JPH02223845A - Method and device for measuring particle size of extremely small particle by light scattering method - Google Patents

Method and device for measuring particle size of extremely small particle by light scattering method

Info

Publication number
JPH02223845A
JPH02223845A JP1043887A JP4388789A JPH02223845A JP H02223845 A JPH02223845 A JP H02223845A JP 1043887 A JP1043887 A JP 1043887A JP 4388789 A JP4388789 A JP 4388789A JP H02223845 A JPH02223845 A JP H02223845A
Authority
JP
Japan
Prior art keywords
particle size
light
ultrafine particles
focal point
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1043887A
Other languages
Japanese (ja)
Other versions
JP2747921B2 (en
Inventor
Yuzo Mori
森勇 藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK
Original Assignee
MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK filed Critical MIKAKUTOU SEIMITSU KOGAKU KENKYUSHO KK
Priority to JP1043887A priority Critical patent/JP2747921B2/en
Publication of JPH02223845A publication Critical patent/JPH02223845A/en
Application granted granted Critical
Publication of JP2747921B2 publication Critical patent/JP2747921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To measure the particle size of extremely small particles nondestructively without contacting by irradiating the surface of a sample which moves at an equal speed nearby a 1st focus of an elliptic condenser with converged laser light, detecting scattered light which is converged on a 2nd focus, and processing a detection signal. CONSTITUTION:The laser light 2 emitted by a laser 1 is passed through a chopper 3, a spatial filter 4, a collimator lens 5, a polarizing prism 6, a beam splitter (BS) 7, and a lambda/4 plate 8, and reflected by a parabolic mirror 9 to travel backward, and the light is reflected by a BS 7 and converged in a spot. The laser light which is made incident from an incidence opening 13 is converged on the 1st focus 11 of an elliptic surface mirror 10, reflected by the surface of the sample 15 in equal-speed motion, and reflected by the elliptic surface mirror 10, and the light is converged on a 2nd focus 12 and made incident on a detector E through a projection opening 14 and a parabolic light condenser 22. Its output is inputted to a computer 30 through a detector 29, whose pulse train output is integrated and the maximum value of the output voltage is compared with correlation data of the particle size and the maximum voltage to calculate the particle size of the extremely small particles sticking on a wafer 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコンウェハ等の試料表面に付着したナノ
メータオーダの超微粒子の粒径を測定する光散乱法によ
る超微粒子の粒径測定方法及びその装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for measuring the particle size of ultrafine particles using a light scattering method for measuring the particle size of nanometer-order ultrafine particles attached to the surface of a sample such as a silicon wafer, and Regarding the device.

〔従来の技術〕[Conventional technology]

従来、微粒子の粒径を測定する最も分解能に優れた方法
は光散乱法であるが、それでも単一微粒子を対象とした
光散乱法による粒径測定器の最小検出可能粒径は、高々
0.1μm程度であるが、半導体の集積度が飛躍的に増
加した今日では、ナノメータオーダの超微粒子を検出す
る必要性が生じてきた。即ち、電子回路パターンの欠陥
の殆どは、シリコンウェハ上の異物により生じることが
知られており、LSI製造での歩留まりと信頼性を考慮
すれば、そのパターン幅の175〜1/lO程度の大き
さの異物の付着が重大な問題を起こし、LSIパターン
における高集積化に伴い、そのパターン幅もサブミクロ
ンオーダとなり、今後製造環境の清浄化による製造工程
におけるシリコンウェハ上の異物付着の低減を図るとと
もに、そのウェハ上にあるナノメータオーダの異物、即
ち超微粒子を除去するために、その超微粒子の粒径を検
出することが必要となった。
Conventionally, the method with the highest resolution for measuring the particle size of fine particles is the light scattering method, but even so, the minimum detectable particle size of a particle size measuring device using the light scattering method for a single fine particle is at most 0. However, as the degree of integration of semiconductors has increased dramatically these days, it has become necessary to detect ultrafine particles on the order of nanometers. In other words, it is known that most defects in electronic circuit patterns are caused by foreign substances on silicon wafers, and if yield and reliability in LSI manufacturing are taken into account, defects as large as 175 to 1/1O of the pattern width are known to occur. The adhesion of foreign matter on silicon wafers causes a serious problem, and as LSI patterns become more highly integrated, the pattern width also becomes submicron order.In the future, efforts will be made to reduce the amount of foreign matter adhesion on silicon wafers during the manufacturing process by cleaning the manufacturing environment. At the same time, in order to remove nanometer-order foreign matter, ie, ultrafine particles, present on the wafer, it has become necessary to detect the particle size of the ultrafine particles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が前述の状況に鑑み、解決しようとするところは
、シリコンウェハ等の試料表面に付着した粒径2〜10
nm程度の超微粒子を非破壊且つ非接触でその粒径を測
定することが可能な光散乱法による超微粒子の粒径測定
方法及びその装置を提供する点にある。
In view of the above-mentioned situation, the present invention aims to solve the problem of particle diameters of 2 to 10 nm attached to the surface of a sample such as a silicon wafer.
It is an object of the present invention to provide a method and apparatus for measuring the particle size of ultrafine particles using a light scattering method, which enables non-destructive and non-contact measurement of the particle size of ultrafine particles on the order of nanometers.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、前述の課題解決の為に、レーザ光を楕円集光
器の第一焦点近傍に集光し、該焦点近傍にその表面を位
置させ且つ等速で移動させた試料に前記レーザ光を照射
し、該試料表面に付着した超微粒子からの極微弱な散乱
光を楕円集光器の第二焦点に集光させ、そして該゛散乱
光を光ガイドで光電子増倍管の光電面に導いて単一光電
子状態の離散パルス状信号として検出し、その信号を積
分してピーク値を超微粒子の粒径に比例する電圧に変換
し、その最大電圧値から超微粒子の粒径を算出してなる
光散乱法による超微粒子の粒径測定方法を確立した。
In order to solve the above-mentioned problem, the present invention focuses a laser beam near the first focus of an elliptical condenser, and directs the laser beam to a sample whose surface is positioned near the focus and moves at a constant speed. The extremely weak scattered light from the ultrafine particles attached to the sample surface is focused on the second focal point of the elliptical collector, and the scattered light is directed to the photocathode of the photomultiplier tube using a light guide. Then, the signal is integrated to convert the peak value into a voltage proportional to the particle size of the ultrafine particles, and the particle size of the ultrafine particles is calculated from the maximum voltage value. We have established a method for measuring the particle size of ultrafine particles using a light scattering method.

そして、上記方法を実現するために、レーザ光を所定ス
ポット径に集光して試料表面に照射するレーザ光照射手
段と、楕円面鏡側の一方の第一焦点を中心とした等角位
置に、前記レーザ光を該焦点を含む近傍に照射すべく入
出射口を開設してなる楕円集光器と、前記楕円集光器の
第一焦点を含む近傍に試料表面を位置し且つ該試料を等
速で移動し得る移動装置と、前記楕円集光器の第二焦点
近傍に一端を配し、該焦点に集光された試料表面に付着
した超微粒子からの散乱光を案内する光ガイドと、前記
光ガイドの他端に配し、該光ガイドにより案内された極
微弱な散乱光を単一光電子状態の離散パルス状信号とし
て検出する光電子増倍管を内装し、該光電子増倍管を冷
却し得る検出器と、該検出器により検出された散乱光の
信号を積分して電圧に変換し、そのピーク値電圧から超
微粒子の粒径を算出する信号処理手段とよりなる光散乱
法による超微粒子の粒径測定装置を構成した。
In order to realize the above method, a laser beam irradiation means that focuses the laser beam to a predetermined spot diameter and irradiates it onto the sample surface, and a laser beam irradiation means that focuses the laser beam to a predetermined spot diameter and irradiates it to the sample surface, and , an elliptical condenser having an entrance/exit opening for irradiating the laser beam to a vicinity including the focal point, and a sample surface located in the vicinity including the first focal point of the elliptical condenser; a moving device capable of moving at a constant speed; and a light guide having one end disposed near the second focal point of the elliptical condenser and guiding scattered light from the ultrafine particles attached to the sample surface focused at the focal point. , a photomultiplier tube is disposed at the other end of the light guide and detects the extremely weak scattered light guided by the light guide as a discrete pulse-like signal of a single photoelectron state; A light scattering method consisting of a coolable detector and a signal processing means that integrates the signal of scattered light detected by the detector, converts it into a voltage, and calculates the particle size of the ultrafine particles from the peak value voltage. A particle size measuring device for ultrafine particles was constructed.

また、前記光ガイドとして、焦点を楕円集光器の第二焦
点に一致させた放物面鏡を内面に有するパラボラ集光器
、又は前記第二焦点を囲む半球面上に一端を位置させた
複数の光ファイバーを用いた。
The light guide may be a parabolic condenser having a parabolic mirror on its inner surface whose focus coincides with the second focus of the elliptical condenser, or one end of which is positioned on a hemispherical surface surrounding the second focus. Multiple optical fibers were used.

〔作用〕[Effect]

以上の如き内容からなる本発明の光散乱法による超微粒
子の粒径測定方法及びその装置は、楕円集光器の第一焦
点近傍に位置して等速で移動する試料表面に、集光した
レーザ光を照射すると、そのレーザ光のスポット内を試
料表面に付着した超微粒子が通過する際に、その粒径に
応じた強度で移動速度に応じた光量の散乱光が第一焦点
近傍で生じ、その結果極微弱な散乱光は楕円集光器の第
二焦点に集光された後、光ガイドで光電子増倍管の光電
面に導かれ、そして散乱光の強度に比例した個数の光電
子が生成されて単一光電子状態の離散パルス信号として
検出され、その離散信号を積分して得られた電圧信号の
最大電圧値を超微粒子の粒径に比例するように設定し、
こうして該最大電圧値から試料表面に付着した超微粒子
の粒径を測定できるようになしたものである。
The method and apparatus for measuring the particle size of ultrafine particles using a light scattering method according to the present invention, which has the above-mentioned content, focuses light on the surface of a sample that is located near the first focus of an elliptical condenser and moves at a constant speed. When a laser beam is irradiated, as the ultrafine particles attached to the sample surface pass through the laser beam spot, scattered light is generated near the first focal point, with an intensity that corresponds to the particle size and an amount of light that corresponds to the movement speed. As a result, the extremely weak scattered light is focused on the second focal point of the elliptical collector, and then guided by the light guide to the photocathode of the photomultiplier tube, where a number of photoelectrons proportional to the intensity of the scattered light are emitted. generated and detected as a discrete pulse signal of a single photoelectron state, and the maximum voltage value of the voltage signal obtained by integrating the discrete signal is set to be proportional to the particle size of the ultrafine particle,
In this way, the particle size of the ultrafine particles attached to the sample surface can be measured from the maximum voltage value.

また、楕円集光器の第一焦点に集光され、試料表面に照
射したレーザ光の該表面からの強い反射光が第二製点に
集光されないように、楕円面鏡側の第一焦点を中心とし
た等角位置に、レーザ光の人出射口を開設している。
In addition, the first focal point on the elliptical mirror side is set so that the laser beam that is focused on the first focal point of the elliptical condenser and is irradiated onto the sample surface is not focused on the second point so that the strong reflected light from the surface is not focused on the second point. A laser beam exit opening is set up at an equiangular position centered on .

更に、前記楕円集光器の第二焦点から出てくる散乱光の
射出角度は、超微粒子による散乱光強度分布に応じて約
180度の範囲にまたがるので、光ガイドとしてパラボ
ラ集光器を用いた場合、前記第二焦点に放物面鏡の焦点
を一致させることにより、また光ガイドとして光ファイ
バーを用いた場合、前記第二焦点を囲む半球面上に複数
の光ファイバーの一端を位置させることにより、極めて
効率よく光電子増倍管の光電面に導(ことが可能である
Furthermore, since the emission angle of the scattered light coming out from the second focal point of the elliptical condenser spans a range of about 180 degrees depending on the intensity distribution of the scattered light by the ultrafine particles, a parabolic concentrator is used as a light guide. If the optical fiber is used as a light guide, by aligning the focal point of the parabolic mirror with the second focal point, or by positioning one end of the plurality of optical fibers on a hemispherical surface surrounding the second focal point. , can be guided extremely efficiently to the photocathode of a photomultiplier tube.

〔実施例〕〔Example〕

次に添付図面に示した実施例に基づき更に本発明の詳細
な説明する。
Next, the present invention will be further described in detail based on embodiments shown in the accompanying drawings.

第1図(al、 (bl及び第2図は本発明の代表的実
施例を示し、図中Aはレーザ光照射手段、Bは楕円集光
器、Cは移動装置、Dは光ガイド、Eは検出器、Fは信
号処理手段をそれぞれ示している。
Figure 1 (al, (bl) and Figure 2 show typical embodiments of the present invention, in which A is a laser beam irradiation means, B is an elliptical condenser, C is a moving device, D is a light guide, and E is a indicates a detector, and F indicates a signal processing means, respectively.

レーザ光照射手段Aは、全出力(Io)がIW、波長(
λ)が488nmのアルゴン(Ar”)レーザ1から射
出したレーザ光2をチョッパー3を通して、スペーシャ
ルフィルタ4で非線形波面のひずみを除去するとともに
、空間強度分布を一様となしてコリメータレンズ5によ
り大口径の平行ビームに変換し、偏光プリズム6で直線
偏光となした後、偏光ビームスプリンタ7を通過させた
レーザ光2をλ/4波長板8を通して放物面鏡9で反射
させ、再び該λ/4波長板8を通過させ前記偏光ビーム
スフリツタ7で直角方向に反射させて、スポット径dが
約5μmになるように集光する光学系で構成した。尚、
本実施例ではレーザ光2として、アルゴンレーザの48
8nmの波長を用いたが、後述の散乱光の集光系に用い
る鏡面研磨した金属に対する反射率が高い長波長を発振
できるレーザを適宜用いることが可能であるが、あまり
長波長にすると後述の光電子増倍管の光電面での光電子
への変換効率が低下し、出力が低下するので注意を要す
る。
The laser beam irradiation means A has a total output (Io) of IW and a wavelength (
A laser beam 2 emitted from an argon (Ar'') laser 1 with a wavelength of 488 nm is passed through a chopper 3, and a spatial filter 4 removes distortion of the nonlinear wavefront, and a collimator lens 5 makes the spatial intensity distribution uniform. The laser beam 2 is converted into a large-diameter parallel beam, linearly polarized by a polarizing prism 6, passed through a polarizing beam splinter 7, and reflected by a parabolic mirror 9 through a λ/4 wavelength plate 8. It was constructed with an optical system that passes through the λ/4 wavelength plate 8, reflects the light in the right angle direction by the polarizing beam fritter 7, and focuses the light so that the spot diameter d becomes approximately 5 μm.
In this embodiment, the laser beam 2 is an argon laser with 48
Although a wavelength of 8 nm was used, it is possible to appropriately use a laser that can emit a long wavelength that has a high reflectance for the mirror-polished metal used in the condensing system for scattered light, which will be described later. Care must be taken because the efficiency of conversion into photoelectrons at the photocathode of the photomultiplier tube decreases, resulting in a decrease in output.

楕円集光5Bは、金属塊を回転楕円体の長径を中心とし
た略半球形状に切削し、鏡面加工して楕円面鏡10を内
面に形成したもので、該楕円面鏡1゜の第一焦点11と
第二焦点12を周囲の稜線を結ぶ面より僅かに外方に位
置するように設定するとともに、該楕円面鏡10側に第
一焦点11を中心とした等角位置に前記レーザ光2の入
出射口13.14を開設し、該入射口13から入射した
レーザ光2が前記第一焦点11の近傍に配したシリコン
ウェハ等の試料15の表面から反射して、楕円面鏡10
を反射して第二焦点12に集光されないように、該試料
15からの反射光は全て出射口I4から出ていくように
している。
The elliptical condenser 5B is made by cutting a metal lump into a substantially hemispherical shape centered on the major axis of a spheroid, and mirror-finishing it to form an ellipsoidal mirror 10 on the inner surface. The focal point 11 and the second focal point 12 are set to be located slightly outward from the plane connecting the surrounding ridge lines, and the laser beam is placed equiangularly around the first focal point 11 on the ellipsoidal mirror 10 side. The laser light 2 incident from the entrance and exit ports 13 and 14 is reflected from the surface of a sample 15 such as a silicon wafer placed near the first focal point 11, and is reflected by the ellipsoidal mirror 10.
All the reflected light from the sample 15 is made to exit from the exit port I4 so as not to be reflected and focused on the second focal point 12.

移動装置Cは、平行な面を有する板状の試料15を装着
する場合は、平面的に移動するX−Yテーブル16を用
いることができ、上面に前記試料15を固定し、該試料
15の表面を前記楕円集光器Bの第一焦点11近傍に常
に位置させてX方向及びY方向に等速で移動させるもの
であり、それぞれのテーブルに接続した駆動用のステッ
ピングモータ1717は、モータ駆動装置18により回
転されている。
When mounting a plate-shaped sample 15 having parallel surfaces, the moving device C can use an X-Y table 16 that moves in a plane, fixes the sample 15 on the upper surface, and moves the sample 15. The surface is always positioned near the first focal point 11 of the elliptical condenser B and is moved at a constant speed in the X direction and the Y direction, and the driving stepping motor 1717 connected to each table is a motor drive. It is rotated by device 18.

こうして、前記試料15の表面各部を第一焦点11の近
傍を移動させ、結果としてレーザ光2のスポットにて試
料15の表面を走査するのである。また、前記試料15
を固定し、レーザ光照射手段Aを含む光学系を移動させ
ることも不可能ではないが現実的でない。尚、曲面伏の
表面を有する試料15の場合には、Z方向にも移動でき
るようにするか、曲率が一定の場合にはその曲率と一致
させて上方テーブルが下方テーブルに対してローリング
するようになすことが必要である。
In this way, each part of the surface of the sample 15 is moved in the vicinity of the first focal point 11, and as a result, the surface of the sample 15 is scanned with the spot of the laser beam 2. In addition, the sample 15
Although it is not impossible to fix the optical system and move the optical system including the laser beam irradiation means A, it is not practical. In the case of the sample 15 having a curved surface, it should be possible to move it in the Z direction as well, or if the curvature is constant, the upper table should be made to roll relative to the lower table so as to match the curvature. It is necessary to do something.

光ガイドDは、本実施例では鏡面研磨した金属面の放物
面鏡19を内面に有し、その焦点20の近傍に開口21
を形成したパラボラ集光器22を用い、該焦点20を前
記楕円集光器Bの第二焦点12に一致させ、他端の解放
端を後述の検出器Eに接続している。尚、本実施例でこ
のパラボラ集光器22を用いた理由は、前記楕円集光器
Bの第二焦点12から出てくる散乱光2′の射出角度は
、超微粒子Pによる散乱光強度分布に応じて約180度
の範囲にまたがるので、このような広角の散乱光2′を
効率よく集光するためである。また、図示しないが複数
の光ハアイバーの一端を前記第二焦点12を囲む半球面
上に配し、他端を束ねて検出器Eに導くことも可能であ
る。
In this embodiment, the light guide D has a parabolic mirror 19 made of a mirror-polished metal surface on its inner surface, and an opening 21 near its focal point 20.
A parabolic condenser 22 is used, the focal point 20 of which is aligned with the second focal point 12 of the elliptical condenser B, and the other open end is connected to a detector E, which will be described later. The reason why this parabolic condenser 22 is used in this embodiment is that the emission angle of the scattered light 2' emerging from the second focal point 12 of the elliptical condenser B is determined by the scattered light intensity distribution due to the ultrafine particles P. This is to efficiently condense such wide-angle scattered light 2', which spans a range of approximately 180 degrees. Although not shown, it is also possible to arrange one end of a plurality of optical fibers on a hemispherical surface surrounding the second focal point 12 and bundle the other ends to guide the optical fibers to the detector E.

前記検出器Eは、一部の窓部23を残して外周に冷媒を
密封できるように二重構造となした冷却容器24内に、
受光面を前記窓部23に向けて内装した光電子増倍管2
5を内装し、前記窓部23には受光面に結露が生じるの
を防止するために二重窓セル26を設けている。そして
、前記光電子増倍管25には、極微弱な散乱光2′を単
一光電子状態の離散パルス状信号として検出できるよう
に高電圧型[27にて所定電圧VCを印加している。
The detector E is placed in a cooling container 24 having a double structure so that a refrigerant can be sealed around the outer periphery while leaving a part of the window 23.
A photomultiplier tube 2 installed with its light-receiving surface facing the window portion 23
5 is installed inside, and the window portion 23 is provided with a double window cell 26 to prevent dew condensation from forming on the light receiving surface. A predetermined voltage VC is applied to the photomultiplier tube 25 by a high voltage type [27] so that the extremely weak scattered light 2' can be detected as a discrete pulse-like signal of a single photoelectron state.

信号処理手段Fは、第1図(al及び第4図に示す如く
前記検出器Eの光電子増倍管25の光電面28に導かれ
た散乱光2′ (全散乱光強度Is)による単一光電子
状態の離散パルス状信号S(第3図(C1に示す)を積
分して、最大電圧値Vmを散乱光2′の強度に比例した
電圧Vp  (第3図(dlに示す)に変換する検出回
路29と、その電圧vpの信号のピーク値Vmを読み取
り、超微粒子Pの粒径Dpに変換するコンピュータ30
とよりなり、該検出回路29はアナログ的に前記光電子
増倍管25のパルス列出力を積分するCR積分回路(積
分定数τ=CR)で構成され、また前記コンビエータ3
0には球形の超微粒子Pの粒径Dρに応じた散乱光2′
が集光系により光電子増倍管25に導かれ、前記検出回
路29により得られる出力電圧■pの最大電圧値Vmを
、各部の反射及び変換効率等を考慮に入れて、予め理論
的に予測される粒(’V D pと最大電圧値■mの相
関関係データを記憶させておき、実際の検出回路29に
よる出力電圧vpの最大値を読み取って前記データとを
比較し、超微粒子Pの粒径Dpを比較算出するのである
。また、光電子増倍管25の出力が小さい場合には、C
R積分回路の前段に高速パルス増幅器を入れることも可
能で、更に光電子増倍管25の出力を二値化し、デジタ
ル的に積分することも可能である。尚、前記コンピュー
タ30には、レーザ1の出力P、スポット(冬d 、走
査速度vs、高電圧電源27にって光電子増倍管25に
印加する電圧■c、検出回路29の積分定数τ等をパラ
メータとして人力可能とし、それらの入力値によって自
動的に前記粒径Dpと最大電圧値Vmの相関関係データ
を作成できるようにすることは実用的である。
As shown in FIG. 1 (al) and FIG. Integrate the discrete pulse-like signal S in the photoelectronic state (shown in Figure 3 (C1)) and convert the maximum voltage value Vm into a voltage Vp (shown in Figure 3 (dl)) proportional to the intensity of the scattered light 2'. A detection circuit 29 and a computer 30 that reads the peak value Vm of the voltage vp signal and converts it into the particle size Dp of the ultrafine particles P.
Therefore, the detection circuit 29 is constituted by a CR integration circuit (integration constant τ=CR) that integrates the pulse train output of the photomultiplier tube 25 in an analog manner, and the combinator 3
0 is the scattered light 2' corresponding to the particle size Dρ of the spherical ultrafine particles P.
is guided to the photomultiplier tube 25 by the condensing system, and the maximum voltage value Vm of the output voltage ■p obtained by the detection circuit 29 is theoretically predicted in advance, taking into consideration the reflection and conversion efficiency of each part. Correlation data between the particle ('V D p and the maximum voltage value ■m) is stored, and the maximum value of the output voltage vp from the actual detection circuit 29 is read and compared with the above data to determine the particle size of the ultrafine particle P. The particle diameter Dp is calculated by comparison.Also, when the output of the photomultiplier tube 25 is small, C
It is also possible to insert a high-speed pulse amplifier before the R integration circuit, and it is also possible to binarize the output of the photomultiplier tube 25 and digitally integrate it. The computer 30 stores information such as the output P of the laser 1, the spot (winter d), the scanning speed vs. It is practical to manually create the correlation data between the particle diameter Dp and the maximum voltage value Vm using these input values.

尚、本実施例では前記コンピュータ30と連動して、入
力するパラメータ及び測定結果を表示する投影回路31
を設けている。
In this embodiment, a projection circuit 31 is provided which displays input parameters and measurement results in conjunction with the computer 30.
has been established.

次に、本発明の粒径測定原理の詳細を述べれば、第3図
(alに示す如くレーザ光照射手段Aの試料15に集光
されたレーザ光2のスポット光強度1 (r)は、ガウ
シアン分布(第3図(blに示す)を仮定し、その半径
rの方向の強度がl/e2になるボンイで与えられる。
Next, to describe the details of the particle size measurement principle of the present invention, as shown in FIG. Assuming a Gaussian distribution (shown in FIG. 3 (bl)), the intensity in the direction of the radius r is given by a point where the intensity is l/e2.

ここで、Ioはレーザ光2の全出力(IW)である。こ
のレーザ光2の試料15表面でのスポット径dは、本実
施例では5μmに設定してあり、測定対象とする超微粒
子Pの粒径Dp  (1〜lonm)と比較して非常に
大きいので、咳超微粒子Pからの散乱光2′は前記スポ
ット径dが該粒子を通過する時間の間、前記スポット光
強度1 (r)に応じて発生する。その散乱光2′の全
散乱光強度Isは、レーザ光2の波長(488nm)に
比べて粒径Dpが十分小さい場合に通用されと表される
。ここで、α−Dpπ/λは無次元のパラメータで、該
αが1より十分小さい場合に(2)式が成り立ち、また
晶は超微粒子Pに対する複素屈折率で、超微粒子Pの種
類により多少異なるものである。
Here, Io is the total output (IW) of the laser beam 2. The spot diameter d of this laser beam 2 on the surface of the sample 15 is set to 5 μm in this example, which is very large compared to the particle diameter Dp (1 to lonm) of the ultrafine particles P to be measured. , the scattered light 2' from the cough ultrafine particles P is generated in accordance with the spot light intensity 1 (r) during the time that the spot diameter d passes through the particles. The total scattered light intensity Is of the scattered light 2' is expressed as being valid when the particle size Dp is sufficiently small compared to the wavelength (488 nm) of the laser light 2. Here, α-Dpπ/λ is a dimensionless parameter, and when α is sufficiently smaller than 1, formula (2) holds true, and the crystal is a complex refractive index for ultrafine particles P, which varies depending on the type of ultrafine particles P. They are different.

前記全散乱強度Isのうち光電子増倍管25の光電面2
8に受光可能な散乱光強度Itは、Ii−βIs   
      (3)で表される。ここで、βは集光系の
損失を考慮した集光効率で、楕円集光器Bの各焦点での
入出射損失を9%、楕円面!JIIO(アルミニウム)
の反射率を90%、パラボラ集光器22の放物面鏡19
(アルミニウム)の反射率を90%とすれば、約β=0
.67であるが、楕円集光器Bの入出射口13.14に
よる損失と該入出射口13.14を傾斜させていること
と、全散乱光強度+sのうち、2πステラジアンの角度
内の散乱光2′が集光されることなどを考慮に入れて、
本実施例ではβ=0.575としている。そして、第7
図に粒径Dp(nm)と受光散乱光強度It(W)との
関係を、銀(Ag)、金(Au)、炭化珪素(SiC)
 、酸化アルミニウム(^j! 203)及び二酸化珪
i (Sin2)について図示している。
Of the total scattering intensity Is, the photocathode 2 of the photomultiplier tube 25
The scattered light intensity It that can be received by 8 is Ii-βIs
It is expressed as (3). Here, β is the light collection efficiency that takes into account the loss of the light collection system, and the input and output loss at each focal point of the elliptical collector B is 9%, and the ellipsoid! JIIO (aluminum)
The reflectance of the parabolic mirror 19 of the parabolic condenser 22 is 90%.
If the reflectance of (aluminum) is 90%, approximately β=0
.. 67, but the loss due to the entrance/exit port 13.14 of the elliptical condenser B, the fact that the entrance/exit port 13.14 is tilted, and the scattering within an angle of 2π steradian out of the total scattered light intensity +s Taking into consideration that light 2' is focused,
In this embodiment, β=0.575. And the seventh
The figure shows the relationship between particle diameter Dp (nm) and received scattered light intensity It (W) for silver (Ag), gold (Au), and silicon carbide (SiC).
, aluminum oxide (^j! 203) and silicon dioxide (Sin2) are illustrated.

また、第4図に示すように、光電子増倍管25の光電面
28に入射する受光散乱光強度1tに応じた光子数Np
hは、ブランク定数をh、光速度をCとすれば、 Nρh= It  λ/ h c         (
4)で与えられ、この光子数Nρhに光電面28での量
子効率ηを乗じた光電子数Npkの電子が該光電面28
から放出さ゛れ、該光電子数Npkにダイノード集光効
率δ(δ=0.7)を乗じた光電子数Nkの電子が、増
幅率μだけ増幅されて単一光電子電子状態の離散パルス
状信号Sとして、当該光電子増倍管25から出力される
。即ち、光電子数Nkは、Nk(r) = I t(λ
/hc)ηδ−βIs(λ/hc)  ηδ (個/5
ee) (5)と表される。ただし、この離散パルス状
信号Sは第3図(C1に示すようにスポット光強度分布
が、ガウシアン分布なので、スポット径d内で疎密な発
生分布状態にある。
In addition, as shown in FIG.
If h is the blank constant and C is the speed of light, then Nρh= It λ/ h c (
4), and the number of photoelectrons Npk, which is the number of photons Nρh multiplied by the quantum efficiency η at the photocathode 28, is transferred to the photocathode 28.
The electrons of the number Nk of photoelectrons, which is the number Npk of photoelectrons multiplied by the dynode focusing efficiency δ (δ = 0.7), are amplified by the amplification factor μ and become a discrete pulse-like signal S of a single photoelectron/electronic state. , is output from the photomultiplier tube 25. That is, the number of photoelectrons Nk is Nk(r) = I t(λ
/hc) ηδ−βIs(λ/hc) ηδ (pcs/5
ee) (5) However, since the spot light intensity distribution is a Gaussian distribution as shown in FIG. 3 (C1), this discrete pulse-like signal S has a densely generated distribution within the spot diameter d.

更に、超微粒子Pが走査レーザスポットで検知されて生
じるスポット径d当たりの単一光電子パルス数Nksは
、スポット走査速度V S (m/5ee)とすれば、 Nb5=Nk −d/vg   (個数)(6)で求ま
り、粒径Dpと単一光電子パルス数NkSの関係を走査
速度V9をパラメータとして第8図に示した。尚、図中
単一光電子パルス数NkBが10以下は検出不安定領域
として破線で示している。本発明は、走査レーザスポッ
トが超微粒子Pを照射している時間に放出される単一光
電子パルス数Nksを、前記検出回路29を通して積分
し、第3図(dlに示すように出力電圧vpの波高値と
して検出し、その最大電圧値Vsから粒径Dpを知るの
がその測定原理である。
Furthermore, the number of single photoelectron pulses Nks per spot diameter d generated when the ultrafine particles P are detected by a scanning laser spot is Nb5 = Nk - d/vg (number of particles), where the spot scanning speed V S (m/5ee) is ) (6), and the relationship between the particle diameter Dp and the number of single photoelectron pulses NkS is shown in FIG. 8 using the scanning speed V9 as a parameter. In the figure, a region where the number of single photoelectron pulses NkB is 10 or less is indicated by a broken line as an unstable detection region. The present invention integrates the number of single photoelectron pulses Nks emitted during the time when the scanning laser spot is irradiating the ultrafine particles P through the detection circuit 29, and calculates the output voltage vp as shown in FIG. 3 (dl). The measurement principle is to detect the peak value and find out the particle size Dp from the maximum voltage value Vs.

また、第5図は光電子増倍管25と検出回路29を含め
た等価回路を示している。該光電子増倍管25の増幅率
をμとすると、光電面28で発生したl(囚の光電子は
、総電荷量Q。−eμ(eは電荷素置)で、幅がt、、
(通常2〜Ions)のパルスとじて出力される。光電
子増倍管25の出力部に接続された負荷抵抗Rt、浮遊
容量を含めたコンデンサ容量をCとするとき、CR回路
出力電圧■。は次のように表され、即ちQ<t≦t、に
おける充電電圧VOCは、時定数をτ (例えば、R=
50にΩ、C=τ となる。これらの関係は、第6図に示してあり、幅t1
のパルスによる充電電圧を■0、また【。秒後の放電電
圧を■2とするとき、1wとt。に対して時定数τ、即
ちCRの値を適当に選ぶことによりそは、はぼ減衰する
ことなく上昇し続けて、第3図(dlに示すパルス列の
積分された出力電圧vpが得られるのである、その最大
電圧値Vmは単一光電子パルス数Nksに比例し、即ち
超微粒子Pからの受光散乱光強度Itに比例し、もって
該超微粒子Pの粒径Dpを測定することができるのであ
る。
Further, FIG. 5 shows an equivalent circuit including the photomultiplier tube 25 and the detection circuit 29. When the amplification factor of the photomultiplier tube 25 is μ, the photoelectrons generated at the photocathode 28 are the total charge Q.−eμ (e is the charge element) and the width is t,
(usually 2 to Ions) is output as a pulse. When the capacitor capacity including the load resistance Rt and stray capacitance connected to the output part of the photomultiplier tube 25 is C, the CR circuit output voltage is ■. is expressed as follows, that is, the charging voltage VOC at Q<t≦t has a time constant of τ (for example, R=
50Ω, C=τ. These relationships are shown in FIG. 6, and the width t1
The charging voltage due to the pulse of ■0, and [. When the discharge voltage after seconds is 2, 1w and t. By appropriately selecting the time constant τ, that is, the value of CR, it continues to rise without attenuating, and the integrated output voltage vp of the pulse train shown in Fig. 3 (dl) can be obtained. The maximum voltage value Vm is proportional to the number of single photoelectron pulses Nks, that is, proportional to the intensity It of scattered light received from the ultrafine particles P, and thus the particle size Dp of the ultrafine particles P can be measured. .

最後に、本発明の測定感度S/N比について述べる。m
s/N比に大きく影響するノイズに光電子増倍管25の
暗電流があり、暗電流による単一光電子パルス数をNa
 とするとき、S/N比を次式で定義する。
Finally, the measurement sensitivity S/N ratio of the present invention will be described. m
The noise that greatly affects the S/N ratio is the dark current of the photomultiplier tube 25, and the number of single photoelectron pulses due to the dark current is
Then, the S/N ratio is defined by the following equation.

S / N −N k/ N d(10)そこで、常温
(20℃)ではその暗電流により単位時間当たり約30
00個の単一光電子パルスが得られ、該光電子増倍管2
5を冷却(−30℃)することによって暗電流による単
位時間当たりの単一光電子パルスを約75fllに抑え
ることができ、第9図に示したS/N比と粒径Dpの関
係より、S/N比が10以上を測定の限界とすれば、−
30℃程度まで冷却することにより粒径Dpが2.5μ
m以上の超微粒子Pの粒径検出が可能であり、粒゛径D
pが10μmの超微粒子Pの検出には、光電子増倍管2
5を冷却せずとも、S/N比を103程度とれるので、
電磁誘導などのノイズに考慮すれば十分検出が可能であ
る。
S / N - N k / N d (10) Therefore, at room temperature (20°C), the dark current causes about 30
00 single photoelectron pulses are obtained and the photomultiplier tube 2
By cooling 5 (-30°C), the single photoelectron pulse per unit time due to dark current can be suppressed to about 75 flll, and from the relationship between S/N ratio and particle size Dp shown in Figure 9, S If the /N ratio is 10 or more as the measurement limit, -
By cooling to about 30℃, the particle size Dp becomes 2.5μ.
It is possible to detect the particle size of ultrafine particles P of m or more, and the particle size D
To detect ultrafine particles P with p of 10 μm, a photomultiplier tube 2 is used.
Since the S/N ratio can be maintained at around 103 without cooling 5,
Detection is possible if noise such as electromagnetic induction is taken into account.

また、前述のように散乱光2′の強度は極微弱であるの
で、光電子増倍管25は感度の限界で使用しているが、
レーザ1の出力を可能な限り上昇させることにより、若
干その検出感度を上げることができるが、レーザ光2の
照射により試料15及び超微粒子Pが熱破壊される恐れ
があり、レーザlの出力の選定には注意を要する。例え
ば、IWのレーザlを5μmのスポットに集光し、試料
15としてシリコンウェハを選んだ場合、熱伝導理論に
より該シリコンウェハの定常状態での表面温度は約45
5℃となり、その表面は熔融しないことが判り、また超
微粒子Pとして粒径Dpが10°nmの金微粒子を選ん
だ場合、定常状態での表面温度は約550℃となり、や
はり熔融することはないことが判った。
Furthermore, as mentioned above, the intensity of the scattered light 2' is extremely weak, so the photomultiplier tube 25 is used at its sensitivity limit.
By increasing the output of the laser 1 as much as possible, the detection sensitivity can be slightly increased, but there is a risk that the sample 15 and the ultrafine particles P will be thermally destroyed by the irradiation of the laser beam 2. Care must be taken in selection. For example, if the IW laser l is focused on a 5 μm spot and a silicon wafer is selected as the sample 15, the surface temperature of the silicon wafer in a steady state is approximately 45 μm according to thermal conduction theory.
5°C, and it was found that the surface does not melt. Furthermore, when gold fine particles with a particle size Dp of 10° nm are selected as the ultrafine particles P, the surface temperature in a steady state is approximately 550°C, and it is found that the surface does not melt. It turns out there isn't.

尚、本発明の粒径測定方法では、超微粒子Pの種類は判
らず、その種類によって複素屈折率5が異なるので、第
7図の如く粒径DPと受光散乱光強度Itの関係から一
義的に定めることができず、従って粒径Dpの算出には
固有の誤差を含んでいる。シリコンウェハの試料15の
表面に付着する超微粒子Pとして可能性の高いものを、
第7図中に示しているが、この超微粒子Pのみが存在す
ると仮定すれば、例えば散乱光強度が10−1′Wであ
った場合、粒径Dpは3.5〜5.5nm内にあると予
測され、約5nmの超微粒子Pを測定する場合の誤差は
±1.5nmとなり、また散乱光強度が10−”Wであ
った場合、粒径Dpは5〜10nmの範囲内にあると予
測され、7〜3nmの超微粒子Pを測定する場合の誤差
は±2,5nmとなる。このように、超微粒子Pの種類
による粒径Dpの測定値に及ぼす誤差が比較的小さいの
は、前記(2)式を見れば判るように、粒+Dpの寄与
は6乗であり、複素屈折率への寄与は2乗程度であり、
圧倒的に粒径Dpの寄与の方が大きく、そのため前述の
ように超微粒子Pの種類による測定値の影響は少ないの
である。
In addition, in the particle size measuring method of the present invention, the type of ultrafine particles P cannot be determined, and the complex refractive index 5 differs depending on the type. Therefore, as shown in FIG. Therefore, calculation of the particle size Dp includes an inherent error. The ultrafine particles P that are likely to adhere to the surface of the silicon wafer sample 15 are
As shown in FIG. 7, assuming that only the ultrafine particles P exist, for example, if the scattered light intensity is 10-1'W, the particle size Dp will be within 3.5 to 5.5 nm. When measuring ultrafine particles P of approximately 5 nm, the error is ±1.5 nm, and when the scattered light intensity is 10-''W, the particle size Dp is within the range of 5 to 10 nm. It is predicted that the error when measuring ultrafine particles P of 7 to 3 nm is ±2.5 nm.In this way, the error caused by the type of ultrafine particles P on the measured value of particle diameter Dp is relatively small. As can be seen from equation (2) above, the contribution of grains + Dp is the sixth power, and the contribution to the complex refractive index is about the second power,
The contribution of the particle size Dp is overwhelmingly greater, and therefore, as mentioned above, the type of ultrafine particles P has little influence on the measured value.

また、本発明では超微粒子Pの形状を球形と仮定したが
、実際の形状はま、ちまちで、球形はむしろ稀少である
が、本発明のように散乱光2′のうち2πステラジアン
内のものを全て受光できるようになしたことから、歪な
形状の超微粒子Pで散乱光2′に偏りがある場合でも、
その全散乱光強度はレーザ光2の入射方向から見た超微
粒子Pの外形のみにほぼ依存するので、本発明の本質を
失うことはない。
In addition, in the present invention, the shape of the ultrafine particles P is assumed to be spherical, but the actual shape varies and spherical shapes are rather rare. Since we have made it possible to receive light from all objects, even if the scattered light 2' is biased due to distorted ultrafine particles P,
Since the total scattered light intensity depends almost only on the outer shape of the ultrafine particles P as seen from the direction of incidence of the laser beam 2, the essence of the present invention is not lost.

尚、別の方法で予め超微粒子Pの種類を検出しておけば
、更に精度の高い粒径の測定が可能である。
Note that if the type of ultrafine particles P is detected in advance using another method, it is possible to measure the particle size with even higher accuracy.

〔発明の効果〕〔Effect of the invention〕

以上にしてなる本発明の光散乱法による超微粒子の粒径
測定方法及びその装置によれば、試料表面をレーザスポ
ットで走査するだけで、該試料表面に付着した粒径2〜
lOnm程度の超微粒子を非破壊且つ非接触でその粒径
を精度よく、しかもリアルタイムで測定することができ
る。
According to the method and apparatus for measuring the particle size of ultrafine particles using the light scattering method of the present invention, the particles attached to the surface of the sample have a diameter of 2 to 200 nm by simply scanning the sample surface with a laser spot.
The particle size of ultrafine particles of about 1 Onnm can be measured non-destructively and non-contact with high accuracy and in real time.

また、その光学系については、レーザ光を所定スポット
径に集光して試料表面に照射するレーザ光照射手段と、
楕円面鏡側の一方の第一焦点を中心とした等角位置に、
前記レーザ光を該焦点を含む近傍に照射すべく人出射口
を開設してなる楕円集光器と、該楕円集光器の第二焦点
近傍に一端を配し、該焦点に集光された試料表面に付着
した超微粒子からの散乱光を案内する光ガイドとより構
成したので、レーザ光の試料表面に付着したB微粒子か
らの全散乱光のうち2πステラジアン内の散乱光を極め
て効率よく集光することができ、しかも試料表面で直接
反射する強い反射光を楕円集光器に開設した出射口から
該楕円集光器外部に導いて極微弱な散乱光に影響を及ぼ
さないようにすることができた。
The optical system also includes a laser beam irradiation means that focuses the laser beam to a predetermined spot diameter and irradiates it onto the sample surface;
At an equiangular position centered on the first focal point on one side of the ellipsoidal mirror,
an elliptical condenser having an exit opening for irradiating the laser beam to a vicinity including the focal point; and an elliptical condenser having one end disposed near a second focal point so that the laser beam is condensed at the focal point. Since it is composed of a light guide that guides the scattered light from the ultrafine particles attached to the sample surface, it is possible to extremely efficiently collect the scattered light within 2π steradians out of the total scattered light from the B particles attached to the sample surface of the laser beam. To guide the strong reflected light that is directly reflected from the sample surface to the outside of the elliptical condenser through an exit opening provided in the elliptical condenser so as not to affect the extremely weak scattered light. was completed.

更に、極微弱な散乱光の検出系については、前記光ガイ
ドの他端に配し、該光ガイドにより案内された極微弱な
散乱光を単一光電子状態の離散パルス状信号として検出
する光電子増倍管を内装し、該光電子増倍管を冷却し得
る検出器と、該検出器により検出された散乱光の信号を
積分して電圧に変換し、そのピーク値電圧から超微粒子
の粒径を算出する信号処理手段とより構成したことによ
り、現在の光検出器として最も感度がよいとされている
光電子増倍管を冷却して暗電流によるノイズを減少させ
、極微弱な散乱光を単一光電子状態の離散パルス状信号
として検出することができ、しかもその離散パルス状信
号を積分してその最大値を粒径に比例した電圧信号に互
換して、簡単な処理により該電圧信号より粒径を算出す
ることが可能となった。
Furthermore, regarding the extremely weak scattered light detection system, a photoelectron intensifier is disposed at the other end of the light guide and detects the extremely weak scattered light guided by the light guide as a discrete pulse-like signal in a single photoelectron state. A detector equipped with a multiplier and capable of cooling the photomultiplier; the signal of the scattered light detected by the detector is integrated and converted into a voltage, and the particle size of the ultrafine particles is determined from the peak value voltage. By using a signal processing means that calculates It can be detected as a discrete pulse-like signal in the photoelectronic state, and by integrating the discrete pulse-like signal and converting its maximum value into a voltage signal proportional to the particle size, the particle size can be determined from the voltage signal by simple processing. It became possible to calculate.

そして、光ガイドとして、焦点を楕円集光器の第二焦点
に一致させた放物面鏡を内面に有するパラボラ集光器、
又は前記第二焦点を囲む半球面上に一端を位置させた複
数の光ファイバーを用いたことにより、楕円集光器の第
二焦点から射出される180度にまたがる射出角度の散
乱光を効率よく集光し、光電子増倍管の光電面に導くこ
とができるのである。
and a parabolic condenser having a parabolic mirror on its inner surface whose focal point coincides with the second focus of the elliptical condenser as a light guide;
Alternatively, by using a plurality of optical fibers having one end positioned on a hemispherical surface surrounding the second focal point, scattered light emitted from the second focal point of the elliptical condenser at an exit angle spanning 180 degrees can be efficiently collected. It emits light and can guide it to the photocathode of a photomultiplier tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは本発明の代表的実施例を示す簡略配置図
、第1図fblは同じく要部を一部断面で示した側面図
、第2図は要部の拡大断面図、第3図ta+は試料表面
の超微粒子にレーザ光を照射した状態を示す簡略断面図
、第3図(blはレーザ光の強度分布を示すグラフ、第
3図(C1は光電子増倍管の出力部での単一光電子状態
の離散パルス状信号を示すグラフ、第3図(dlは検出
回路の出力部での粒径に対応した電圧波形のグラフ、第
4図は光電子増倍管と検出回路の回路図、第5図は同じ
く等価回路図、第6図は第3図(dlの電圧波形の拡大
図、第7図は粒径に対する受光散乱光強度のグラフ、第
8図は粒径に対する検出される単一光電子パルス数のグ
ラフ、第9図は粒径に対するS/N比のグラフである。 A:レーザ光照射手段、B:楕円集光器、C:移動装置
、D:光ガイド、E:検出器、F:信号処理手段。 1:レーザ、2:レーザ光、3:チョツパー、4:スペ
ーシャルフィルタ、5:コリメータレンズ、6:偏光プ
リズム、7:偏光ビームスプリッタ、8:λ/4波長板
、9:放物面鏡、10:楕円面鏡、11:第一焦点、1
2:第二焦点、13:入射口、14:出射口、15:試
料、o;:x−yテーブル、17:ステンピングモータ
、18:モータ駆動装置、19:放物面鏡、20:焦点
、21:開口、22:パラボラ集光器、23:窓部、2
4:冷却容器、25:光電子増倍管、26:二重窓セル
、27:高電圧電源、28:光電面、29:検出回路、
30:コンピュータ、31:投影回路。
FIG. 1 (al is a simplified layout diagram showing a typical embodiment of the present invention, FIG. Figure ta+ is a simplified cross-sectional view showing the state in which ultrafine particles on the sample surface are irradiated with laser light, Figure 3 (bl is a graph showing the intensity distribution of the laser beam, and Figure 3 (C1 is the output section of the photomultiplier tube). Figure 3 is a graph showing the discrete pulse-like signal of a single photoelectron state in (dl is a graph of the voltage waveform corresponding to the particle size at the output of the detection circuit, Figure 4 is the circuit of the photomultiplier tube and the detection circuit. 5 is an equivalent circuit diagram, FIG. 6 is an enlarged view of the voltage waveform of dl in FIG. Figure 9 is a graph of the S/N ratio versus particle size. A: Laser beam irradiation means, B: Elliptical condenser, C: Moving device, D: Light guide, E : Detector, F: Signal processing means. 1: Laser, 2: Laser light, 3: Chopper, 4: Spatial filter, 5: Collimator lens, 6: Polarizing prism, 7: Polarizing beam splitter, 8: λ/4 Wave plate, 9: parabolic mirror, 10: ellipsoidal mirror, 11: first focal point, 1
2: second focal point, 13: entrance port, 14: exit port, 15: sample, o: x-y table, 17: stamping motor, 18: motor drive device, 19: parabolic mirror, 20: focal point , 21: opening, 22: parabolic concentrator, 23: window, 2
4: cooling container, 25: photomultiplier tube, 26: double window cell, 27: high voltage power supply, 28: photocathode, 29: detection circuit,
30: Computer, 31: Projection circuit.

Claims (1)

【特許請求の範囲】 1)レーザ光を楕円集光器の第一焦点近傍に集光し、該
焦点近傍にその表面を位置させ且つ等速で移動させた試
料に前記レーザ光を照射し、該試料表面に付着した超微
粒子からの極微弱な散乱光を楕円集光器の第二焦点に集
光させ、そして該散乱光を光ガイドで光電子増倍管の光
電面に導いて単一光電子状態の離散パルス状信号として
検出し、その信号を積分してピーク値を超微粒子の粒径
に比例する電圧に変換し、その最大電圧値から超微粒子
の粒径を算出してなる光散乱法による超微粒子の粒径測
定方法。 2)レーザ光を所定スポット径に集光して試料表面に照
射するレーザ光照射手段と、 楕円面鏡側の一方の第一焦点を中心とした等角位置に、
前記レーザ光を該焦点を含む近傍に照射すべく入出射口
を開設してなる楕円集光器と、前記楕円集光器の第一焦
点を含む近傍に試料表面を位置し且つ該試料を等速で移
動し得る移動装置と、 前記楕円集光器の第二焦点近傍に一端を配し、該焦点に
集光された試料表面に付着した超微粒子からの散乱光を
案内する光ガイドと、 前記光ガイドの他端に配し、該光ガイドにより案内され
た極微弱な散乱光を単一光電子状態の離散パルス状信号
として検出する光電子増倍管を内装し、該光電子増倍管
を冷却し得る検出器と、該検出器により検出された散乱
光の信号を積分して電圧に変換し、そのピーク値電圧か
ら超微粒子の粒径を算出する信号処理手段と、 よりなる光散乱法による超微粒子の粒径測定装置。 3)前記光ガイドとして、前記楕円集光器の第二焦点に
焦点を一致させた放物面鏡を内面に形成してなるパラボ
ラ集光器を用いてなる特許請求の範囲第2項記載の光散
乱法による超微粒子の粒径測定装置。 4)前記光ガイドとして、端面を前記楕円集光器の第二
焦点を囲む半球面上に位置させてなる複数の光ファイバ
ーを用いてなる特許請求の範囲第2項記載の光散乱法に
よる超微粒子の粒径測定装置。
[Scope of Claims] 1) Focusing a laser beam near the first focal point of an elliptical condenser, and irradiating the laser beam onto a sample whose surface is positioned near the focal point and is moving at a constant speed; The extremely weak scattered light from the ultrafine particles attached to the sample surface is focused on the second focal point of the elliptical condenser, and the scattered light is guided to the photocathode of the photomultiplier tube by a light guide to generate a single photoelectron. A light scattering method that detects the state as a discrete pulse-like signal, integrates the signal, converts the peak value into a voltage proportional to the particle size of the ultrafine particles, and calculates the particle size of the ultrafine particles from the maximum voltage value. A method for measuring the particle size of ultrafine particles. 2) A laser beam irradiation means that focuses the laser beam to a predetermined spot diameter and irradiates it onto the sample surface;
an elliptical condenser having an entrance and exit opening for irradiating the laser beam to a vicinity including the focal point, and a sample surface located in the vicinity including the first focus of the elliptical condenser, a moving device capable of moving at high speed; a light guide having one end disposed near the second focal point of the elliptical condenser and guiding scattered light from the ultrafine particles adhering to the sample surface focused at the focal point; A photomultiplier tube is disposed at the other end of the light guide and detects extremely weak scattered light guided by the light guide as a discrete pulse-like signal of a single photoelectron state, and the photomultiplier tube is cooled. A light scattering method comprising: a detector capable of detecting scattered light; a signal processing means for integrating the signal of the scattered light detected by the detector, converting it into a voltage, and calculating the particle size of the ultrafine particles from the peak value voltage; Ultrafine particle size measuring device. 3) The light guide according to claim 2, wherein the light guide is a parabolic condenser formed by forming a parabolic mirror on the inner surface whose focus is aligned with the second focus of the elliptical condenser. Ultrafine particle size measuring device using light scattering method. 4) Ultrafine particles produced by the light scattering method according to claim 2, which uses a plurality of optical fibers whose end faces are located on a hemispherical surface surrounding the second focal point of the elliptical condenser as the light guide. particle size measuring device.
JP1043887A 1989-02-23 1989-02-23 Ultrafine particle size measuring device by light scattering method Expired - Fee Related JP2747921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043887A JP2747921B2 (en) 1989-02-23 1989-02-23 Ultrafine particle size measuring device by light scattering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043887A JP2747921B2 (en) 1989-02-23 1989-02-23 Ultrafine particle size measuring device by light scattering method

Publications (2)

Publication Number Publication Date
JPH02223845A true JPH02223845A (en) 1990-09-06
JP2747921B2 JP2747921B2 (en) 1998-05-06

Family

ID=12676216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043887A Expired - Fee Related JP2747921B2 (en) 1989-02-23 1989-02-23 Ultrafine particle size measuring device by light scattering method

Country Status (1)

Country Link
JP (1) JP2747921B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026054A1 (en) * 1997-11-19 1999-05-27 Otsuka Electronics Co., Ltd. Apparatus for measuring characteristics of optical angle
US6411377B1 (en) * 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
WO2003073085A1 (en) * 2002-02-26 2003-09-04 Matsushita Electric Industrial Co., Ltd. Surface foreign matters inspecting device
JP2007010502A (en) * 2005-06-30 2007-01-18 Sunx Ltd Foreign matter detector
WO2012060057A1 (en) * 2010-11-01 2012-05-10 株式会社日立ハイテクノロジーズ Defect inspection method, low light detecting method, and low light detector
WO2013077125A1 (en) * 2011-11-24 2013-05-30 株式会社日立ハイテクノロジーズ Defect inspection method and device for same
JP2013108752A (en) * 2011-10-24 2013-06-06 National Institute Of Advanced Industrial & Technology Apparatus for detecting particulate in gas
WO2013161912A1 (en) * 2012-04-27 2013-10-31 株式会社日立ハイテクノロジーズ Defect inspection device and defect inspection method
JP2014186035A (en) * 2014-06-13 2014-10-02 Hitachi High-Technologies Corp Defect detection method and defect detection device
JP2016035466A (en) * 2015-09-24 2016-03-17 株式会社日立ハイテクノロジーズ Defect inspection method, weak light detection method, and weak light detector
CN106645173A (en) * 2016-12-24 2017-05-10 合肥知常光电科技有限公司 Efficient collection device and collection method of scattered light for detecting surface detect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142238A (en) * 1983-12-09 1985-07-27 テンコール・インスツルメンツ Condenser for inspecting surface
JPS62257741A (en) * 1986-04-30 1987-11-10 Nec Kyushu Ltd Inspection device for surface of semiconductor substrate
JPS6435345A (en) * 1987-07-31 1989-02-06 Canon Kk Particle analyzing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142238A (en) * 1983-12-09 1985-07-27 テンコール・インスツルメンツ Condenser for inspecting surface
JPS62257741A (en) * 1986-04-30 1987-11-10 Nec Kyushu Ltd Inspection device for surface of semiconductor substrate
JPS6435345A (en) * 1987-07-31 1989-02-06 Canon Kk Particle analyzing device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411377B1 (en) * 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US7037735B2 (en) 1991-04-02 2006-05-02 Hitachi, Ltd. Apparatus and method for testing defects
US7098055B2 (en) 1991-04-02 2006-08-29 Hitachi, Ltd. Apparatus and method for testing defects
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
US7639350B2 (en) 1991-04-02 2009-12-29 Hitachi, Ltd Apparatus and method for testing defects
US7692779B2 (en) 1991-04-02 2010-04-06 Hitachi, Ltd. Apparatus and method for testing defects
US7940383B2 (en) 1991-04-02 2011-05-10 Hitachi, Ltd. Method of detecting defects on an object
WO1999026054A1 (en) * 1997-11-19 1999-05-27 Otsuka Electronics Co., Ltd. Apparatus for measuring characteristics of optical angle
US6636308B1 (en) 1997-11-19 2003-10-21 Otsuka Electronics Co., Ltd. Apparatus for measuring characteristics of optical angle
WO2003073085A1 (en) * 2002-02-26 2003-09-04 Matsushita Electric Industrial Co., Ltd. Surface foreign matters inspecting device
US7046354B2 (en) 2002-02-26 2006-05-16 Matsushita Electric Industrial Co., Ltd. Surface foreign matter inspecting device
JP2007010502A (en) * 2005-06-30 2007-01-18 Sunx Ltd Foreign matter detector
WO2012060057A1 (en) * 2010-11-01 2012-05-10 株式会社日立ハイテクノロジーズ Defect inspection method, low light detecting method, and low light detector
US9588054B2 (en) 2010-11-01 2017-03-07 Hitachi High-Technologies Corporation Defect inspection method, low light detecting method and low light detector
JP2012098103A (en) * 2010-11-01 2012-05-24 Hitachi High-Technologies Corp Defect inspection method, weak light detection method and weak light detector
US10261026B2 (en) 2010-11-01 2019-04-16 Hitachi High-Technologies Corporation Defect inspection method, low light detecting method, and low light detector
JP2013108752A (en) * 2011-10-24 2013-06-06 National Institute Of Advanced Industrial & Technology Apparatus for detecting particulate in gas
WO2013077125A1 (en) * 2011-11-24 2013-05-30 株式会社日立ハイテクノロジーズ Defect inspection method and device for same
WO2013161912A1 (en) * 2012-04-27 2013-10-31 株式会社日立ハイテクノロジーズ Defect inspection device and defect inspection method
US9329136B2 (en) 2012-04-27 2016-05-03 Hitachi High-Technologies Corporation Defect inspection device and defect inspection method
US9568439B2 (en) 2012-04-27 2017-02-14 Hitachi High-Technologies Corporation Defect inspection device and defect inspection method
US9645094B2 (en) 2012-04-27 2017-05-09 Hitachi High-Technologies Corporation Defect inspection device and defect inspection method
JP2013231631A (en) * 2012-04-27 2013-11-14 Hitachi High-Technologies Corp Defect inspection apparatus and defect inspection method
JP2014186035A (en) * 2014-06-13 2014-10-02 Hitachi High-Technologies Corp Defect detection method and defect detection device
JP2016035466A (en) * 2015-09-24 2016-03-17 株式会社日立ハイテクノロジーズ Defect inspection method, weak light detection method, and weak light detector
CN106645173A (en) * 2016-12-24 2017-05-10 合肥知常光电科技有限公司 Efficient collection device and collection method of scattered light for detecting surface detect

Also Published As

Publication number Publication date
JP2747921B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP3246811B2 (en) Semiconductor wafer inspection equipment
JP3290586B2 (en) Scanning near-field optical microscope
Kawata et al. Scanning probe optical microscopy using a metallic probe tip
JPH02223845A (en) Method and device for measuring particle size of extremely small particle by light scattering method
JPS6311838A (en) Granular size detector
JP2018163175A (en) Inspection beam shaping for improved detection sensitivity
JP2007503572A (en) Photodetector for particle classification system
CN111896511B (en) Efficient fluorescence collection device and method for solid state spinning
JP4540509B2 (en) Fluorescence detection method, flow cell unit and flow cytometer
JP3596479B2 (en) Composite evaluation system of surface by light scattering method
JPH06194320A (en) Method and equipment for inspecting mirror face substrate in semiconductor manufacturing line and method for manufacturing
JP4043538B2 (en) Surface plasmon sensor
JP4445886B2 (en) Flow cell unit, flow cytometer, and fluorescence detection method
JPH0737937B2 (en) Particle detector by light scattering method
JP2005127982A (en) Optical fiber probe using potential difference, and optical recording and regenerating device using the same
JP3101707B2 (en) Raman scattered light enhancement device
CN113009549A (en) High-light-collecting-efficiency regional resolution X-ray radiation flow measuring system
JPS61288139A (en) Fine particle detecting device
JP2002340537A (en) Surface evaluation method
WO1991014935A1 (en) A method and an apparatus for cleaning control
US7046354B2 (en) Surface foreign matter inspecting device
JPH11305053A (en) X-ray optical element and its manufacture, and x-ray analyzing apparatus
JPH09292335A (en) Surface plasmon sensor
CN116379974B (en) Device and method for detecting surface characteristics of optical element by using multi-wavelength light source
JPS6093944A (en) Light-scattering particle measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees