JPH09292335A - Surface plasmon sensor - Google Patents

Surface plasmon sensor

Info

Publication number
JPH09292335A
JPH09292335A JP10936796A JP10936796A JPH09292335A JP H09292335 A JPH09292335 A JP H09292335A JP 10936796 A JP10936796 A JP 10936796A JP 10936796 A JP10936796 A JP 10936796A JP H09292335 A JPH09292335 A JP H09292335A
Authority
JP
Japan
Prior art keywords
light beam
light
prism
surface plasmon
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10936796A
Other languages
Japanese (ja)
Inventor
Masayuki Naya
昌之 納谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP10936796A priority Critical patent/JPH09292335A/en
Publication of JPH09292335A publication Critical patent/JPH09292335A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high analysis accuracy by keeping constant the intensity of the optical beam applied on the interface described below, without depending on an incident angle in the surface plasmon sensor, wherein the light beam is applied on the interface between a prism and a metal film so that the incident angle is variously changed, the intensity of the light beam totally reflected from the interface is measured and the material in a sample in contact with the metal film is analyzed. SOLUTION: This surface plasmon sensor is provided with and constituted of a prism 10, a metal film 12, which is formed on one surface of the prism and is made to be in contact with a sample 11, a light source 14, which generates a light beam 13, and a photodetector means 19, which detects the light beam 13 totally reflected from an interface 10a. In this case, the light beam 13 before the incidence into the prism 10 is deflected by an optical deflector 17 into the direction, in which the incident angle to the interface 10a is changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面プラズモンの
発生を利用して試料中の物質を定量分析する表面プラズ
モンセンサーに関し、特に詳細には、光照射系が改良さ
れた表面プラズモンセンサーに関するものである。
TECHNICAL FIELD The present invention relates to a surface plasmon sensor for quantitatively analyzing a substance in a sample by utilizing generation of surface plasmons, and more particularly to a surface plasmon sensor having an improved light irradiation system. is there.

【0002】[0002]

【従来の技術】金属中においては、自由電子が集団的に
振動して、プラズマ波と呼ばれる粗密波が生じる。そし
て、金属表面に生じるこの粗密波を量子化したものは、
表面プラズモンと呼ばれている。
2. Description of the Related Art In a metal, free electrons oscillate collectively to generate compression waves called plasma waves. And, the quantized compression wave generated on the metal surface is
It is called surface plasmon.

【0003】従来より、この表面プラズモンが光波によ
って励起される現象を利用して、試料中の物質を定量分
析する表面プラズモンセンサーが種々提案されている。
そして、それらの中で特に良く知られているものとし
て、 Kretschmann配置と称される系を用いるものが挙げ
られる(例えば特開平6−167443号参照)。
Conventionally, various surface plasmon sensors have been proposed for quantitatively analyzing a substance in a sample by utilizing the phenomenon that the surface plasmon is excited by a light wave.
Among them, one that is particularly well known is one that uses a system called Kretschmann arrangement (see, for example, JP-A-6-167443).

【0004】上記の系を用いる表面プラズモンセンサー
は基本的に、プリズムと、このプリズムの一面に形成さ
れて試料に接触させられる金属膜と、光ビームを発生さ
せる光源と、上記光ビームをプリズムに通し、該プリズ
ムと金属膜との界面に対して種々の入射角が得られるよ
うに入射させる光学系と、上記の界面で全反射した光ビ
ームの強度を種々の入射角毎に検出可能な光検出手段と
を備えてなるものである。
A surface plasmon sensor using the above system basically includes a prism, a metal film formed on one surface of the prism and brought into contact with a sample, a light source for generating a light beam, and the light beam to the prism. An optical system which passes through the interface between the prism and the metal film so as to obtain various angles of incidence, and a light which can detect the intensity of the light beam totally reflected at the interface at various angles of incidence. And a detecting means.

【0005】なお上述のように種々の入射角を得るため
には、光ビームの照射系を回転させるいわゆるゴニオメ
ーター(例えば特開平6−50882号参照)が用いら
れたり、あるいは光ビームに種々の角度で入射する成分
が含まれるように、比較的太い光ビームを上記界面で集
束するように入射させる光学系が用いられる。前者の場
合は、光ビームの偏向にともなって反射角が変化する光
ビームを、光ビームの偏向に同期移動する小さな光検出
器によって検出したり、反射角の変化方向に沿って延び
るエリアセンサによって検出することができる。一方後
者の場合は、種々の反射角で反射した各光ビームを全て
受光できる方向に延びるエリアセンサによって検出する
ことができる。
In order to obtain various incident angles as described above, a so-called goniometer (see, for example, Japanese Patent Laid-Open No. 6-50882) for rotating the irradiation system of the light beam is used, or various light beams are used. An optical system is used in which a relatively thick light beam is incident so as to be focused at the interface so that a component incident at an angle is included. In the former case, a light beam whose reflection angle changes with the deflection of the light beam can be detected by a small photodetector that moves synchronously with the deflection of the light beam, or by an area sensor extending along the direction of change of the reflection angle. Can be detected. On the other hand, in the latter case, each light beam reflected at various reflection angles can be detected by an area sensor extending in a direction in which all the light beams can be received.

【0006】上記構成の表面プラズモンセンサーにおい
て、光ビームを金属膜に対して全反射角以上の特定入射
角θSPで入射させると、該金属膜に接している試料中に
電界分布をもつエバネッセント波が生じ、このエバネッ
セント波によって金属膜と試料との界面に表面プラズモ
ンが励起される。エバネッセント光の波数ベクトルが表
面プラズモンの波数と等しくて波数整合が成立している
とき、両者は共鳴状態となり、光のエネルギーが表面プ
ラズモンに移行するので、プリズムと金属膜との界面で
全反射した光の強度が鋭く低下する。
In the surface plasmon sensor having the above structure, when a light beam is incident on the metal film at a specific incident angle θ SP which is equal to or greater than the total reflection angle, an evanescent wave having an electric field distribution in the sample in contact with the metal film. Is generated, and surface plasmons are excited at the interface between the metal film and the sample by this evanescent wave. When the wave number vector of the evanescent light is equal to the wave number of the surface plasmon and the wave number matching is established, the two become in a resonance state and the energy of the light shifts to the surface plasmon, so the light is totally reflected at the interface between the prism and the metal film. The intensity of light drops sharply.

【0007】この現象が生じる入射角θSPより表面プラ
ズモンの波数が分かると、試料の誘電率が求められる。
すなわち表面プラズモンの波数をKSP、表面プラズモン
の角周波数をω、cを真空中の光速、εm とεs をそれ
ぞれ金属、試料の誘電率とすると、以下の関係がある。
When the wave number of the surface plasmon is known from the incident angle θ SP at which this phenomenon occurs, the dielectric constant of the sample can be obtained.
That is, assuming that the wave number of the surface plasmon is K SP , the angular frequency of the surface plasmon is ω, c is the speed of light in a vacuum, ε m and ε s are each a metal, and the permittivity of the sample has the following relationship.

【0008】[0008]

【数1】 [Equation 1]

【0009】試料の誘電率εs が分かれば、所定の較正
曲線等に基づいて試料中の特定物質の濃度が分かるの
で、結局、上記反射光強度が低下する入射角θSPを知る
ことにより、試料中の特定物質を定量分析することがで
きる。
If the dielectric constant ε s of the sample is known, the concentration of the specific substance in the sample can be determined based on a predetermined calibration curve or the like. Therefore, by knowing the incident angle θ SP at which the reflected light intensity decreases, The specific substance in the sample can be quantitatively analyzed.

【0010】[0010]

【発明が解決しようとする課題】以上説明したタイプの
従来の表面プラズモンセンサーにおいては、光ビーム
を、プリズムと金属膜との界面に対して種々の入射角が
得られるように入射させるために、前述のゴニオメータ
ーや、あるいは光ビームを上記界面で集束させる光学系
が用いられるが、前者の場合は装置構造が複雑化すると
いう難点があり、後者の場合は入射角毎に光強度が異な
ることがあり、その光強度ばらつきのために分析精度が
低くなるという問題がある。後者の場合、光強度ばらつ
きを補償する信号処理によって分析精度を向上させるこ
ともできるが、そのようにすると複雑な信号処理手段が
必要になって、装置コストが高くついてしまう。
In the conventional surface plasmon sensor of the type described above, in order to make the light beam incident on the interface between the prism and the metal film so that various incident angles can be obtained, The above-mentioned goniometer or an optical system that focuses the light beam at the above interface is used, but the former case has the drawback of complicating the device structure, and the latter case has different light intensity for each incident angle. However, there is a problem that the accuracy of analysis is lowered due to the variation in the light intensity. In the latter case, the analysis accuracy can be improved by signal processing that compensates for variations in light intensity, but in that case, a complicated signal processing means is required, and the device cost increases.

【0011】本発明は上記の事情に鑑みてなされたもの
であり、プリズムと金属膜との界面に入射させる光ビー
ムの強度を、入射角によらず一定に保って、高い分析精
度を得ることができる表面プラズモンセンサーを提供す
ることを目的とするものである。
The present invention has been made in view of the above circumstances, and obtains high analysis accuracy by keeping the intensity of the light beam incident on the interface between the prism and the metal film constant regardless of the incident angle. It is an object of the present invention to provide a surface plasmon sensor that can be manufactured.

【0012】[0012]

【課題を解決するための手段】本発明による表面プラズ
モンセンサーは、前述したようなプリズムと、金属膜
と、上記プリズムを通り該プリズムと金属膜との界面に
入射する光ビームを発生させる光源と、この界面で全反
射した光ビームの強度を検出する光検出手段とを備えて
なる表面プラズモンセンサーにおいて、プリズムに入射
する前の光ビームを、上記界面に対する入射角が変化す
る方向に偏向させる光偏向器が設けられたことを特徴と
するものである。
A surface plasmon sensor according to the present invention comprises a prism as described above, a metal film, and a light source for generating a light beam which passes through the prism and is incident on the interface between the prism and the metal film. , A surface plasmon sensor comprising a light detecting means for detecting the intensity of the light beam totally reflected at the interface, a light beam for deflecting the light beam before entering the prism in a direction in which the incident angle with respect to the interface changes. A deflector is provided.

【0013】上記構成を有する本発明による表面プラズ
モンセンサーにおいて、光検出手段としては、偏向に応
じて上記界面からの反射角が変化する光ビームを終始受
光できるように、この反射角の変化方向に沿って延びる
受光部を有するものが好適に用いられる。
In the surface plasmon sensor according to the present invention having the above-mentioned structure, the light detecting means has a changing direction of the reflection angle so that the light beam whose reflection angle from the interface changes depending on the deflection can be received all the time. The one having a light receiving portion extending along is preferably used.

【0014】また、受光部が上述のように延びるもので
はない光検出手段を用いる場合は、偏向に応じて前記界
面からの反射角が変化する光ビームを、その反射角によ
らず1点に集束させる集束光学系を設けた上で、光検出
手段の受光部を上記集束の位置に配するのがよい。
Further, when the light detecting means whose light receiving portion does not extend as described above is used, the light beam whose reflection angle from the interface changes depending on the deflection is set to one point regardless of the reflection angle. It is preferable to provide a focusing optical system for focusing and then arrange the light receiving section of the light detecting means at the focusing position.

【0015】[0015]

【発明の効果】上述の通り本発明の表面プラズモンセン
サーにおいては、プリズムに入射する前の光ビームを光
偏向器により偏向させて、プリズムと金属膜との界面に
対する光ビームの入射角を変化させているので、光ビー
ムの強度は基本的にこの入射角によらず一定に保たれ
る。そこで、前述した光強度ばらつきがなくなり、高い
分析精度が得られるようになる。
As described above, in the surface plasmon sensor of the present invention, the light beam before entering the prism is deflected by the light deflector to change the incident angle of the light beam with respect to the interface between the prism and the metal film. Therefore, the intensity of the light beam is basically kept constant regardless of this incident angle. Therefore, the variation in light intensity described above is eliminated, and high analysis accuracy can be obtained.

【0016】またガルバノミラー等の光偏向器は、一般
に、光ビームの照射系全体を回転させるような機構と比
べれば安価なものであるから、本発明の表面プラズモン
センサーは、前述したゴニオメーター等を用いる従来装
置よりも低廉なコストで形成できるものとなる。
An optical deflector such as a galvanometer mirror is generally cheaper than a mechanism for rotating the entire irradiation system of the light beam. Therefore, the surface plasmon sensor of the present invention is the goniometer described above. It can be formed at a lower cost than the conventional device using.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。図1は、本発明の第1の実
施形態である表面プラズモンセンサーの側面形状を示す
ものである。図示されるようにこの表面プラズモンセン
サーは、半円柱形のプリズム10と、このプリズム10の一
面(図中の下面)に形成されて、試料11に接触させられ
る例えば金、銀等からなる金属膜12と、1本の光ビーム
13を発生させる半導体レーザー等からなる光源14と、光
ビーム13を平行光化するコリメーターレンズ15と、平行
光化された光ビーム13を集束させる集光レンズ16と、こ
の集光レンズ16による光ビーム13の集束位置に鏡面が位
置するように配されたガルバノミラー17と、このガルバ
ノミラー17で反射した光ビーム13をプリズム10に通し、
該プリズム10と金属膜12との界面10aにおいて集束させ
る集光レンズ18と、上記界面10aで全反射した光ビーム
13を検出する光検出手段19とを有している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a side surface shape of a surface plasmon sensor according to a first embodiment of the present invention. As shown in the figure, the surface plasmon sensor includes a semi-cylindrical prism 10 and a metal film made of, for example, gold or silver formed on one surface (lower surface in the figure) of the prism 10 and brought into contact with the sample 11. 12 and 1 light beam
A light source 14 made of a semiconductor laser or the like for generating 13, a collimator lens 15 for collimating the light beam 13, a condenser lens 16 for converging the collimated light beam 13, and a condenser lens 16 The galvano mirror 17 arranged so that the mirror surface is located at the focusing position of the light beam 13, and the light beam 13 reflected by the galvano mirror 17 is passed through the prism 10.
A condenser lens 18 for converging at an interface 10a between the prism 10 and the metal film 12, and a light beam totally reflected at the interface 10a.
It has a light detection means 19 for detecting 13.

【0018】ガルバノミラー17は、光ビーム13を矢印A
方向に偏向させる。したがって光ビーム13は、この偏向
にともなって、図中に最小入射角θ1 と最大入射角θ2
とを例示するように、界面10aに対して種々の入射角θ
で入射することになる。なおこの入射角θは、全反射角
以上の角度とされる。そこで、光ビーム13は界面10aで
全反射する。
The galvanometer mirror 17 directs the light beam 13 into an arrow A.
Deflect in the direction. Therefore, the light beam 13 is accompanied by this deflection and the minimum incident angle θ 1 and the maximum incident angle θ 2 are shown in the figure.
And various incident angles θ with respect to the interface 10a.
Will be incident at. The incident angle θ is set to an angle equal to or larger than the total reflection angle. There, the light beam 13 is totally reflected at the interface 10a.

【0019】一方光検出手段19としては、上記偏向に応
じて界面10aからの反射角が変化する光ビーム13を終始
受光できるように、この反射角の変化方向に沿って受光
素子が並設されてなる、例えばCCDラインセンサ等が
用いられている。
On the other hand, as the light detecting means 19, light receiving elements are arranged in parallel along the changing direction of the reflection angle so that the light beam 13 whose reflection angle from the interface 10a changes according to the deflection can be received from beginning to end. For example, a CCD line sensor or the like is used.

【0020】以下、上記構成の表面プラズモンセンサー
による試料分析について説明する。分析に供される試料
11は、金属膜12に接触する状態に配置される。そして光
ビーム13が、ガルバノミラー17により前述のように偏向
させつつ、金属膜12に向けて照射される。この金属膜12
とプリズム10との界面10aで全反射した光ビーム13は、
光検出手段19によって検出される。
Hereinafter, the sample analysis by the surface plasmon sensor having the above structure will be described. Samples used for analysis
11 is placed in contact with the metal film 12. Then, the light beam 13 is irradiated toward the metal film 12 while being deflected by the galvanometer mirror 17 as described above. This metal film 12
The light beam 13 totally reflected at the interface 10a between the prism 10 and the
It is detected by the light detecting means 19.

【0021】光検出手段19の各受光素子毎に出力される
光検出信号Sは、全反射した光ビーム13の強度Iを入射
角θ毎に示すものとなる。そしてこの反射光強度Iと入
射角θとの関係は、概ね図2に示すようなものとなる。
The light detection signal S output from each light receiving element of the light detecting means 19 indicates the intensity I of the totally reflected light beam 13 for each incident angle θ. The relationship between the reflected light intensity I and the incident angle θ is substantially as shown in FIG.

【0022】ここで、ある特定の入射角θSPで入射した
光は、金属膜12と試料11との界面に表面プラズモンを励
起させるので、この光については反射光強度Iが鋭く低
下する。光検出手段19の各受光素子毎に出力される光検
出信号Sを用いれば上記入射角θSPが分かり、このθSP
の値に基づいて試料11中の特定物質を定量分析すること
ができる。その理由は、先に詳しく説明した通りであ
る。
Light incident at a specific incident angle θ SP excites surface plasmons at the interface between the metal film 12 and the sample 11, so that the reflected light intensity I of this light sharply decreases. The incident angle theta SP is understand the use of the light detection signal S output for each light receiving element of the optical detection unit 19, the theta SP
The specific substance in the sample 11 can be quantitatively analyzed based on the value of. The reason is as described in detail above.

【0023】この表面プラズモンセンサーにおいては、
光ビーム13をガルバノミラー17により偏向させて、界面
10aに対する光ビーム13の入射角θを変化させているの
で、光ビーム13の強度はこの入射角θによらず一定に保
たれる。そこで、前述した光強度ばらつきがなくなり、
高い分析精度が得られるようになる。
In this surface plasmon sensor,
The light beam 13 is deflected by the galvanometer mirror 17 to form an interface.
Since the incident angle θ of the light beam 13 with respect to 10a is changed, the intensity of the light beam 13 is kept constant regardless of this incident angle θ. Therefore, the above-mentioned variation in light intensity is eliminated,
High analysis accuracy can be obtained.

【0024】次に、本発明の別の実施形態について説明
する。図3は、本発明の第2の実施形態による表面プラ
ズモンセンサーの側面形状を示すものである。図示され
るようにこの第2の実施形態においては、プリズム10と
金属膜12との界面10aで全反射した光ビーム13を、その
反射角によらず1点に集束させる集束レンズ20が設けら
れている。また光検出手段21としては、小さな受光部を
有する例えばフォトダイオード等が用いられ、この光検
出手段21は集束レンズ20による光ビーム13の集束位置に
受光部が位置するように配されている。
Next, another embodiment of the present invention will be described. FIG. 3 shows a side surface shape of the surface plasmon sensor according to the second embodiment of the present invention. As shown in the figure, in the second embodiment, a focusing lens 20 that focuses the light beam 13 totally reflected at the interface 10a between the prism 10 and the metal film 12 to one point regardless of the reflection angle is provided. ing. As the light detecting means 21, for example, a photodiode having a small light receiving portion is used, and the light detecting means 21 is arranged such that the light receiving portion is located at the focusing position of the light beam 13 by the focusing lens 20.

【0025】この第2の実施形態においては、光検出手
段21から連続的な光検出信号St が出力されるが、該光
検出信号St はガルバノミラー17による光ビーム13の偏
向にともなって、つまり界面10aに対する光ビーム13の
入射角θに応じて、時系列で変化するものとなる。そこ
で、この光検出信号St を用いれば、全反射した光ビー
ム13の強度Iと入射角θとの関係が分かるので、試料11
中の特定物質を定量分析することができる。
In the second embodiment, the photodetection means 21 outputs a continuous photodetection signal St. The photodetection signal St is accompanied by the deflection of the light beam 13 by the galvanometer mirror 17, that is, It changes in time series according to the incident angle θ of the light beam 13 with respect to the interface 10a. Therefore, if this light detection signal St is used, the relationship between the intensity I of the totally reflected light beam 13 and the incident angle θ can be known.
It is possible to quantitatively analyze a specific substance therein.

【0026】なお、前述した第1の実施形態のように、
プリズム10から出射した光ビーム13を一定位置に集束さ
せない構成においては、CCDラインセンサ等の画素分
割されている光検出手段19に代えて、1つの大きな受光
面を有する光電子増倍管等の光検出手段を用いてもよ
い。その場合、光検出手段の光検出信号は、上記光検出
信号St と同様に入射角θに応じて時系列で変化するも
のとなり、該光検出信号に基づいて試料11中の特定物質
を定量分析することができる。
As in the first embodiment described above,
In the structure in which the light beam 13 emitted from the prism 10 is not focused at a fixed position, instead of the light detection means 19 such as a CCD line sensor which is divided into pixels, light from a photomultiplier tube or the like having one large light receiving surface is used. A detection means may be used. In that case, the light detection signal of the light detection means changes in time series in accordance with the incident angle θ, like the light detection signal St, and the specific substance in the sample 11 is quantitatively analyzed based on the light detection signal. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態である表面プラズモンセ
ンサーの側面図
FIG. 1 is a side view of a surface plasmon sensor according to a first embodiment of the present invention.

【図2】表面プラズモンセンサーにおける光ビーム入射
角と、光検出手段による検出光強度との概略関係を示す
グラフ
FIG. 2 is a graph showing a schematic relationship between an incident angle of a light beam in a surface plasmon sensor and a light intensity detected by a light detecting unit.

【図3】本発明の第2実施形態である表面プラズモンセ
ンサーの側面図
FIG. 3 is a side view of a surface plasmon sensor according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 プリズム 10a プリズムと金属膜との界面 11 試料 12 金属膜 13 光ビーム 14 光源 15 コリメーターレンズ 16 集光レンズ 17 ガルバノミラー 18 集光レンズ 19 光検出手段 20 集光レンズ 21 光検出手段 10 Prism 10a Interface between prism and metal film 11 Sample 12 Metal film 13 Light beam 14 Light source 15 Collimator lens 16 Condensing lens 17 Galvano mirror 18 Condensing lens 19 Light detecting means 20 Light collecting lens 21 Light detecting means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プリズムと、 このプリズムの一面に形成されて、試料に接触させられ
る金属膜と、 前記プリズムを通り該プリズムと金属膜との界面に入射
する光ビームを発生させる光源と、 前記プリズムに入射する前の光ビームを、前記界面に対
する入射角が変化する方向に偏向させる光偏向器と、 前記界面で全反射した光ビームの強度を検出する光検出
手段とを備えてなる表面プラズモンセンサー。
1. A prism, a metal film formed on one surface of the prism and brought into contact with a sample, a light source for generating a light beam that passes through the prism and is incident on an interface between the prism and the metal film, A surface plasmon including an optical deflector that deflects a light beam before entering a prism in a direction in which the incident angle with respect to the interface changes, and a light detection unit that detects the intensity of the light beam totally reflected at the interface. sensor.
【請求項2】 前記光検出手段が、前記偏向に応じて前
記界面からの反射角が変化する光ビームを終始受光でき
るように、この反射角の変化方向に沿って延びる受光部
を有するものであることを特徴とする請求項1記載の表
面プラズモンセンサー。
2. The light detecting means has a light receiving portion extending along the direction of change of the reflection angle so that the light beam whose reflection angle from the interface changes according to the deflection can be received all the time. The surface plasmon sensor according to claim 1, wherein the surface plasmon sensor is provided.
【請求項3】 前記偏向に応じて前記界面からの反射角
が変化する光ビームを、その反射角によらず1点に集束
させる集束光学系が設けられ、 前記光検出手段の受光部が前記集束の位置に配されてい
ることを特徴とする請求項1記載の表面プラズモンセン
サー。
3. A focusing optical system for focusing a light beam, whose reflection angle from the interface changes according to the deflection, to one point regardless of the reflection angle, and the light receiving section of the light detecting means includes the focusing section. The surface plasmon sensor according to claim 1, wherein the surface plasmon sensor is arranged at a focusing position.
JP10936796A 1996-04-30 1996-04-30 Surface plasmon sensor Pending JPH09292335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10936796A JPH09292335A (en) 1996-04-30 1996-04-30 Surface plasmon sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10936796A JPH09292335A (en) 1996-04-30 1996-04-30 Surface plasmon sensor

Publications (1)

Publication Number Publication Date
JPH09292335A true JPH09292335A (en) 1997-11-11

Family

ID=14508448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10936796A Pending JPH09292335A (en) 1996-04-30 1996-04-30 Surface plasmon sensor

Country Status (1)

Country Link
JP (1) JPH09292335A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923031A (en) * 1997-02-07 1999-07-13 Fuji Photo Film Co., Ltd. Surface plasmon sensor having a coupler with a refractive index matching liquid
FR2817963A1 (en) * 2000-12-13 2002-06-14 Inst Optique Theorique Et Appl Reflective characterization of variable-thickness layers on prisms e.g. for observation and analysis of biological reactions, employs light beam, prism and total internal reflection
WO2002048689A1 (en) * 2000-12-13 2002-06-20 Institut D'optique Theorique Et Appliquee Method for characterising a surface, and device therefor
JP2013072868A (en) * 2011-09-29 2013-04-22 Micobiomed Co Ltd Surface plasmon resonance sensor system
KR101468065B1 (en) * 2013-12-05 2014-12-02 서울대학교산학협력단 Apparatus for angular dependent measurement of photoluminescence emission spectrum
CN109239021A (en) * 2018-11-07 2019-01-18 河南农业大学 A kind of focusing optical surface plasma resonance detection device of Non-scanning mode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923031A (en) * 1997-02-07 1999-07-13 Fuji Photo Film Co., Ltd. Surface plasmon sensor having a coupler with a refractive index matching liquid
FR2817963A1 (en) * 2000-12-13 2002-06-14 Inst Optique Theorique Et Appl Reflective characterization of variable-thickness layers on prisms e.g. for observation and analysis of biological reactions, employs light beam, prism and total internal reflection
WO2002048689A1 (en) * 2000-12-13 2002-06-20 Institut D'optique Theorique Et Appliquee Method for characterising a surface, and device therefor
US7678584B2 (en) 2000-12-13 2010-03-16 Institut D'optique Theorique Et Appliquee Method for characterizing a surface, and device therefor
JP2013072868A (en) * 2011-09-29 2013-04-22 Micobiomed Co Ltd Surface plasmon resonance sensor system
KR101468065B1 (en) * 2013-12-05 2014-12-02 서울대학교산학협력단 Apparatus for angular dependent measurement of photoluminescence emission spectrum
WO2015084057A1 (en) * 2013-12-05 2015-06-11 서울대학교 산학협력단 Angle-dependent photoluminescence emission spectrum measurement device
CN109239021A (en) * 2018-11-07 2019-01-18 河南农业大学 A kind of focusing optical surface plasma resonance detection device of Non-scanning mode

Similar Documents

Publication Publication Date Title
EP1650547B1 (en) Surface plasmon sensor
US6577396B1 (en) Surface plasmon sensor
US5917607A (en) Surface plasmon sensor for multiple channel analysis
JP4455362B2 (en) Measuring device using total reflection attenuation
US6885454B2 (en) Measuring apparatus
JP2001066248A (en) Surface plasmon sensor
JPH1078390A (en) Surface plasmon sensor
US7187444B2 (en) Measuring method and apparatus using attenuation in total internal reflection
JPH09292334A (en) Surface plasmon sensor
JP3706265B2 (en) Surface plasmon sensor
JPH10239233A (en) Surface plasmon sensor
JP3926409B2 (en) Surface plasmon sensor
JPH09292335A (en) Surface plasmon sensor
JP4043538B2 (en) Surface plasmon sensor
JPH1019769A (en) Surface plasmon sensor
US7075657B2 (en) Surface plasmon resonance measuring apparatus
JPH1137934A (en) Surface plasmon sensor and dark-line locator
JPH1078391A (en) Surface plasmon sensor
JPH03239950A (en) Laser breakdown analyzing apparatus
JP4173628B2 (en) Surface plasmon resonance measuring device
US11733264B2 (en) Cantilever, scanning probe microscope, and measurement method using scanning probe microscope
JP2004085488A (en) Measuring instrument
JPH1078392A (en) Surface plasmon sensor
JP2002195942A (en) Sensor utilizing attenuated total reflection
JP2000266667A (en) Surface plasmon sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A02