0% Cr:12.0~17.0% N:0. Contains fO% or less, and further includes: Nb: 1.0% or less, Ti: 1.0% or less, V: 1.0
% or less, Zr: contains one or more of 1.0% or less, and the remainder consists of Fe and unavoidable impurities,
And Ni equivalent = Ni (%) + 0.6ONo (%) + 9
.. 69(C+N)(%)+0.18Cr(%) -0,
11Si(%)' +0.60(Nb+τi+v+Zr
)(%) The value of Ni equivalent defined as 8.0 to 14.0 and γ
A high-strength, high-ductility stainless steel material characterized by having a single phase or a mixed structure of γ phase and α' phase is provided.
本発明はまた重量%で C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12.0〜17.0% N:0.10%以下 を含有し、さらに。The present invention also includes C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% N: 0.10% or less Contains and further.
Nb:1.0%以下、Ti:1.0%以下、I/:1.
0%、Zr:1.0%以下の1種または2種以上を含有
し、残部がFeならびに不可避的不純物から成り、かつ
。Nb: 1.0% or less, Ti: 1.0% or less, I/: 1.
0%, Zr: 1.0% or less, and the remainder consists of Fe and inevitable impurities.
Ni当量=Ni(%) + 0 、6ONo (%)+
9.69(C+N)(%)+0.18Cr(%)−0,
11Si(%)” +0.60(Nb+ Ti + V
+ Zr) (%)定義されるNi当量の値が8.0
−14.0範囲内にある鋼に実質的に α′単相となる
まで冷間圧延(α′相化処理)を施した後、600〜9
00℃の温度範囲内で熱処理を施しγ単相あるいはγ相
と α′相の混合組織を有することを特徴とする高強度
高延性ステンレス鋼材の製造方法を提供する。Ni equivalent = Ni (%) + 0, 6ONo (%) +
9.69(C+N)(%)+0.18Cr(%)-0,
11Si(%)” +0.60(Nb+Ti+V
+ Zr) (%) Defined Ni equivalent value is 8.0
-14.0 After cold rolling (α' phase treatment) until the steel becomes substantially α' single phase, 600 to 9
Provided is a method for producing a high-strength, high-ductility stainless steel material which is heat-treated within a temperature range of 0.000C and has a single γ phase or a mixed structure of γ phase and α' phase.
本発明はまた重量%で C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12,0〜17.0% N :0.10%以下 を含有し、さらに。The present invention also includes C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% N: 0.10% or less Contains and further.
Nb:1.0%以下、TL:1.0%以下、 V:1.
0%以下、Zr:1.0%以下の1種または2種以上を
含有し、かつ。Nb: 1.0% or less, TL: 1.0% or less, V: 1.
Zr: 0% or less, Zr: 1.0% or less.
Mo:3.0%以下、 Cu:3.0%以下の1種また
は2種を含有し、残部がFeならびに不可避的不純物か
ら成り、かつ、
Ni当量=Ni(%)+0,6ONo(%)+9.69
(C+N)(%)+0.18Cr(%)−0,11Si
(%)” + 0.60(Nb+Ti+V+Zr)(%
)+0.6ONo(%)+Cu(%)で定義されるNi
当量の値が8.0〜14.0でありγ単相あるいはγ相
と α′相の混合組織を有することを特徴とする高強度
高延性ステンレス鋼材を提供する。Contains one or two of Mo: 3.0% or less, Cu: 3.0% or less, and the remainder consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.6ONo (%) +9.69
(C+N)(%)+0.18Cr(%)-0,11Si
(%)” + 0.60 (Nb+Ti+V+Zr)(%
)+0.6ONo(%)+Cu(%)Ni
A high-strength, high-ductility stainless steel material having an equivalent value of 8.0 to 14.0 and having a single γ phase or a mixed structure of γ phase and α' phase is provided.
本発明はまた重量%で C:o、ts%以下 Si:3.0〜7.0% にn:8.0%以下 Ni:8.0〜13.0% Cr:12.0−17.0% N:0.10%以下 を含有し、さらに。The present invention also includes C: o, ts% or less Si: 3.0-7.0% n: 8.0% or less Ni: 8.0-13.0% Cr:12.0-17.0% N: 0.10% or less Contains and further.
Nb:1.0%以下、 Ti:1.0%以下、 V:t
、0%以下、Zr:1.0%以下の1種または2種以上
を含有し、かつ、Mo:3.0%以下、Cu:3.0%
以下の1種または2種を含有し、残部がFeならびに不
可避的不純物から成り、かつ。Nb: 1.0% or less, Ti: 1.0% or less, V: t
, 0% or less, Zr: 1.0% or less, and Mo: 3.0% or less, Cu: 3.0%
Contains one or two of the following, with the remainder consisting of Fe and unavoidable impurities, and.
Ni当量=Ni(%)+0.60Mn(%)+9.69
(C+N)(%)+0.18Cr(%)−0.11Si
(%)” +0.60(Nb+ TI + V + Z
r) (%)+0.f50Mo(%)+Cu(%)で定
義されるNi当量の値が8.0〜14.0範囲内にある
鋼に実質的に α′単相となるまで冷間圧延(α′相化
処理)を施した後、600〜900℃の温度範囲内で熱
処理を施しγ単相あるいはγ相と α′相の混合組織を
有することを特徴とする高強度高延性ステンレス鋼材の
製造方法を提供するものである。Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.69
(C+N)(%)+0.18Cr(%)-0.11Si
(%)” +0.60(Nb+TI+V+Z
r) (%)+0. f50 Cold rolling (α' phase treatment) on steel whose Ni equivalent value defined by Mo (%) + Cu (%) is within the range of 8.0 to 14.0 until it becomes substantially α' single phase. Provided is a method for producing a high-strength, high-ductility stainless steel material, which is characterized in that it has a γ single phase or a mixed structure of a γ phase and an α' phase by performing heat treatment within a temperature range of 600 to 900°C. It is.
次に本発明鋼において鋼組成の限定理由を以下に説明す
る。Next, the reasons for limiting the steel composition in the steel of the present invention will be explained below.
C:Cはオーステナイト(γ)生成元素で高温でのデル
タ(δ)フェライト相の生成の抑制、冷間加工で誘発さ
れたマルテンサイト(α′)相の強化に極めて有効であ
る。しかしなから、本発明鋼ではSi含有量が高くCの
固溶限が低いためC含有量を高くすると粒界にCr炭化
物が析出し耐粒界腐食や延性の低下をもたらす、したが
って、Cは0.15%以下とする。C: C is an austenite (γ) forming element and is extremely effective in suppressing the formation of delta (δ) ferrite phase at high temperatures and strengthening martensite (α') phase induced by cold working. However, in the steel of the present invention, the Si content is high and the solid solubility limit of C is low, so when the C content is increased, Cr carbide precipitates at the grain boundaries, resulting in a decrease in intergranular corrosion resistance and ductility. The content shall be 0.15% or less.
Si:Slは本発明鋼の特徴である高強度高延性を発現
させるのに必須の元素である。Siはγ相の固溶強化お
よび伸びの改善に寄与し、またSiは冷間圧延による
α′相化処理を容易にさせる効果を有する。これらの特
性を発揮させるにはSiは3.0%以上必要であるが、
多量に含有すると熱間加工性が劣化するため上限を7.
0%とする。Si: Sl is an essential element for exhibiting the high strength and high ductility characteristic of the steel of the present invention. Si contributes to solid solution strengthening of the γ phase and improves elongation, and Si contributes to solid solution strengthening of the γ phase and improves elongation.
It has the effect of facilitating α' phase processing. 3.0% or more of Si is required to exhibit these characteristics, but
If it is contained in a large amount, hot workability will deteriorate, so the upper limit is set to 7.
0%.
Mn:MnはNiと同様にオーステナイト生成元素であ
り焼鈍材のオーステナイト組織を得るのに必要な元素で
ある。しかしなから、MnはNi当量を増加させる元素
であり多く含有させると冷間圧延によるα′相化処理が
困難となるため上限を8.0%とする。Mn: Like Ni, Mn is an austenite-forming element and is an element necessary to obtain an austenite structure in the annealed material. However, Mn is an element that increases the Ni equivalent, and if it is contained in a large amount, α' phase treatment by cold rolling becomes difficult, so the upper limit is set at 8.0%.
Ni:NLはオーステナイト系ステンレス鋼の基本成分
で強力なオーステナイト相安定化元素である。Ni:NL is a basic component of austenitic stainless steel and is a strong austenite phase stabilizing element.
Siを多量に含有する本発明鋼においてδフェライトの
生成を抑制し焼鈍状態で安定したオーステナイト相を得
るためには8.0%以上の含有が必要である。しかしな
から多量に含有するとNi当量が増加し冷間圧延による
α′相化処理が困難となるため上限を13.0%とす
る。In the steel of the present invention containing a large amount of Si, the Si content must be 8.0% or more in order to suppress the formation of δ ferrite and obtain a stable austenite phase in the annealed state. However, if it is contained in a large amount, the Ni equivalent will increase and the α' phase treatment by cold rolling will become difficult, so the upper limit is set at 13.0%.
Cr:Crはステンレス鋼の基本成分であり良好な耐食
性を得るためには12.0%以上の含有が必要である。Cr: Cr is a basic component of stainless steel and must be contained in an amount of 12.0% or more in order to obtain good corrosion resistance.
しかし、Crはフェライト生成元素であり多量に含有さ
せると多量のδフェライトを生成し。However, Cr is a ferrite-forming element, and when it is included in a large amount, a large amount of δ ferrite is generated.
熱間加工性が低下するため上限を17.0%とする。Since hot workability decreases, the upper limit is set at 17.0%.
N:NはCと同様、固溶強化に寄与するが0.10%を
超えるとブローホールを生成するなど健全な鋼塊が得ら
れなくなるためこれを上限とする。N: Similar to C, N contributes to solid solution strengthening, but if it exceeds 0.10%, blowholes will occur and a sound steel ingot will not be obtained, so this is the upper limit.
Nb、Ti、V、Zr:Nb4i、VおよびZrは冷間
加工ニよるα′相化処理後の適度な熱処理にともない生
成するオーステナイト粒の粒成長を抑制し鋼の高強度高
延性化に寄付する。また、Nb、 Ti、 VおよびZ
rの添加により耐粒界腐食性も向上する。しかし。Nb, Ti, V, Zr: Nb4i, V and Zr suppress the grain growth of austenite grains that are generated with appropriate heat treatment after α' phase treatment by cold working, contributing to high strength and high ductility of steel. do. Also, Nb, Ti, V and Z
The addition of r also improves intergranular corrosion resistance. but.
添加量が増えると、δフェライトが生成され熱間加工性
が劣化するためそれぞれの上限を1.0%とする。If the amount added increases, δ ferrite is generated and hot workability deteriorates, so the upper limit for each is set at 1.0%.
No : P4oは結晶粒を微細化し、また、固溶強化
により高強度化に寄付しかつ、耐食性の向上にも有効で
あるが多量に含有させると多量のデルタ(δ)フェライ
トを生成し、熱間加工性が低下するためその上限を3.
0%とする。No: P4o makes crystal grains finer, contributes to higher strength through solid solution strengthening, and is also effective in improving corrosion resistance, but if it is contained in a large amount, a large amount of delta (δ) ferrite is generated, and heat The upper limit is set to 3. since machinability decreases.
0%.
Cu:CuはNiと同様オーステナイト生成元素であり
γ相の安定化に寄付する。また、CuはNoと同様耐食
性の向上に寄付する。しかしなから、多量に含有すると
熱間加工性が低下するため上限を3.0%とする。Cu: Like Ni, Cu is an austenite-forming element and contributes to stabilizing the γ phase. Further, like No, Cu contributes to improving corrosion resistance. However, if it is contained in a large amount, hot workability deteriorates, so the upper limit is set at 3.0%.
次にNi当量、冷間圧延率、 α′相化処理後の熱処理
について説明する。Next, the Ni equivalent, cold rolling rate, and heat treatment after α' phase treatment will be explained.
Ni当量:
Ni当量はα′変態に対するγ安定度の指標であり実験
結果から導出された経験式である。Ni当量が低いほど
冷間圧延による α′相化処理が容易となり製造上好ま
しくなるが低過ぎると焼鈍状態でマルテンサイト相が生
成され高延性が得られなくなるためその下限を8.0と
する。一方、Ni当量が増加するとα′変態が抑制され
α′相化処理が困難となるため上限を14.0とする。Ni equivalent: Ni equivalent is an index of γ stability against α' transformation, and is an empirical formula derived from experimental results. The lower the Ni equivalent, the easier the α' phase treatment by cold rolling becomes, which is preferable in terms of manufacturing. However, if it is too low, a martensitic phase is generated in the annealing state, making it impossible to obtain high ductility, so the lower limit is set at 8.0. On the other hand, as the Ni equivalent increases, α' transformation is suppressed and α' phase conversion becomes difficult, so the upper limit is set to 14.0.
冷間圧延率;
本発明鋼は冷間圧延によりα′相化処理を行い、その後
の熱処理により生成するオーステナイト粒を微細化させ
高強度、高延性を図るものである。Cold rolling ratio: The steel of the present invention is subjected to α' phase treatment by cold rolling, and the austenite grains produced by subsequent heat treatment are refined to achieve high strength and high ductility.
α′相化処理に必要な冷間圧延率はNi当量に依存しN
i当量が高いほど付与すべき冷間圧延率は高くなる。前
述のとと<Ni当量が8.0〜14.0の範囲では付与
する冷間圧延率は異なりNi当量が小さい程。The cold rolling rate required for α′ phase treatment depends on the Ni equivalent.
The higher the i equivalent, the higher the cold rolling rate to be applied. When the Ni equivalent is in the range of 8.0 to 14.0, the applied cold rolling rate is different, and the smaller the Ni equivalent is.
付与すべき冷間圧延率は小さくなる。The cold rolling reduction that should be applied becomes smaller.
熱処理:
本発明鋼は冷間圧延による α′相化処理後適度な熱処
理を施すことにより高強度、高延性を得るものである。Heat treatment: The steel of the present invention obtains high strength and high ductility by subjecting it to appropriate heat treatment after α' phase treatment by cold rolling.
600℃未満では、α′相からγ相への変態が生じない
ため高延性が得られない、また、900℃以上になると
γ相は容易に生成されるもののγ相の粒成長が生じ強度
の低下を招くようになる。したがって、 α′相化処理
後の熱処理温度範囲を600〜900℃とする。保持時
間は熱処理温度に依存し低温はどγ相への変態に要する
時間が長くなるため長時間の熱処理を要する。高温域で
はγ相の変態が急速に生じ、長時間保持するとγ粒が成
長し強度の低下を招くため短時間で処理する方が好まし
い。At temperatures below 600°C, transformation from α' phase to γ phase does not occur, so high ductility cannot be obtained; at temperatures above 900°C, although γ phase is easily formed, γ phase grain growth occurs, resulting in a decrease in strength. This will lead to a decline. Therefore, the heat treatment temperature range after the α' phase treatment is set to 600 to 900°C. The holding time depends on the heat treatment temperature; at low temperatures, the time required for transformation to the γ phase increases, so a long heat treatment is required. In a high temperature range, transformation of the γ phase occurs rapidly, and if held for a long time, γ grains grow and the strength decreases, so it is preferable to treat in a short time.
(発明の具体的開示)
〔実施例〕
本発明鋼の特徴を比較鋼と比べて実施例をもって明らか
にする。(Specific Disclosure of the Invention) [Example] The characteristics of the steel of the present invention will be clarified through examples by comparing it with comparative steel.
第1表 第1表に本発明鋼および比較鋼の成分を示す。Table 1 Table 1 shows the components of the invention steel and comparative steel.
試料No、1〜12mは本発明鋼である。Sample No. 1 to 12m is the steel of the present invention.
試料No、13.14鋼は比較鋼で各々5US304鋼
および5US301鋼でありNi当量は本発明の範囲で
あるがSi含有量が本発明範囲を外れている。Sample No. 13.14 steel is comparative steel, 5US304 steel and 5US301 steel, respectively, and the Ni equivalent is within the range of the present invention, but the Si content is outside the range of the present invention.
それぞれの鋼を30瞳高周波誘導溶解炉で溶製し鍛造、
熱間圧延により3wn厚、10(lIIll櫂とした後
、溶体化処理によりγ相とした。この材料に60%の冷
間圧延を付与してα′相化処理を施した後、 600〜
825℃X(0〜10分)(均熱)の熱処理を施し試験
片とした。比較鋼の5US304および30111につ
いては溶体化処理によりγ相とした後冷間圧延を施した
材料と60%の冷間圧延を付与し次いで650〜b×2
分(灼熱)の熱処理を施したものを用意し、これらの試
験片について引張試験を行い耐力、引張強さおよび伸び
を測定した。Each steel is melted and forged in a 30 pupil high frequency induction melting furnace,
The material was hot rolled to a thickness of 3wn and 10 (lIIll), and then subjected to solution treatment to form a γ phase. After applying 60% cold rolling to this material and subjecting it to α' phase treatment,
A test piece was prepared by heat treatment at 825°C (0 to 10 minutes) (soaking). Comparative steels 5US304 and 30111 were made into γ phase by solution treatment and then cold rolled, and 60% cold rolled and then 650~b×2
Tensile tests were conducted on these test pieces to measure yield strength, tensile strength, and elongation.
第2表は第1表に示す各端の60%冷間圧延材にて30
%の伸びを得る時の熱処理後における耐力および引張強
さを示す、第2表から知られるように試料No、1〜4
鋼はS1含有量が増加するにしたがい耐力および引張強
さが向上する。試料No、5〜12鋼では固溶強化元素
C,Nを比較的多量に含有させることにより強度が向上
する。またNb、 Ti、 VおよびZrを含有するこ
とによっても強度が増加する。Table 2 shows 30% cold rolled material at each end shown in Table 1.
Sample Nos. 1 to 4 as known from Table 2 showing the proof stress and tensile strength after heat treatment when obtaining % elongation.
As the S1 content increases, the yield strength and tensile strength of steel improve. In steel samples No. 5 to 12, the strength is improved by containing relatively large amounts of solid solution strengthening elements C and N. The strength is also increased by containing Nb, Ti, V, and Zr.
一方、試料No、 1311 (SUS304)では溶
体化処理材に冷間圧延を付与したもので30%の伸びを
得る時の耐力は60[kg/m旬、引張強さが83(k
g/−2〕、また60%の冷間圧延後に熱処理を施した
ものでは冷間圧延のみを施した場合に比べ強度が劣る。On the other hand, sample No. 1311 (SUS304) is a solution-treated material that has been cold-rolled, and has a yield strength of 60 kg/m and a tensile strength of 83 kg/m when elongating by 30%.
g/-2], and those subjected to heat treatment after 60% cold rolling have inferior strength compared to those subjected only to cold rolling.
試料No、14鋼(SUS301)では溶体化処理材に
冷間圧延を付与したもので30%の伸びを得る時の耐力
は74(kg/■8〕、引張強さが110[kH/■2
]、また60%の冷間圧延後に熱処理を施したものでは
冷間圧延のみを施した場合に比べ強度が劣る。Sample No. 14 steel (SUS301) is a solution-treated material that has been cold-rolled, and has a yield strength of 74 (kg/■8) and a tensile strength of 110 [kH/■2] when 30% elongation is obtained.
], and those subjected to heat treatment after 60% cold rolling have inferior strength compared to those subjected only to cold rolling.
本発明は、 Cr−Ni系オーステナイトステンレス鋼
にSiを含有させることによりγ安定度を低下させα′
相化処理が容易となり冷間圧延後適度の熱処理を施すこ
とにより生成する逆変態オーステナイト粒を微細化させ
Siの固溶強化と高延性化とあわせて高強度かつ高延性
を有する鋼材とその製造方法を提供するもので、その工
業的価値は極めて高い。The present invention reduces γ stability and improves α' by incorporating Si into Cr-Ni austenitic stainless steel.
A steel material that has high strength and high ductility through easy phase treatment and refines the reversely transformed austenite grains produced by applying appropriate heat treatment after cold rolling, solid solution strengthening of Si, and high ductility, and its production. This method provides an extremely high industrial value.
Claims (1)
、かつ、 Ni当量=Ni(%)+0.60Mn(%)+9.69
(C+N)(%)+0.18Cr(%)−0.11Si
(%)^2で定義されるNi当量の値が8.0〜14.
0であり、オーステナイト(γ)単相あるいはγ相とマ
ルテンサイト(α′)相の混合組織を有することを特徴
とする高強度高延性ステンレス鋼材。 2、重量%で、 C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12.0〜17.0% N:0.10%以下 を含有し、残部がFeならびに不可避的不純物から成り
、かつ、 Ni当量=Ni(%)+0.60Mn(%)+9.69
(C+N)(%)+0.18Cr(%)−0.11Si
(%)^2で定義されるNi当量の値が8.0〜14.
0の範囲内にある鋼に実質的にマルテンサイト(α′)
単相となるまで冷間圧延(α′相化処理)を施した後、
600〜900℃の温度範囲内で熱処理を施しγ単相あ
るいはγ相とα′相の混合組織を有することを特徴とす
る高強度高延性ステンレス鋼材の製造方法。 3、重量%で、 C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12.0〜17.0% N:0.10%以下 を含有し、さらに Nb:1.0%以下、Ti:1.0%以下、V:1.0
%以下、Zr:1.0%以下の1種または2種以上を含
有し、残部がFeならびに不避的不純物から成り、かつ
、Ni当量=Ni(%)+0.60Mn(%)+9.6
9(C+N)(%)+0.18Cr(%)−0.11S
i(%)^2+0.60(Nb+T1+V+Zr)(%
) で定義されるNi当量の値が8.0〜14.0でありγ
単相あるいはγ相とα′相の混合組織を有することを特
徴とする高強度高延性ステンレス鋼材。 4、重量%で、 C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12.0〜17.0% N:0.10%以下 を含有し、さらに、 Nb:1.0%以下、Ti:1.0%以下、V:1.0
%以下、Zr:1.0%以下の1種または2種以上を含
有し、残部がFeならびに不避的不純物から成り、かつ
、Ni当量=Ni(%)+0.60Mn(%)+9.6
9(C+N)(%)+0.18Cr(%)−0.11S
i(%)^2+0.60(Nb+Ti+V+Zr)(%
) で定義されるNi当量の値が8.0〜14.0の範囲内
にある鋼に実質的にα′単相となるまで冷間圧延(α′
相化処理)を施した後、600〜900℃の温度範囲内
で熱処理を施しγ単相あるいはγ′相とα′相の混合組
織を有することを特徴とする高強度高延性ステンレス鋼
材の製造方法。 5、重量%で、 C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12.0〜17.0% N:0.10%以下 を含有し、さらに、 Nb:1.0%以下、Ti:1.0%以下、V:1.0
%以下、Zr:1.0%以下の1種または2種以上を含
有し、かつ、Mo:3.0%以下、Cu:3.0%以下
の1種または2種を含有し、残部がFeならびに不可避
的不純物から成り、かつ、 Ni当量=Ni(%)+0.60Mn(%)+9.69
(C+N)(%)+0.18Cr(%)−0.11Si
(%)^2+0.60(Nb+Ti+V+Zr)(%)
+0.60Mo(%)+Cu(%)で定義されるNi当
量の値が8.0〜14.0でありγ単相あるいはγ単相
とα′相の混合組織を有することを特徴とする高強度高
延性ステンレス鋼材。 6、重量%で、 C:0.15%以下 Si:3.0〜7.0% Mn:8.0%以下 Ni:8.0〜13.0% Cr:12.0〜17.0% N:0.10%以下 を含有し、さらに、 Nb:1.0%以下、Ti:1.0%以下、V:1.0
%以下、Zr:1.0%以下の1種または2種以上を含
有し、かつ、Mo:3.0%以下、Cu:3.0%以下
の1種または2種を含有し、残部がFeならびに不可避
的不純物から成り、かつ、 Ni当量=Ni(%)+0.60Mn(%)+9.69
(C+N)(%)+0.18Cr(%)−0.11Si
(%)^2+0.60(Nb+Ti+V+Zr)(%)
+0.60Mo(%)+Cu(%)で定義されるNi当
量の値が8.0〜14.0の範囲内にある鋼に実質的に
α′単相となるまで冷間圧延(α′相化処理)を施した
後、600〜900℃の温度範囲内で熱処理を施しγ単
相あるいはγ相とα′相の混合組織を有することを特徴
とする高強度高延性ステンレス鋼材の製造方法。[Claims] 1. In weight %: C: 0.15% or less Si: 3.0 to 7.0% Mn: 8.0% or less Ni: 8.0 to 13.0% Cr: 12. 0 to 17.0% N: Contains 0.10% or less, the remainder consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.69
(C+N)(%)+0.18Cr(%)-0.11Si
(%) The value of Ni equivalent defined as ^2 is 8.0 to 14.
0, and has a single austenite (γ) phase or a mixed structure of a γ phase and a martensite (α') phase. 2. In weight%, C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% N: Contains 0.10% or less, the remainder consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.69
(C+N)(%)+0.18Cr(%)-0.11Si
(%) The value of Ni equivalent defined as ^2 is 8.0 to 14.
Substantially martensite (α′) in the steel within the range of 0
After cold rolling (α′ phase treatment) until it becomes a single phase,
A method for producing a high-strength, high-ductility stainless steel material, which is heat-treated within a temperature range of 600 to 900°C and has a single γ phase or a mixed structure of γ phase and α' phase. 3. In weight%, C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% Contains N: 0.10% or less, further Nb: 1.0% or less, Ti: 1.0% or less, V: 1.0
% or less, Zr: 1.0% or less, the remainder consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.6
9(C+N)(%)+0.18Cr(%)-0.11S
i(%)^2+0.60(Nb+T1+V+Zr)(%
) is 8.0 to 14.0 and γ
A high-strength, high-ductility stainless steel material characterized by having a single phase or a mixed structure of γ phase and α' phase. 4. In weight%, C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% Contains N: 0.10% or less, furthermore, Nb: 1.0% or less, Ti: 1.0% or less, V: 1.0
% or less, Zr: 1.0% or less, the remainder consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.6
9(C+N)(%)+0.18Cr(%)-0.11S
i(%)^2+0.60(Nb+Ti+V+Zr)(%
) is cold rolled (α'
Production of high-strength, high-ductility stainless steel material characterized by having a γ single phase or a mixed structure of γ' phase and α' phase by performing heat treatment within a temperature range of 600 to 900 ° C. Method. 5. In weight%, C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% Contains N: 0.10% or less, furthermore, Nb: 1.0% or less, Ti: 1.0% or less, V: 1.0
% or less, Zr: 1.0% or less, and contains one or more of Mo: 3.0% or less, Cu: 3.0% or less, and the balance is Consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.69
(C+N)(%)+0.18Cr(%)-0.11Si
(%)^2+0.60(Nb+Ti+V+Zr)(%)
+0.60Mo(%)+Cu(%)The Ni equivalent value is 8.0 to 14.0 and has a γ single phase or a mixed structure of γ single phase and α' phase. High strength and ductility stainless steel material. 6. In weight%, C: 0.15% or less Si: 3.0-7.0% Mn: 8.0% or less Ni: 8.0-13.0% Cr: 12.0-17.0% Contains N: 0.10% or less, further Nb: 1.0% or less, Ti: 1.0% or less, V: 1.0
% or less, Zr: 1.0% or less, and contains one or more of Mo: 3.0% or less, Cu: 3.0% or less, and the balance is Consists of Fe and unavoidable impurities, and Ni equivalent = Ni (%) + 0.60 Mn (%) + 9.69
(C+N)(%)+0.18Cr(%)-0.11Si
(%)^2+0.60(Nb+Ti+V+Zr)(%)
+0.60Mo (%) +Cu (%) Steel having a Ni equivalent value in the range of 8.0 to 14.0 is subjected to cold rolling (α' phase) until it becomes substantially α' single phase. 1. A method for producing a high-strength, high-ductility stainless steel material, which is characterized in that the stainless steel material is subjected to heat treatment within a temperature range of 600 to 900° C. to have a γ single phase or a mixed structure of γ phase and α' phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4323789A JPH02225647A (en) | 1989-02-27 | 1989-02-27 | High strength and high ductility stainless steel material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4323789A JPH02225647A (en) | 1989-02-27 | 1989-02-27 | High strength and high ductility stainless steel material and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02225647A true JPH02225647A (en) | 1990-09-07 |
Family
ID=12658294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4323789A Pending JPH02225647A (en) | 1989-02-27 | 1989-02-27 | High strength and high ductility stainless steel material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02225647A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04147946A (en) * | 1990-10-09 | 1992-05-21 | Nippon Steel Corp | Stainless steel excellent in strength and ductility and its manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194016A (en) * | 1984-02-24 | 1985-10-02 | マンネスマン・アクチエンゲゼルシヤフト | Manufacture of anticorrosive austenite alloy |
JPS62124218A (en) * | 1985-08-27 | 1987-06-05 | Nisshin Steel Co Ltd | Manufacture of high strength stainless steel material having superior workability without softening by welding |
JPS62256949A (en) * | 1986-04-30 | 1987-11-09 | Nisshin Steel Co Ltd | Stainless steel for blade substrate |
-
1989
- 1989-02-27 JP JP4323789A patent/JPH02225647A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60194016A (en) * | 1984-02-24 | 1985-10-02 | マンネスマン・アクチエンゲゼルシヤフト | Manufacture of anticorrosive austenite alloy |
JPS62124218A (en) * | 1985-08-27 | 1987-06-05 | Nisshin Steel Co Ltd | Manufacture of high strength stainless steel material having superior workability without softening by welding |
JPS62256949A (en) * | 1986-04-30 | 1987-11-09 | Nisshin Steel Co Ltd | Stainless steel for blade substrate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04147946A (en) * | 1990-10-09 | 1992-05-21 | Nippon Steel Corp | Stainless steel excellent in strength and ductility and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06511287A (en) | Precipitation hardening martensitic stainless steel | |
JP6719903B2 (en) | Heat treatment method for manganese steel and manganese steel | |
JPS62124218A (en) | Manufacture of high strength stainless steel material having superior workability without softening by welding | |
JP2756549B2 (en) | Manufacturing method of high strength duplex stainless steel strip with excellent spring properties. | |
JPH0382741A (en) | Shape memory staiinless steel excellent in stress corrosion cracking resistance and shape memory method therefor | |
JP2909089B2 (en) | Maraging steel and manufacturing method thereof | |
JP2002194506A (en) | Stainless steel sheet and production method for the same | |
JPH05112850A (en) | Precipitation hardening martensitic stainless steel excellent in workability | |
EP3298175B1 (en) | High manganese third generation advanced high strength steels | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPH02225647A (en) | High strength and high ductility stainless steel material and its manufacture | |
JPS6338558A (en) | High strength nonmagnetic stainless steel having superior workability | |
JPH0463247A (en) | High strength and high ductility stainless steel | |
JPS60106952A (en) | Process hardenable stainless steel of substantially austenite and manufacture | |
WO1987004731A1 (en) | Corrosion resistant stainless steel alloys having intermediate strength and good machinability | |
JPH1180906A (en) | High strength stainless steel strip increased in yield stress, and its production | |
JPS63210234A (en) | Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding | |
JPS585965B2 (en) | The first and last day of the year. | |
WO2019039339A1 (en) | Method for production of ni-containing steel sheet | |
JP2537679B2 (en) | High-strength stainless steel and its steel material | |
US4222796A (en) | High strength dual-phase steel | |
JPH04173926A (en) | Method for providing fatigue characteristic to martensitic stainless steel strip | |
JPH02301514A (en) | Method for allowing shape memory stainless steel to memorize shape | |
JPH02228451A (en) | Iron-base shape memory alloy | |
JPH0867950A (en) | Martensitic stainless steel excellent in strength and toughness and its production |