WO2015084057A1 - Angle-dependent photoluminescence emission spectrum measurement device - Google Patents

Angle-dependent photoluminescence emission spectrum measurement device Download PDF

Info

Publication number
WO2015084057A1
WO2015084057A1 PCT/KR2014/011785 KR2014011785W WO2015084057A1 WO 2015084057 A1 WO2015084057 A1 WO 2015084057A1 KR 2014011785 W KR2014011785 W KR 2014011785W WO 2015084057 A1 WO2015084057 A1 WO 2015084057A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
cylindrical prism
emission spectrum
excitation light
emission
Prior art date
Application number
PCT/KR2014/011785
Other languages
French (fr)
Korean (ko)
Inventor
김장주
문창기
이정환
김세용
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2015084057A1 publication Critical patent/WO2015084057A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details

Definitions

  • the present invention relates to an angle dependent photoluminescence emission spectrum measuring apparatus.
  • OLEDs Organic light emitting diodes
  • OLEDs are being actively researched due to their high potential to be applied as high efficiency lighting devices.
  • OLEDs based on small molecular emitters doped in matrix materials have shown exceptionally high efficiencies.
  • the outcoupling efficiency Is to achieve a greater improvement. That is, the numerical simulation results show that, although it depends on the OLED structure, the light output efficiency increases 1.5 times in the case of the horizontal dipole orientation compared to the case of the random dipole orientation.
  • the dipole orientation of the small molecule emitters has been found to be an important factor for improving OLED light output efficiency, resulting in the small size used.
  • Materials with a random transition dipole orientation can be treated as overlapping one-third p x -dipole, one-third p y -dipole and one third p z -dipole.
  • a material with horizontally oriented dipoles can be considered to consist of a 1/2 p x -dipole and a 1/2 p y -dipole.
  • analyzing the p-polarized light emission yields information about the presence of vertical dipoles (ie, p z -dipoles). Considering that the dipoles emit the strongest light in the direction perpendicular to their vibration direction, the p z -dipoles emit light mainly at large emission angles.
  • BDASBi: CBP (6 wt%) layer is disposed between two 70 nm thick CBP layers.
  • a 375 nm continuous oscillation laser diode with an incident angle of 45 ° was used as the excitation source.
  • the energy of the CBP is transferred to the emitter so that luminescence from the matrix is suppressed.
  • Measurement of the angle dependent PL spectrum in the range of 0 ° to 90 ° was made using a polarizer to distinguish between s-polarized light and p-polarized light.
  • FIG. 1 is a plan view schematically showing a conventional angle-dependent photoluminescence emission spectrum measurement apparatus.
  • the apparatus of FIG. 1 comprises an excitation light irradiation means 100, a semi-cylindrical prism 200 and an emission light detection means 300.
  • the target sample 900 is located at the center of the flat surface of the semi-cylindrical prism 200.
  • the excitation light 110 is irradiated to the target sample 900 at an incident angle of ⁇ .
  • Incident angle (theta) is 45 degrees normally.
  • the photoluminescent molecules in the target sample 900 emit emitted light (eg, fluorescence or phosphorescence) to the surroundings.
  • the emission light 310 at the specific emission angle ⁇ is detected by the emission light detection means 300.
  • the emission light detecting means 300 detects the intensity of the emission light 310 according to the emission angle ⁇ while moving along the semi-circumference around the semi-cylindrical prism 200. In this case, it is noted that the movement path of the emission light detecting means 300 and the incident path of the excitation light 110 lie on the same plane.
  • FIG. 2 is a typical example of the angle dependent photoluminescence emission spectrum measured with the apparatus of FIG. 1.
  • the photoluminescence emission spectrum in the range of ⁇ 90 ° ⁇ ⁇ ⁇ 0 ° and the photoluminescence emission spectrum in the range of + 90 ° ⁇ ⁇ ⁇ 0 ° should be symmetric with each other.
  • the photoluminescence emission spectrum in the range of + 90 ° ⁇ ⁇ ⁇ 0 ° is ⁇ 90 ° ⁇ ⁇ It has a peak that does not exist in the photoluminescence emission spectrum in the range ⁇ 0 °.
  • the improved angle dependency such that the photoluminescence emission spectrum in the range -90 ° ⁇ ⁇ ⁇ 0 ° and the photoluminescence emission spectrum in the range + 90 ° ⁇ ⁇ ⁇ 0 °, have improved symmetry.
  • An optical luminescence emission spectrum measuring apparatus is provided.
  • a semi-cylindrical prism having a semi-circumferential surface and a flat surface
  • An emission passing through the semi-cylindrical prism, while traveling along a travel path lying on one plane perpendicular to the longitudinal axis of the semi-cylindrical prism and having a semicircumference shape surrounding the semi-circumferential surface of the semi-cylindrical prism Emission light detecting means for detecting light;
  • the incident path of the excitation light is located outside the plane on which the movement path of the emission light detecting means lies.
  • the incident path of the excitation light and the moving path of the emission light detecting means lie on different planes. Therefore, even if the excitation light passes through the target sample and the semi-cylindrical prism, it does not reach the emission light detecting means. Therefore, in the angle dependent photoluminescence emission spectrum measured by the apparatus of the present invention, noise due to excitation light does not interfere. Therefore, in the angle dependent photoluminescence emission spectrum measured by the apparatus of the present invention, the photoluminescence emission spectrum in the range of -90 ° ⁇ 0 ° and in the range of + 90 ° ⁇ 0 ° The photoluminescence emission spectrum has significantly improved symmetry.
  • FIG. 1 is a plan view schematically showing a conventional angle-dependent photoluminescence emission spectrum measurement apparatus.
  • FIG. 2 is a typical example of the angle dependent photoluminescence emission spectrum measured with the apparatus of FIG. 1.
  • FIG 3 schematically shows an embodiment of the angle dependent photoluminescence emission spectrum measurement apparatus of the present invention.
  • FIG. 5 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Example 1.
  • FIG. 6 shows overlapping angle dependent photoluminescence emission spectra measured on Day 1, 2 weeks after, and 3 weeks after the first day for the same subject sample in Example 1.
  • FIG. 7 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Comparative Example 1.
  • FIG. 8 shows overlapping angle dependent photoluminescence emission spectra measured on the first day, two weeks after the first day, and three weeks after the first day for the same subject sample in Comparative Example 1.
  • FIG. 3 schematically shows an embodiment of the angle dependent photoluminescence emission spectrum measurement apparatus of the present invention.
  • 3A is a plan view of one embodiment of the device of the present invention
  • FIG. 3B is a side view of one embodiment of the device of the present invention.
  • FIG. 3 comprises a semi-cylindrical prism 200, an excitation light irradiation means 100 and an emission light detection means 300.
  • the semi-cylindrical prism 200 has a semi-circumferential surface 210 and a flat surface 220. Naturally, the central axis of the semi-cylindrical prism 200 lies on the flat surface 220 of the semi-cylindrical prism 200.
  • the excitation light irradiation means 100 is arranged to irradiate the excitation light 110 toward the flat surface 220 of the semi-cylindrical prism 200. More specifically, for example, the excitation light 110 may be irradiated toward a point on the central axis of the semi-cylindrical prism 200.
  • the object sample 900 is placed on the point on the central axis of the semi-cylindrical prism 200 to which the excitation light 110 is irradiated, whereby the excitation light 110 is applied to the object sample 900. You will join.
  • the point where the excitation light 110 is incident on the target sample 900 is called the excitation light spot 130.
  • the photoluminescent molecules positioned in the excitation light spot 130 are stimulated by the excitation light 110 to emit light emitted to the surroundings (for example, Fluorescence or phosphorescence) 310.
  • the emission light detecting means 300 detects the emission light 310 passing through the semi-cylindrical prism.
  • the emission light detecting means 300 detects the intensity of the emission light 310 according to the emission angle ⁇ while moving along the movement path 330.
  • the movement path 330 may have a semicircumference shape surrounding the semicircular surface 210 of the semicylindrical prism 200.
  • the center of the semi-circular movement path 330 may be an excitation light spot 130. Accordingly, the semi-circular movement path 330 and the semi-circular surface 210 of the semi-cylindrical prism 200 may form a concentric circle.
  • the movement path 330 of the emission light detecting means 300 lies on one plane 330 perpendicular to the longitudinal axis (ie, the central axis) of the semi-cylindrical prism 200.
  • the plane 330 on which the movement path 330 lies passes through the excitation light spot 130.
  • the movement path 330 may be formed, for example, by the emission light detecting means 300 moving while the semi-cylindrical prism 200 is stationary.
  • the movement path 330 is a semi-cylindrical prism 200 in the state in which the emission light detection means 300 is stopped, the longitudinal axis (ie, the central axis) of the semi-cylindrical prism 200 It may be formed by rotating about the center.
  • the movement path 330 may include a semi-cylindrical prism 200 and a longitudinal axis (ie, a central axis) of the semi-cylindrical prism 200 while the emission light detecting means 300 moves. It may be formed by rotating about.
  • the angular velocity at which the emission light detecting means 300 moves along the movement path 330 is, for example, about 0.1 ° / sec to about 10 ° / sec, preferably about 1 ° / sec to about 3 ° / sec. Most preferably about 2 ° / sec. If the angular velocity at which the emission light detecting means 300 moves along the movement path 330 is too low, the measurement time is long, and if it is too high, the sample may fall during the measurement.
  • the distance between the emission light detecting means 300 and the excitation light spot 130 is, for example, about 20 cm to about 200 cm, preferably Preferably about 50 cm to about 150 cm, more preferably about 80 cm to about 120 cm, most preferably about 100 cm. If the distance between the emission light detecting means 300 and the excitation light spot 130 is too small, there may be interference of the emission light signal. If the distance between the emission light detecting means 300 and the excitation light spot 130 is too large, the detected emission light signal may not be large enough.
  • the emission angle ⁇ means the angle between the “vertical line with respect to the flat surface 220” and the emission light path 310 extending through the excitation light spot 130 toward the semicircular surface 210.
  • the emission angle ⁇ in the fourth quadrant has a range of ⁇ 90 ° to 0 °
  • the emission angle ⁇ in the third quadrant has a range of + 90 ° to 0 °. Defined as, but vice versa.
  • the emission light detecting means 300 may move in a range of ⁇ 90 ° ⁇ ⁇ ⁇ + 90 °.
  • the emission light detecting means 300 may move in the range of ⁇ 90 ° ⁇ ⁇ ⁇ 0 °.
  • the emission light detecting means 300 may move in the range of 0 ° ⁇ ⁇ ⁇ + 90 °.
  • the emission light detecting means 300 may move only in the range of -90 ° ⁇ ⁇ ⁇ 0 °, or It may move only in the range of 0 ° ⁇ ⁇ ⁇ + 90 °.
  • the incidence path 110 of the excitation light is a movement path of the emission light detecting means 300.
  • the portion 130 of the excitation light passing through the object sample 900 and the semi-cylindrical prism 200 is also located outside the plane 330, whereby the portion 130 of the excitation light is emitted light detection means 300. ) Will not enter.
  • the measured photoluminescence emission spectrum does not include noise by the portion 130 of the excitation light.
  • the horizontal component ⁇ H of the angle of incidence of the excitation light 110 is the vertical projection line 110 H of the excitation light incident path 110 with respect to the plane 330 on which the emission light detecting means lies, and the excitation light spot. It is defined as the angle between "vertical line 230 with respect to the flat surface of the semi-cylindrical prism" passing through 130.
  • the vertical component ⁇ P of the incident angle of the excitation light 110 is the vertical projection line 110 H of the excitation light incident path 110 with respect to the plane 330 on which the emission light detecting means lies, and the excitation light incident It is defined as the angle between the paths 110.
  • the excitation light incidence path 110 is located outside the plane 330 in which the movement path of the emission light detection means lies, except that the incidence light path 110 and the plane 330 of the excitation light intersect at the excitation light spot 130. ), It means that the vertical component ⁇ P of the incident angle of the excitation light 110 is greater than 0 °. In this case, the vertical component ⁇ P of the incident angle of the excitation light 110 may be greater than 0 ° and less than 90 °.
  • the horizontal component ⁇ H of the incident angle of the excitation light 110 may be greater than or equal to 0 ° and less than 90 °.
  • the vertical component ⁇ P of the incident angle of the excitation light 110 may be about 1 ° to about 89 °. More preferably, the vertical component ⁇ P of the incident angle of the excitation light 110 may be about 15 ° to about 75 °. Even more preferably, the vertical component ⁇ P of the incident angle of the excitation light 110 may be about 30 ° to about 45 °. If the vertical component ⁇ P of the incident angle of the excitation light 110 is too small, the excitation light can be detected directly at the detector. If the vertical component ⁇ P of the incident angle of the excitation light 110 is too large, the excitation light spot may be excessively large.
  • the horizontal component ⁇ H of the incident angle of the excitation light 110 may be about 0 ° to about 15 °. More preferably, the horizontal component ⁇ H of the incident angle of the excitation light 110 may be about 0 ° to about 3 °. Even more preferably, the horizontal component ⁇ H of the incident angle of the excitation light 110 may be about 0 °. Most preferably, the horizontal component ⁇ H of the incident angle of the excitation light 110 may be 0 °. If the horizontal component ⁇ H of the angle of incidence of the excitation light 110 deviates excessively from 0 °, it may be difficult to obtain a symmetric emission spectrum.
  • the excitation light irradiated from the excitation light irradiation means may have any wavelength that the organic material or the light emitter can absorb.
  • the excitation light irradiated from the excitation light irradiation means may be, for example, ultraviolet rays or visible light.
  • the ultraviolet light may have a wavelength of, for example, about 325 nm to about 405 nm, more preferably about 325 nm to about 350 nm.
  • Visible light may have a wavelength of, for example, about 405 nm to about 520 nm.
  • the excitation light irradiation means may be, for example, a laser generating device.
  • the excitation light irradiation means may be, for example, an optical waveguide optically connected to the laser generating device.
  • the optical waveguide may be, for example, an optical fiber.
  • the semi-cylindrical prism can be, for example, fused silica.
  • the radius of the semi-cylindrical prism can be, for example, about 100 mm to about 200 mm.
  • the semicylindrical prism can be, for example, about 30 mm to about 40 mm in length.
  • the emission light detecting means may be an optical sensor, for example.
  • the light sensor may be, for example, a photomultiplier tube.
  • the apparatus of the present invention may further comprise a polarizer positioned between the emission light detecting means and the semi-cylindrical prism.
  • the polarizer can be, for example, an s-polarizer or a p-polarizer.
  • the s-polarizer may serve to transmit only the s-wave of emitted light.
  • the p-polarizer may serve to transmit only p-waves of emitted light.
  • the polarizer can be coupled to the emission light detection means such that it can move with the emission light detection means.
  • the weight ratio of CBP and Ir (ppy) 2 acac was 92 wt%: 8 wt% until the thickness was 30 nm, and CBP: Ir A (ppy) 2 acac mixed layer was deposited on the fused silica substrate. Then, CBP: Ir (ppy) 2 acac mixed layer of the organic material in order to prevent the reaction with the oxygen in the air, CBP: the Ir (ppy) 2 acac mixed layer was sealed with glass pool in a nitrogen atmosphere.
  • CBP 4,4'-Bis (N-carbazolyl) -1,1'-biphenyl.
  • Ir (ppy) 2 acac bis (2-phenylpyridine) iridium (III) acetylacetonate.
  • the measuring device used in Example 1 had the structure as shown in FIG. 3, and specific specifications are as follows.
  • Excitation light source He-Cd laser, Melles Griot
  • Semi-cylindrical prism fused silica, diameter 100mm, length 30mm,
  • -Emission light detection means photomultiplier tube, Acton
  • the distance from the sample to the emission light detection means (or the radius of the travel path of the emission light detection means): 900 mm
  • An excitation light source and a semi-cylindrical prism were installed on the rotating plate.
  • the rotating plate was rotated about the longitudinal axis of the semi-cylindrical prism.
  • the rotational angular velocity of the rotating plate was 2 ° / sec.
  • the emission light detecting means was fixed outside the rotating plate.
  • the sample was attached to the center of the flat surface of the semi-cylindrical prism. At this time, the fused silica substrate layer and the flat surface of the semi-cylindrical prism were in contact.
  • the emission light intensity signal output from the emission light detection means was transmitted to the recording apparatus.
  • the recording device outputs angle dependent photoluminescence emission spectra.
  • FIG. 5 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Example 1.
  • FIG. 5A is a spectrum spread over the entire emission angle ⁇ range of ⁇ 90 ° to + 90 °.
  • FIG. 5 (b) shows the spectrum of the emission angle ( ⁇ ) in the range of ⁇ 90 ° to 0 ° and the spectrum of the emission angle ( ⁇ ) in the range of + 90 ° to 0 °.
  • the angle dependent photoluminescence emission spectrum measured in Example 1 showed very good symmetry and did not include any noise due to excitation light.
  • FIG. 6 shows overlapping angle dependent photoluminescence emission spectra measured on Day 1, 2 weeks after, and 3 weeks after the first day for the same subject sample in Example 1.
  • FIG. 8 shows overlapping angle dependent photoluminescence emission spectra measured on the first day, two weeks after the first day, and three weeks after the first day for the same subject sample in Comparative Example 1.
  • FIG. 8 the spectra measured on different days for the same sample were inconsistent. From the results in FIGS. 7 and 8, it can be seen that the reproducibility of the apparatus of the comparative example is very poor.
  • the molecular dipole orientation of the small molecular emitters used can be measured accurately and reproducibly.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention provides an improved angle-dependent photoluminescence emission spectrum measurement device which enables a photoluminescence emission spectrum in the range of -90° ≤ φ ≤0° and a photoluminescence emission spectrum in the range of + 90° ≤ φ ≤0° to have enhanced symmetry. The angle-dependent photoluminescence emission spectrum measurement device provided by the present invention comprises: a semi-cylindrical prism having a semi-circumferential surface and a flat surface; an excitation light illumination means illuminating an excitation light toward the flat surface of the semi-cylindrical prism; and an emitted light detection means that is placed on one plane vertical to the longitudinal axis of the semi-cylindrical prism and detecting the emitted light passing through the semi-cylindrical prism while moving along the moving path having a semi-circumference shape surrounding the semi-circumferential surface of the semi-cylindrical prism, wherein the incident path of the excitation light is located outside the plane on which the moving path of the emitted light detection means is placed.

Description

각도 의존성 광루미네선스 방출 스펙트럼 측정 장치Angle dependent photoluminescence emission spectrum measuring device
본 발명은 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치에 관한 것이다.The present invention relates to an angle dependent photoluminescence emission spectrum measuring apparatus.
유기 발광 다이오드(OLED)는, 고효율 조명 소자로 적용될 수 있는 높은 가능성으로 인하여 활발히 연구되고 있다. 특히, 매트릭스 재료 내에 도핑된 소형 분자 에미터(small molecular emitter)에 기초한 OLED는 유별나게 높은 효율을 보이고 있다. 주목할 점은, 전이 다이폴 모멘트(transition dipole moment)가 수평 배향되어 있는 분자 재료(즉, 기재에 대하여 수평으로 놓인 방출 다이폴(emissive dipoles)을 갖는 분자 재료)를 사용함으로써, 광출력 효율(outcoupling efficiency)의 더 큰 향상을 달성할 수 있다는 점이다. 즉, 수치 모사 결과에 따르면, OLED 구조에 따라 달라지기는 하지만, 수평 다이폴 배향의 경우, 광출력 효율이, 랜덤 다이폴 배향의 경우에 비하여, 1.5 배 증가하는 것으로 나타난다.Organic light emitting diodes (OLEDs) are being actively researched due to their high potential to be applied as high efficiency lighting devices. In particular, OLEDs based on small molecular emitters doped in matrix materials have shown exceptionally high efficiencies. Note that by using a molecular material with a transition dipole moment horizontally oriented (i.e., a molecular material with emissive dipoles lying horizontally with respect to the substrate), the outcoupling efficiency Is to achieve a greater improvement. That is, the numerical simulation results show that, although it depends on the OLED structure, the light output efficiency increases 1.5 times in the case of the horizontal dipole orientation compared to the case of the random dipole orientation.
이와 같이, 매트릭스 재료 내에 도핑된 소형 분자 에미터(small molecular emitter)에 기초한 OLED에 있어서, 소형 분자 에미터의 다이폴 배향율이 OLED 광출력 효율 향상을 위한 중요한 인자인 것으로 확인됨에 따라, 사용되는 소형 분자 에미터의 분자 다이폴 배향율을 정확하고 재현성 있게 측정할 수 있는 방법 역시 요구되고 있다.As such, for OLEDs based on small molecular emitters doped in a matrix material, the dipole orientation of the small molecule emitters has been found to be an important factor for improving OLED light output efficiency, resulting in the small size used. There is also a need for a method capable of accurately and reproducibly measuring the molecular dipole orientation of molecular emitters.
예를 들어, 『Jorg Frischeisen, et. al., "Determination of molecular dipole orientation in doped fluorescent organicthin films by photoluminescence measurements," APPLIED PHYSICS LETTERS 96, 073302 (2010)』은, "특정 층상 구조체의 광루미네선스 방출 스펙트럼의 각도 의존성 측정" 및 "수치 모사와의 비교"에 기초한 "분자의 다이폴 배향율 측정 절차"를 개시하고 있다.For example, Jorg Frischeisen, et. al., "Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements," APPLIED PHYSICS LETTERS 96, 073302 (2010), "Measurement of angular dependence of photoluminescence emission spectra of specific layered structures" and the numerical values. "Procedure for Measuring Dipole Orientation of Molecules" based on "Comparison with Simulation".
이 문헌에서는, "분자의 다이폴 배향율 측정 절차"를, 4,4'-비스(N-카바졸)-비페닐(CBP) 매트릭스 중의 청색 에미터 4,4'-비스[4-(디페닐아미노)스티릴]비페닐 (BDASBi)에 적용하였다. In this document, the "procedure for measuring dipole orientation of molecules" is described in blue emitter 4,4'-bis [4- (diphenyl) in 4,4'-bis (N-carbazole) -biphenyl (CBP) matrix. Amino) styryl] biphenyl (BDASBi).
랜덤 전이 다이폴 배향(random transition dipole orientation)을 갖는 물질은 1/3의 px-다이폴, 1/3의 py-다이폴 및 1/3의 pz-다이폴이 중첩되어 있는 것으로 취급할 수 있다. 반면에, 수평 배향된 다이폴들을 갖는 물질은, 1/2의 px-다이폴 및 1/2의 py-다이폴로 이루어지는 것으로 간주될 수 있다. 일반성의 손실 없이, x-z 평면 내로의 발광을 고려하면, py-다이폴은 s-편광만을 발광하고, 반면에, px-다이폴 및 pz-다이폴은 p-편광 발광을 담당한다. 결과적으로, p-편광 발광을 분석하면, 수직 다이폴들(즉, pz-다이폴들)의 존재에 관한 정보를 얻을 수 있다. 다이폴들이 그들의 진동 방향에 수직인 방향으로 가장 강하게 발광한다는 점을 고려하면, pz-다이폴들은 주로 큰 발광각도에서 발광하게 된다. Materials with a random transition dipole orientation can be treated as overlapping one-third p x -dipole, one-third p y -dipole and one third p z -dipole. On the other hand, a material with horizontally oriented dipoles can be considered to consist of a 1/2 p x -dipole and a 1/2 p y -dipole. Without loss of generality, considering light emission into the xz plane, the p y -dipole only emits s-polarized light, while the p x -dipole and p z -dipole are responsible for p-polarized light emission. As a result, analyzing the p-polarized light emission yields information about the presence of vertical dipoles (ie, p z -dipoles). Considering that the dipoles emit the strongest light in the direction perpendicular to their vibration direction, the p z -dipoles emit light mainly at large emission angles.
이 문헌에서 사용한 층상 구조 샘플에 있어서는, 10 nm 두께의 BDASBi:CBP(6 wt%) 층이, 두 개의 70 nm 두께 CBP 층들 사이에 배치되어 있다. 상기 문헌에서는, 입사각이 45°로 설정된 375 nm 연속발진 레이저 다이오드가 여기원으로 사용되었다. CBP의 에너지는 에미터로 전달되므로 매트릭스로부터의 발광은 억제된다. 0° 내지 90°범위의 각도 의존성 PL 스펙트럼의 측정은, 광섬유 분광기와 s-편광 및 p-편광을 구별하기 위한 편광기를 사용하여 이루어졌다. In the layered sample used in this document, a 10 nm thick BDASBi: CBP (6 wt%) layer is disposed between two 70 nm thick CBP layers. In this document, a 375 nm continuous oscillation laser diode with an incident angle of 45 ° was used as the excitation source. The energy of the CBP is transferred to the emitter so that luminescence from the matrix is suppressed. Measurement of the angle dependent PL spectrum in the range of 0 ° to 90 ° was made using a polarizer to distinguish between s-polarized light and p-polarized light.
이 문헌에서 사용한 수치 모사는, "Chance, Prock, 및 Silbey"에 의하여 개발되고("R. R. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744(1974)" 참조), 나중에 "Barnes"14에 의하여 확장된 다이폴 모델에 기초한다("W. L. Barnes, J. Mod. Opt. 45, 661(1998)" 참조). 자세한 설명은 "S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, J. Appl. Phys. 104, 123109(2008)"에서 발견할 수 있다. 측정된 커브는, 랜덤 다이폴 배향 및 전적적으로 수평인 다이폴 배향에 대한 두 개의 모사된 커브들 사이에 놓인다. 이 문헌에서는, 수직 다이폴로부터의 발광이 가장 현저한 큰 발광 각도에 대한 측정치와 모사치 사이의 양호한 일치를, 랜덤 배향 다이폴 및 수평 배향 다이폴에 대한 모사치들에 각각 0.26 및 0.74의 가중치를 줌으로써 얻었다. 이는 총 분율로서 91%의 수평 배향된 px- 및 py-다이폴 및 9%의 수직 pz-다이폴에 해당하는 양이다. 그에 따라, 이 문헌은 CBP 매트릭스 중의 BDASBi 전이 다이폴 모멘트는 우세한 수평 배향을 갖는 것으로 보고하였다.Numerical simulations used in this document are developed by "Chance, Prock, and Silbey" (see "RR Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60, 2744 (1974)"), It is later based on the dipole model extended by "Barnes" 14 (see "WL Barnes, J. Mod. Opt. 45, 661 (1998)"). A detailed description can be found in S. Nowy, BC Krummacher, J. Frischeisen, NA Reinke, and W. Brutting, J. Appl. Phys. 104, 123109 (2008). The measured curve lies between two simulated curves for a random dipole orientation and an entirely horizontal dipole orientation. In this document, a good agreement between the measurements and simulations for large emission angles where emission from the vertical dipoles is most pronounced was obtained by weighting the simulation values for randomly oriented dipoles and horizontally oriented dipoles of 0.26 and 0.74, respectively. This is the amount corresponding to 91% horizontally oriented px- and py-dipoles and 9% vertical pz-dipole as total fraction. As such, this document reported that the BDASBi transition dipole moment in the CBP matrix had a predominant horizontal orientation.
이와 같은 "수치 모사와의 비교"에 기초한 "분자의 다이폴 배향율 측정 절차"에 있어서, 대상 시료에 대한 각도 의존성 광루미네선스 방출 스펙트럼을 재현성 있게 측정하는 것이 매우 중요하다.In the "procedure for measuring the dipole orientation of molecules" based on this "comparison with numerical simulation", it is very important to reproducibly measure the angle dependent photoluminescence emission spectrum for the target sample.
도 1은, 종래의 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치를 도식적으로 보여주는 평면도이다. 도 1의 장치는 여기광 조사 수단(100), 반원통형 프리즘(200) 및 방출광 검출 수단(300)을 포함한다. 대상 시료(900)는 반원통형 프리즘(200)의 평탄면의 중심부에 위치한다. 여기광(exciting light) 조사 수단(100)으로부터 여기광(110)이 θ의 입사각으로 대상 시료(900)에 조사된다. 입사각 θ는 통상적으로 45°이다. 여기광(110)에 의하여, 대상 시료(900) 내의 광발광 분자는 주변으로 방출광(emitted light)(예를 들어, 형광 또는 인광)을 발산한다. 특정 방출 각도(φ)에서의 방출광(310)은 방출광 검출 수단(300)에 의하여 검출된다. 방출광 검출 수단(300)은 반원통형 프리즘(200) 주변의 반원주를 따라 이동하면서, 방출 각도(φ)에 따른 방출광(310)의 세기를 검출한다. 이때, 주목할 점은, 방출광 검출 수단(300)의 이동 경로와 여기광(110)의 입사 경로가 동일 평면에 놓인다는 것이다.1 is a plan view schematically showing a conventional angle-dependent photoluminescence emission spectrum measurement apparatus. The apparatus of FIG. 1 comprises an excitation light irradiation means 100, a semi-cylindrical prism 200 and an emission light detection means 300. The target sample 900 is located at the center of the flat surface of the semi-cylindrical prism 200. From the excitation light irradiation means 100, the excitation light 110 is irradiated to the target sample 900 at an incident angle of θ. Incident angle (theta) is 45 degrees normally. By the excitation light 110, the photoluminescent molecules in the target sample 900 emit emitted light (eg, fluorescence or phosphorescence) to the surroundings. The emission light 310 at the specific emission angle φ is detected by the emission light detection means 300. The emission light detecting means 300 detects the intensity of the emission light 310 according to the emission angle φ while moving along the semi-circumference around the semi-cylindrical prism 200. In this case, it is noted that the movement path of the emission light detecting means 300 and the incident path of the excitation light 110 lie on the same plane.
도 2는, 도 1의 장치로 측정된 각도 의존성 광루미네선스 방출 스펙트럼의 전형적인 예이다. 장치의 원리에 따르면, -90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼과 +90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼은 서로 대칭을 이루어야한다. 그러나, 본 발명에서 밝혀진 바에 따르면, 종래의 장치로 측정된 각도 의존성 광루미네선스 방출 스펙트럼에 있어서는, +90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼이, -90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼에서는 존재하지 않는 피크를 갖는다. 즉, 도 2의 각도 의존성 광루미네선스 방출 스펙트럼에 있어서는, φ = 약 24°위치에서 특이한 피크가 나타나 있다. 본 발명의 발명자들이 프레넬(Fresnel)의 굴절법칙의 적용을 통하여 도출한 바에 따르면, 이러한 특이 피크의 위치(즉, φ = 약 24°)는 입사된 여기광(110)의 굴절각과 같았다. 즉, 입사된 여기광(110)의 일부가 대상 시료(900) 및 반원통형 프리즘(200)을 통과한 후, φ = 약 24°에서의 방출광(310)과 함께, 방출광 검출 수단(300)에 도달한 것이다. FIG. 2 is a typical example of the angle dependent photoluminescence emission spectrum measured with the apparatus of FIG. 1. According to the principle of the device, the photoluminescence emission spectrum in the range of −90 ° ≦ φ ≦ 0 ° and the photoluminescence emission spectrum in the range of + 90 ° ≦ φ ≦ 0 ° should be symmetric with each other. However, according to the present invention, in the angle dependent photoluminescence emission spectrum measured by the conventional apparatus, the photoluminescence emission spectrum in the range of + 90 ° ≦ φ ≦ 0 ° is −90 ° ≦ φ It has a peak that does not exist in the photoluminescence emission spectrum in the range ≦ 0 °. That is, in the angle dependent photoluminescence emission spectrum of FIG. 2, a peculiar peak is shown at a position of φ = about 24 °. According to the inventors of the present invention through the application of Fresnel's law of refraction, the position of this singular peak (ie, φ = about 24 °) was equal to the angle of refraction of the incident excitation light 110. That is, after a part of the incident excitation light 110 has passed through the target sample 900 and the semi-cylindrical prism 200, together with the emission light 310 at φ = about 24 °, the emission light detection means 300 ) Is reached.
본 발명에서는, -90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼과 +90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼이 향상된 대칭성을 갖도록 하는, 개선된 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치를 제공하고자 한다.In the present invention, the improved angle dependency, such that the photoluminescence emission spectrum in the range -90 ° ≦ φ ≦ 0 ° and the photoluminescence emission spectrum in the range + 90 ° ≦ φ ≦ 0 °, have improved symmetry. An optical luminescence emission spectrum measuring apparatus is provided.
본 발명에서 제공하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치는,An angle dependent photoluminescence emission spectrum measuring apparatus provided by the present invention,
반원주면과 평탄면을 갖는 반원통형 프리즘;A semi-cylindrical prism having a semi-circumferential surface and a flat surface;
상기 반원통형 프리즘의 상기 평탄면을 향하여 여기광을 조사하는 여기광 조사 수단; 및 Excitation light irradiation means for irradiating excitation light toward the flat surface of the semi-cylindrical prism; And
상기 반원통형 프리즘의 길이방향 축에 수직인 일 평면상에 놓이며 또한 상기 반원통형 프리즘의 반원주면을 둘러싸는 반원주(semicircumference) 형태를 갖는 이동 경로를 따라 이동하면서, 상기 반원통형 프리즘을 통과하는 방출광을 검출하는 방출광 검출 수단;을 포함하며,An emission passing through the semi-cylindrical prism, while traveling along a travel path lying on one plane perpendicular to the longitudinal axis of the semi-cylindrical prism and having a semicircumference shape surrounding the semi-circumferential surface of the semi-cylindrical prism Emission light detecting means for detecting light;
상기 여기광의 입사 경로가, 상기 방출광 검출 수단의 이동 경로가 놓이는 평면 밖에 위치한다.The incident path of the excitation light is located outside the plane on which the movement path of the emission light detecting means lies.
본 발명의 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치에 있어서는, 여기광의 입사 경로와 방출광 검출 수단의 이동 경로가 서로 다른 평면에 놓인다. 그에 따라, 여기광이 대상 시료 및 반원통형 프리즘을 통과하더라도, 방출광 검출 수단에 도달하지 않게 된다. 그에 따라, 본 발명의 장치로 측정된 각도 의존성 광루미네선스 방출 스펙트럼에 있어서는, 여기광에 의한 노이즈가 개입되지 않게 된다. 그에 따라, 본 발명의 장치로 측정된 각도 의존성 광루미네선스 방출 스펙트럼에 있어서는, -90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼과 +90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼이 현저하게 향상된 대칭성을 갖는다. 본 발명의 장치로 측정된 각도 의존성 광루미네선스 방출 스펙트럼에 있어서는, -90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼과 +90°≤ φ ≤ 0°범위에서의 광루미네선스 방출 스펙트럼 중 어느 것이든 수치 모사 결과와 비교될 수 있으므로, 본 발명의 장치는 향상된 재현성을 제공할 수 있다. 또한, 본 발명에서 밝혀진 바에 따르면, 더욱 놀랍게도, 본 발명의 장치에 있어서는, 측정 횟수에 따른 재현성이 현저하게 향상된다는 점이다. 즉, 동일 시료에 대하여, 각도 의존성 광루미네선스 방출 스펙트럼을 여러 번 반복하여 측정할 경우에, 거의 동일한 특성의 각도 의존성 광루미네선스 방출 스펙트럼이 반복하여 재현될 수 있다. 그에 따라, 본 발명의 장치를 사용함으로써, "수치 모사와의 비교"에 기초한 "분자의 다이폴 배향율 측정 절차"의 신뢰성을 대폭 향상시킬 수 있다.In the angle-dependent photoluminescence emission spectrum measuring apparatus of the present invention, the incident path of the excitation light and the moving path of the emission light detecting means lie on different planes. Therefore, even if the excitation light passes through the target sample and the semi-cylindrical prism, it does not reach the emission light detecting means. Therefore, in the angle dependent photoluminescence emission spectrum measured by the apparatus of the present invention, noise due to excitation light does not interfere. Therefore, in the angle dependent photoluminescence emission spectrum measured by the apparatus of the present invention, the photoluminescence emission spectrum in the range of -90 ° ≤φ≤0 ° and in the range of + 90 ° ≤φ≤0 ° The photoluminescence emission spectrum has significantly improved symmetry. In the angle dependent photoluminescence emission spectrum measured by the apparatus of the present invention, the photoluminescence emission spectrum in the range of -90 ° ≤φ≤0 ° and the photoluminescence in the range of + 90 ° ≤φ≤0 ° Since any of the suns emission spectra can be compared with the numerical simulation results, the apparatus of the present invention can provide improved reproducibility. Further, it has been found in the present invention that, more surprisingly, in the apparatus of the present invention, the reproducibility according to the number of measurements is remarkably improved. That is, when the angle dependent photoluminescence emission spectrum is repeatedly measured for the same sample, the angle dependent photoluminescence emission spectrum of almost the same characteristic can be repeatedly reproduced. Therefore, by using the apparatus of the present invention, the reliability of the "molecular dipole orientation ratio measurement procedure" based on "compare with numerical simulation" can be greatly improved.
도 1은, 종래의 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치를 도식적으로 보여주는 평면도이다.1 is a plan view schematically showing a conventional angle-dependent photoluminescence emission spectrum measurement apparatus.
도 2는, 도 1의 장치로 측정된 각도 의존성 광루미네선스 방출 스펙트럼의 전형적인 예이다.FIG. 2 is a typical example of the angle dependent photoluminescence emission spectrum measured with the apparatus of FIG. 1.
도 3은, 본 발명의 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치의 일 구현예를 도식적으로 나타낸다.3 schematically shows an embodiment of the angle dependent photoluminescence emission spectrum measurement apparatus of the present invention.
도 4는 본 발명에 있어서의 여기광의 입사각에 대한 정의를 나타낸다.4 shows the definition of the incident angle of the excitation light in the present invention.
도 5는 실시예 1에서 첫 번째 날에 대상 시료에 대하여 측정된 각도 의존성 광루미네선스 방출 스펙트럼이다.5 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Example 1. FIG.
도 6은, 실시예 1에서 동일 대상 시료에 대하여 첫 번째 날, 첫 번째 날로부터 2 주후에, 그리고, 첫 번째 날로부터 3주 후에 측정된 각도 의존성 광루미네선스 방출 스펙트럼들을 중첩하여 보여준다.FIG. 6 shows overlapping angle dependent photoluminescence emission spectra measured on Day 1, 2 weeks after, and 3 weeks after the first day for the same subject sample in Example 1. FIG.
도 7은 비교예 1에서 첫 번째 날에 대상 시료에 대하여 측정된 각도 의존성 광루미네선스 방출 스펙트럼이다.FIG. 7 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Comparative Example 1. FIG.
도 8은, 비교예 1에서 동일 대상 시료에 대하여 첫 번째 날, 첫 번째 날로부터 2 주후에, 그리고, 첫 번째 날로부터 3주 후에 측정된 각도 의존성 광루미네선스 방출 스펙트럼들을 중첩하여 보여준다.FIG. 8 shows overlapping angle dependent photoluminescence emission spectra measured on the first day, two weeks after the first day, and three weeks after the first day for the same subject sample in Comparative Example 1. FIG.
도 3은, 본 발명의 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치의 일 구현예를 도식적으로 나타낸다. 도 3의 (a)는 본 발명의 장치의 일 구현예의 평면도이고, 도 3의 (b)는 본 발명의 장치의 일 구현예의 측면도이다.3 schematically shows an embodiment of the angle dependent photoluminescence emission spectrum measurement apparatus of the present invention. 3A is a plan view of one embodiment of the device of the present invention, and FIG. 3B is a side view of one embodiment of the device of the present invention.
도 3의 구현예는 반원통형 프리즘(200), 여기광 조사 수단(100) 및 방출광 검출 수단(300)을 포함한다. The embodiment of FIG. 3 comprises a semi-cylindrical prism 200, an excitation light irradiation means 100 and an emission light detection means 300.
반원통형 프리즘(200)은 반원주면(210)과 평탄면(220)을 갖는다. 당연히, 반원통형 프리즘(200)의 중심축은 반원통형 프리즘(200)의 평탄면(220) 상에 놓인다.The semi-cylindrical prism 200 has a semi-circumferential surface 210 and a flat surface 220. Naturally, the central axis of the semi-cylindrical prism 200 lies on the flat surface 220 of the semi-cylindrical prism 200.
여기광 조사 수단(100)은, 반원통형 프리즘(200)의 평탄면(220)을 향하여 여기광(110)을 조사하도록 배열된다. 더욱 구체적인 예를 들면, 여기광(110)은 반원통형 프리즘(200)의 중심축 상의 일 지점을 향하여 조사될 수 있다. 측정시에, 대상시료(900)는, 여기광(110)이 조사되는 반원통형 프리즘(200)의 중심축 상의 상기 지점 위에 놓이게 되며, 그에 따라, 대상시료(900)에 여기광(110)이 입사하게 된다. 대상시료(900)에 여기광(110)이 입사하는 지점을 여기광 스폿(130)이라 부른다. 대상 시료(900) 내에 광발광 분자가 함유되어 있는 경우, 여기광 스폿(130)에 위치하는 광발광 분자는 여기광(110)에 의하여 자극되어 주변으로 방출광(emitted light)(예를 들어, 형광 또는 인광)(310)을 발산하게 된다.The excitation light irradiation means 100 is arranged to irradiate the excitation light 110 toward the flat surface 220 of the semi-cylindrical prism 200. More specifically, for example, the excitation light 110 may be irradiated toward a point on the central axis of the semi-cylindrical prism 200. In the measurement, the object sample 900 is placed on the point on the central axis of the semi-cylindrical prism 200 to which the excitation light 110 is irradiated, whereby the excitation light 110 is applied to the object sample 900. You will join. The point where the excitation light 110 is incident on the target sample 900 is called the excitation light spot 130. In the case where the target sample 900 contains photoluminescent molecules, the photoluminescent molecules positioned in the excitation light spot 130 are stimulated by the excitation light 110 to emit light emitted to the surroundings (for example, Fluorescence or phosphorescence) 310.
방출광 검출 수단(300)은, 반원통형 프리즘을 통과하는 방출광(310)을 검출한다. 방출광 검출 수단(300)은 이동 경로(330)를 따라 이동하면서, 방출각(φ)에 따른 방출광(310)의 세기를 검출한다. 이동 경로(330)는 반원통형 프리즘(200)의 반원주면(210)을 둘러싸는 반원주(semicircumference) 형태를 가질 수 있다. 반원주 형태의 이동 경로(330)의 중심은 여기광 스폿(130)일 수 있다. 그에 따라, 반원주 형태의 이동 경로(330)와 반원통형 프리즘(200)의 반원주면(210)은 동심원을 이룰 수 있다. 방출광 검출 수단(300)의 이동 경로(330)는 반원통형 프리즘(200)의 길이방향 축(즉, 중심축)에 수직인 일 평면(330) 상에 놓인다. 이동 경로(330)가 놓이는 평면(330)은 여기광 스폿(130)을 통과한다. The emission light detecting means 300 detects the emission light 310 passing through the semi-cylindrical prism. The emission light detecting means 300 detects the intensity of the emission light 310 according to the emission angle φ while moving along the movement path 330. The movement path 330 may have a semicircumference shape surrounding the semicircular surface 210 of the semicylindrical prism 200. The center of the semi-circular movement path 330 may be an excitation light spot 130. Accordingly, the semi-circular movement path 330 and the semi-circular surface 210 of the semi-cylindrical prism 200 may form a concentric circle. The movement path 330 of the emission light detecting means 300 lies on one plane 330 perpendicular to the longitudinal axis (ie, the central axis) of the semi-cylindrical prism 200. The plane 330 on which the movement path 330 lies passes through the excitation light spot 130.
이동 경로(330)는, 예를 들면, 반원통형 프리즘(200)이 정지해 있는 상태에서 방출광 검출 수단(300)이 이동함으로써 형성될 수 있다. 다른 예를 들면, 이동 경로(330)는, 방출광 검출 수단(300)이 정지해 있는 상태에서 반원통형 프리즘(200)이, 반원통형 프리즘(200)의 길이방향 축(즉, 중심축)을 중심으로 회전함으로써 형성될 수도 있다. 또 다른 예를 들면, 이동 경로(330)는, 방출광 검출 수단(300)이 이동함과 동시에, 반원통형 프리즘(200)이, 반원통형 프리즘(200)의 길이방향 축(즉, 중심축)을 중심으로 회전함으로써 형성될 수도 있다.The movement path 330 may be formed, for example, by the emission light detecting means 300 moving while the semi-cylindrical prism 200 is stationary. In another example, the movement path 330 is a semi-cylindrical prism 200 in the state in which the emission light detection means 300 is stopped, the longitudinal axis (ie, the central axis) of the semi-cylindrical prism 200 It may be formed by rotating about the center. In another example, the movement path 330 may include a semi-cylindrical prism 200 and a longitudinal axis (ie, a central axis) of the semi-cylindrical prism 200 while the emission light detecting means 300 moves. It may be formed by rotating about.
방출광 검출 수단(300)이 이동 경로(330)를 따라 이동하는 각속도는, 예를 들면, 약 0.1°/sec 내지 약 10°/sec, 바람직하게는 약 1°/sec 내지 약 3°/sec, 가장 바람직하게는 약 2°/sec 일 수 있다. 방출광 검출 수단(300)이 이동 경로(330)를 따라 이동하는 각속도가 너무 낮으면 측정시간이 길어지고, 너무 높으면 측정 수행 동안 시료가 떨어질 수 있다.The angular velocity at which the emission light detecting means 300 moves along the movement path 330 is, for example, about 0.1 ° / sec to about 10 ° / sec, preferably about 1 ° / sec to about 3 ° / sec. Most preferably about 2 ° / sec. If the angular velocity at which the emission light detecting means 300 moves along the movement path 330 is too low, the measurement time is long, and if it is too high, the sample may fall during the measurement.
방출광 검출 수단(300)과 여기광 스폿(130) 사이의 거리, 즉, 방출광 검출 수단(300)의 이동 경로(330)의 반경은, 예를 들면, 약 20 cm 내지 약 200 cm, 바람직하게는 약 50 cm 내지 약 150 cm, 더욱 바람직하게는 약 80 cm 내지 약 120 cm, 가장 바람직하게는 약 100 cm일 수 있다. 방출광 검출 수단(300)과 여기광 스폿(130) 사이의 거리가 너무 작으면, 방출광 신호의 간섭이 있을 수 있다. 방출광 검출 수단(300)과 여기광 스폿(130) 사이의 거리가 너무 크면, 검출되는 방출광 신호가 충분히 크지 않을 수 있다.The distance between the emission light detecting means 300 and the excitation light spot 130, that is, the radius of the movement path 330 of the emission light detecting means 300 is, for example, about 20 cm to about 200 cm, preferably Preferably about 50 cm to about 150 cm, more preferably about 80 cm to about 120 cm, most preferably about 100 cm. If the distance between the emission light detecting means 300 and the excitation light spot 130 is too small, there may be interference of the emission light signal. If the distance between the emission light detecting means 300 and the excitation light spot 130 is too large, the detected emission light signal may not be large enough.
방출각(φ)은, 여기광 스폿(130)을 통과하여 반원주면(210) 쪽으로 연장하는 "평탄면(220)에 대한 수직선"과 방출광 경로(310) 사이의 각도를 의미한다. 도 3의 (a)에 있어서는, 4 사분면에서의 방출각(φ)은 -90°내지 0°의 범위를 갖고, 3 사분면에서의 방출각(φ)은 +90°내지 0°의 범위를 갖는 것으로 정의되어 있으나, 그 반대도 가능할 수 있다. 방출광 검출 수단(300)은 -90°≤ φ ≤ +90°의 범위에서 이동할 수 있다. 또는, 방출광 검출 수단(300)은 -90°≤ φ ≤ 0°의 범위에서 이동할 수 있다. 또는, 방출광 검출 수단(300)은 0°≤ φ ≤ +90°의 범위에서 이동할 수 있다. 본 발명의 장치에 있어서는, 측정된 광루미네선스 방출 스펙트럼이 현저하게 향상된 대칭성을 갖기 때문에, 방출광 검출 수단(300)은 -90°≤ φ ≤ 0°의 범위에서만 이동하여도 무방하며, 또는, 0°≤ φ ≤ +90°의 범위에서만 이동하여도 무방하다. The emission angle φ means the angle between the “vertical line with respect to the flat surface 220” and the emission light path 310 extending through the excitation light spot 130 toward the semicircular surface 210. In FIG. 3A, the emission angle φ in the fourth quadrant has a range of −90 ° to 0 °, and the emission angle φ in the third quadrant has a range of + 90 ° to 0 °. Defined as, but vice versa. The emission light detecting means 300 may move in a range of −90 ° ≦ φ ≦ + 90 °. Alternatively, the emission light detecting means 300 may move in the range of −90 ° ≦ φ ≦ 0 °. Alternatively, the emission light detecting means 300 may move in the range of 0 ° ≦ φ ≦ + 90 °. In the apparatus of the present invention, since the measured photoluminescence emission spectrum has significantly improved symmetry, the emission light detecting means 300 may move only in the range of -90 ° ≦ φ ≦ 0 °, or It may move only in the range of 0 ° ≦ φ ≦ + 90 °.
도 3의 (b)에 나타난 바와 같이, 여기광(110)이 평면(330)에 대하여 θP의 입사각으로 입사함으로써, 여기광의 입사 경로(110)는, 방출광 검출 수단(300)의 이동 경로(330)가 놓이는 평면(330) 밖에 위치한다(다만, 여기광의 입사 경로(110)와 평면(330)은 여기광 스폿(130)에서 교차한다). 그에 따라, 대상시료(900) 및 반원통형 프리즘(200)을 통과하는 여기광의 일부(130) 역시 평면(330) 밖에 위치하게 되고, 그에 따라, 여기광의 일부(130)는 방출광 검출 수단(300)으로 입사하지 않게 된다. 그에 따라, 측정된 광루미네선스 방출 스펙트럼은 여기광의 일부(130)에 의한 노이즈를 포함하지 않게 된다.As shown in FIG. 3B, when the excitation light 110 is incident on the plane 330 at an incident angle of θ P , the incidence path 110 of the excitation light is a movement path of the emission light detecting means 300. Located outside the plane 330 on which 330 lies (however, the incident path 110 of the excitation light and the plane 330 intersect at the excitation light spot 130). Accordingly, the portion 130 of the excitation light passing through the object sample 900 and the semi-cylindrical prism 200 is also located outside the plane 330, whereby the portion 130 of the excitation light is emitted light detection means 300. ) Will not enter. Thus, the measured photoluminescence emission spectrum does not include noise by the portion 130 of the excitation light.
도 4는 본 발명에 있어서의 여기광의 입사각에 대한 정의를 나타낸다. 여기광 입사 경로(110)는 여기광 스폿(130)을 통과한다. 여기광(110)의 입사각은 수평성분(θH)과 수직성분(θP)으로 표시될 수 있다. 4 shows the definition of the incident angle of the excitation light in the present invention. The excitation light incident path 110 passes through the excitation light spot 130. The incident angle of the excitation light 110 may be represented by a horizontal component θ H and a vertical component θ P.
여기광(110)의 입사각의 수평성분(θH)은, 방출광 검출 수단의 이동 경로가 놓이는 평면(330)에 대한 여기광 입사 경로(110)의 수직 투영선(110H)과, 여기광 스폿(130)을 통과하는 "반원통형 프리즘의 평탄면에 대한 수직선(230)" 사이의 각도로 정의된다.The horizontal component θ H of the angle of incidence of the excitation light 110 is the vertical projection line 110 H of the excitation light incident path 110 with respect to the plane 330 on which the emission light detecting means lies, and the excitation light spot. It is defined as the angle between "vertical line 230 with respect to the flat surface of the semi-cylindrical prism" passing through 130.
여기광(110)의 입사각의 수직성분(θP)은, 방출광 검출 수단의 이동 경로가 놓이는 평면(330)에 대한 여기광 입사 경로(110)의 수직 투영선(110H)과, 여기광 입사 경로(110) 사이의 각도로 정의된다.The vertical component θ P of the incident angle of the excitation light 110 is the vertical projection line 110 H of the excitation light incident path 110 with respect to the plane 330 on which the emission light detecting means lies, and the excitation light incident It is defined as the angle between the paths 110.
여기광 입사 경로(110)가 방출광 검출 수단의 이동 경로가 놓이는 평면(330) 밖에 위치한다는 것은(다만, 여기광의 입사 경로(110)와 평면(330)은 여기광 스폿(130)에서 교차함), 여기광(110)의 입사각의 수직성분(θP)이 0°보다 크다는 것을 의미한다. 이때, 여기광(110)의 입사각의 수직성분(θP)은 0°보다 크고 90°보다 작을 수 있다. 여기광(110)의 입사각의 수평성분(θH)은 0°보다 같거나 크고 90°보다 작을 수 있다.The excitation light incidence path 110 is located outside the plane 330 in which the movement path of the emission light detection means lies, except that the incidence light path 110 and the plane 330 of the excitation light intersect at the excitation light spot 130. ), It means that the vertical component θ P of the incident angle of the excitation light 110 is greater than 0 °. In this case, the vertical component θ P of the incident angle of the excitation light 110 may be greater than 0 ° and less than 90 °. The horizontal component θ H of the incident angle of the excitation light 110 may be greater than or equal to 0 ° and less than 90 °.
바람직하게는, 여기광(110)의 입사각의 수직성분(θP)은 약 1° 내지 약 89°일 수 있다. 더욱 바람직하게는, 여기광(110)의 입사각의 수직성분(θP)은 약 15° 내지 약 75°일 수 있다. 더더욱 바람직하게는, 여기광(110)의 입사각의 수직성분(θP)은 약 30° 내지 약 45°일 수 있다. 여기광(110)의 입사각의 수직성분(θP)이 너무 작으면, 여기광이 직접 검출기에서 검출될 수 있다. 여기광(110)의 입사각의 수직성분(θP)이 너무 크면, 여기광 스폿이 과도하게 커질 수 있다.Preferably, the vertical component θ P of the incident angle of the excitation light 110 may be about 1 ° to about 89 °. More preferably, the vertical component θ P of the incident angle of the excitation light 110 may be about 15 ° to about 75 °. Even more preferably, the vertical component θ P of the incident angle of the excitation light 110 may be about 30 ° to about 45 °. If the vertical component θ P of the incident angle of the excitation light 110 is too small, the excitation light can be detected directly at the detector. If the vertical component θ P of the incident angle of the excitation light 110 is too large, the excitation light spot may be excessively large.
바람직하게는, 여기광(110)의 입사각의 수평성분(θH)은 약 0°내지 약 15°일 수 있다. 더욱 바람직하게는, 여기광(110)의 입사각의 수평성분(θH)은 약 0°내지 약 3°일 수 있다. 더더욱 바람직하게는, 여기광(110)의 입사각의 수평성분(θH)은 약 0°일 수 있다. 가장 바람직하게는, 여기광(110)의 입사각의 수평성분(θH)은 0°일 수 있다. 여기광(110)의 입사각의 수평성분(θH)이 0°에서 과도하게 벗어나면, 대칭적인 방출 스펙트럼을 얻기가 어려워질 수 있다.Preferably, the horizontal component θ H of the incident angle of the excitation light 110 may be about 0 ° to about 15 °. More preferably, the horizontal component θ H of the incident angle of the excitation light 110 may be about 0 ° to about 3 °. Even more preferably, the horizontal component θ H of the incident angle of the excitation light 110 may be about 0 °. Most preferably, the horizontal component θ H of the incident angle of the excitation light 110 may be 0 °. If the horizontal component θ H of the angle of incidence of the excitation light 110 deviates excessively from 0 °, it may be difficult to obtain a symmetric emission spectrum.
여기광 조사 수단으로부터 조사되는 여기광은, 유기물 또는 발광체가 흡수할 수 있는 임의의 파장을 가질 수 있다. 여기광 조사 수단으로부터 조사되는 여기광은, 예를 들면, 자외선 또는 가시광선일 수 있다. 자외선은, 바람직한 예를 들면, 약 325 nm 내지 약 405 nm의, 더욱 바람직하게는 약 325 nm 내지 약 350 nm의 파장을 가질 수 있다. 가시광선은, 바람직한 예를 들면, 약 405 nm 내지 약 520 nm의 파장을 가질 수 있다.The excitation light irradiated from the excitation light irradiation means may have any wavelength that the organic material or the light emitter can absorb. The excitation light irradiated from the excitation light irradiation means may be, for example, ultraviolet rays or visible light. The ultraviolet light may have a wavelength of, for example, about 325 nm to about 405 nm, more preferably about 325 nm to about 350 nm. Visible light may have a wavelength of, for example, about 405 nm to about 520 nm.
여기광 조사 수단은, 예를 들면, 레이저 발생 장치일 수 있다. 여기광 조사 수단은, 또 다른 예를 들면, 레이저 발생 장치와 광학적으로 연결된 광도파로일 수 있다. 광도파로는, 예를 들면, 광섬유일 수 있다. The excitation light irradiation means may be, for example, a laser generating device. The excitation light irradiation means may be, for example, an optical waveguide optically connected to the laser generating device. The optical waveguide may be, for example, an optical fiber.
반원통형 프리즘은, 예를 들면, 퓨즈드 실리카(fused silica)일 수 있다. 반원통형 프리즘의 반지름은, 예를 들면, 약 100 mm 내지 약 200 mm일 수 있다. 반원통형 프리즘의 길이는, 예를 들면, 약 30 mm 내지 약 40 mm일 수 있다.The semi-cylindrical prism can be, for example, fused silica. The radius of the semi-cylindrical prism can be, for example, about 100 mm to about 200 mm. The semicylindrical prism can be, for example, about 30 mm to about 40 mm in length.
방출광 검출 수단은, 예를 들면, 광센서일 수 있다. 광센서는, 예를 들면, 광전자증배관(photomultiplier tube)일 수 있다.The emission light detecting means may be an optical sensor, for example. The light sensor may be, for example, a photomultiplier tube.
본 발명의 장치는, 방출광 검출 수단과 반원통형 프리즘 사이에 위치하는 편광기를 더 포함할 수 있다. 편광기는, 예를 들면, s-편광기 또는 p-편광기일 수 있다. s-편광기는 방출광의 s-파 만을 투과시키는 역할을 할 수 있다. p-편광기는 방출광의 p-파 만을 투과시키는 역할을 할 수 있다. 편광기는 방출광 검출 수단과 함께 이동할 수 있도록, 방출광 검출 수단에 결합될 수 있다.The apparatus of the present invention may further comprise a polarizer positioned between the emission light detecting means and the semi-cylindrical prism. The polarizer can be, for example, an s-polarizer or a p-polarizer. The s-polarizer may serve to transmit only the s-wave of emitted light. The p-polarizer may serve to transmit only p-waves of emitted light. The polarizer can be coupled to the emission light detection means such that it can move with the emission light detection means.
<실시예><Example>
대상 시료의 준비Preparation of Target Sample
대상 시료는 퓨즈드 실리카 기재층(두께 1 mm)/CBP:Ir(ppy)2acac 혼합층(CBP:Ir(ppy)2acac = 92 wt% : 8 wt%, 두께 30 nm)으로 이루어졌다. 먼저, 퓨즈드 실리카 기판을 준비하였다. 기판의 두께는 시료가 반원통형 프리즘의 원의 중심에 시료가 놓일 수 있도록 고려한 것이다. 그 다음, 1×10-7 torr의 진공도를 갖는 진공증착장치 안에서, CBP와 Ir(ppy)2acac의 중량비를 92 wt% : 8 wt%로 하여, 두께가 30 nm 될 때까지, CBP:Ir(ppy)2acac 혼합층을 퓨즈드 실리카 기판 위에 증착하였다. 그 다음, CBP:Ir(ppy)2acac 혼합층의 유기물이 공기 중의 산소와 반응하지 못하도록 하기 위하여, CBP:Ir(ppy)2acac 혼합층을 질소 분위기에서 유리와 풀로 봉지하였다.The subject sample consisted of a fused silica substrate layer (thickness 1 mm) / CBP: Ir (ppy) 2 acac mixed layer (CBP: Ir (ppy) 2 acac = 92 wt%: 8 wt%, thickness 30 nm). First, a fused silica substrate was prepared. The thickness of the substrate is taken into consideration so that the sample can be placed in the center of the circle of the semi-cylindrical prism. Then, in a vacuum deposition apparatus having a vacuum degree of 1 × 10 −7 torr, the weight ratio of CBP and Ir (ppy) 2 acac was 92 wt%: 8 wt% until the thickness was 30 nm, and CBP: Ir A (ppy) 2 acac mixed layer was deposited on the fused silica substrate. Then, CBP: Ir (ppy) 2 acac mixed layer of the organic material in order to prevent the reaction with the oxygen in the air, CBP: the Ir (ppy) 2 acac mixed layer was sealed with glass pool in a nitrogen atmosphere.
- CBP: 4,4'-Bis(N-carbazolyl)-1,1'-biphenyl.CBP: 4,4'-Bis (N-carbazolyl) -1,1'-biphenyl.
- Ir(ppy)2acac: bis(2-phenylpyridine)iridium(III) acetylacetonate.Ir (ppy) 2 acac: bis (2-phenylpyridine) iridium (III) acetylacetonate.
실시예 1 --- 각도 의존성 광루미네선스 방출 스펙트럼 측정(θ P = 45°, θ H = 0°) Example 1 --- Angle dependent photoluminescence emission spectrum measurement (θ P = 45 °, θ H = 0 °)
실시예 1에서 사용된 측정 장치는 도 3과 같은 구조를 가졌으며, 구체적인 사양은 다음과 같다.The measuring device used in Example 1 had the structure as shown in FIG. 3, and specific specifications are as follows.
- 여기광 파장 : 325 nmExcitation light wavelength: 325 nm
- 여기광 공급원 : He-Cd laser, Melles Griot사 Excitation light source: He-Cd laser, Melles Griot
- 여기광 조사 수단 : 광섬유, 직경 1mm, Thorlabs사-Excitation light irradiation means: optical fiber, diameter 1mm, Thorlabs
- 반원통형 프리즘 : 퓨즈드 실리카, 직경 100mm, 길이 30mm,Semi-cylindrical prism: fused silica, diameter 100mm, length 30mm,
- 방출광 검출 수단 : photomultiplier tube, Acton사-Emission light detection means: photomultiplier tube, Acton
- 방출광 검출 수단에 장착된 편광기 : Linear polarizer, Thorlabs사-Polarizer mounted on emitting light detection means: Linear polarizer, Thorlabs
- 기록장치 : SpectraSense, Acton사-Recorder: SpectraSense, Acton
- 여기광 입사각 : θP = 45°, θH = 0°-Incident angle of excitation light: θ P = 45 °, θ H = 0 °
- 시료로부터 방출광 검출 수단까지의 거리(또는, 방출광 검출 수단의 이동 경로의 반지름) : 900 mmThe distance from the sample to the emission light detection means (or the radius of the travel path of the emission light detection means): 900 mm
여기광 공급원과 반원통형 프리즘은 회전판 위에 설치되었다. 회전판은 반원통형 프리즘의 길이 방향 축을 중심으로 하여 회전하였다. 회전판의 회전 각속도는 2 °/sec 이었다. 방출광 검출 수단은 회전판 밖에 고정되었다. 대상 시료는 반원통형 프리즘의 평탄면의 중앙부에 부착되었다. 이때, 퓨즈드 실리카 기재층과 반원통형 프리즘의 평탄면이 접촉하였다. 방출광 검출 수단에서 출력된 방출광 세기 신호는 기록장치로 전송되었다. 기록장치는 각도 의존성 광루미네선스 방출 스펙트럼을 출력하였다. An excitation light source and a semi-cylindrical prism were installed on the rotating plate. The rotating plate was rotated about the longitudinal axis of the semi-cylindrical prism. The rotational angular velocity of the rotating plate was 2 ° / sec. The emission light detecting means was fixed outside the rotating plate. The sample was attached to the center of the flat surface of the semi-cylindrical prism. At this time, the fused silica substrate layer and the flat surface of the semi-cylindrical prism were in contact. The emission light intensity signal output from the emission light detection means was transmitted to the recording apparatus. The recording device outputs angle dependent photoluminescence emission spectra.
도 5는 실시예 1에서 첫 번째 날에 대상 시료에 대하여 측정된 각도 의존성 광루미네선스 방출 스펙트럼이다. 도 5의 (a)는 -90°내지 +90°의 방출각(φ) 범위 전체에 걸쳐서 펼쳐져 있는 스펙트럼이다. 도 5의 (b)는 -90°내지 0°의 방출각(φ) 범위의 스펙트럼과, +90°내지 0°의 방출각(φ) 범위의 스펙트럼을 중첩하여 보여준다. 도 5의 (b)에 나타난 바와 같이, 실시예 1에서 측정된 각도 의존성 광루미네선스 방출 스펙트럼은 매우 우수한 대칭성을 보였으며, 여기광에 의한 노이즈를 전혀 포함하지 않았다. 도 6은, 실시예 1에서 동일 대상 시료에 대하여 첫 번째 날, 첫 번째 날로부터 2 주후에, 그리고, 첫 번째 날로부터 3주 후에 측정된 각도 의존성 광루미네선스 방출 스펙트럼들을 중첩하여 보여준다. 도 6에 나타난 바와 같이, 동일 대상 시료에 대하여 서로 다른 날에 측정된 스펙트럼들이 거의 완벽하게 일치하였다. 도 5 및 도 6의 결과로부터, 본 발명의 장치는 매우 향상된 재현성을 발휘할 수 있음을 확인할 수 있다.5 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Example 1. FIG. FIG. 5A is a spectrum spread over the entire emission angle φ range of −90 ° to + 90 °. FIG. 5 (b) shows the spectrum of the emission angle (φ) in the range of −90 ° to 0 ° and the spectrum of the emission angle (φ) in the range of + 90 ° to 0 °. As shown in (b) of FIG. 5, the angle dependent photoluminescence emission spectrum measured in Example 1 showed very good symmetry and did not include any noise due to excitation light. FIG. 6 shows overlapping angle dependent photoluminescence emission spectra measured on Day 1, 2 weeks after, and 3 weeks after the first day for the same subject sample in Example 1. FIG. As shown in FIG. 6, the spectra measured on different days for the same sample were almost perfectly consistent. 5 and 6, it can be seen that the apparatus of the present invention can exhibit very improved reproducibility.
비교예 1 --- 각도 의존성 광루미네선스 방출 스펙트럼 측정(θ P = 0°, θ H = 45°) Comparative Example 1 --- Angle dependent photoluminescence emission spectrum measurement (θ P = 0 °, θ H = 45 °)
비교예 1에서는, 여기광 입사각을 θP = 0°, θH = 45°로 한 것을 제외하고는, 실시예 1과 동일한 대상 시료 및 측정 장치를 사용하였다.In Comparative Example 1, the same sample and measurement device as in Example 1 were used except that the excitation light incident angle was set to θ P = 0 ° and θ H = 45 °.
도 7은 비교예 1에서 첫 번째 날에 대상 시료에 대하여 측정된 각도 의존성 광루미네선스 방출 스펙트럼이다. 도 7의 (a)는 -90°내지 +90°의 방출각(φ) 범위 전체에 걸쳐서 펼쳐져 있는 스펙트럼이다. 도 7의 (b)는 -90°내지 0°의 방출각(φ) 범위의 스펙트럼과, +90°내지 0°의 방출각(φ) 범위의 스펙트럼을 중첩하여 보여준다. 도 7의 (b)에 나타난 바와 같이, 비교예 1에서 측정된 각도 의존성 광루미네선스 방출 스펙트럼의 대칭성은 매우 불량하였으며, 여기광에 의한 노이즈를 포함하였다. 도 8은, 비교예 1에서 동일 대상 시료에 대하여 첫 번째 날, 첫 번째 날로부터 2 주후에, 그리고, 첫 번째 날로부터 3주 후에 측정된 각도 의존성 광루미네선스 방출 스펙트럼들을 중첩하여 보여준다. 도 8에 나타난 바와 같이, 동일 대상 시료에 대하여 서로 다른 날에 측정된 스펙트럼들이 일치하지 않았다. 도 7 및 도 8의 결과로부터, 비교예의 장치의 재현성은 매우 불량함을 확인할 수 있다.FIG. 7 is an angle dependent photoluminescence emission spectrum measured for the subject sample on the first day in Comparative Example 1. FIG. FIG. 7A is a spectrum spread over the entire emission angle φ range of −90 ° to + 90 °. 7 (b) shows the spectrum of the emission angle (φ) in the range of -90 ° to 0 ° and the spectrum of the emission angle (φ) in the range of +90 ° to 0 ° overlap. As shown in FIG. 7B, the symmetry of the angle dependent photoluminescence emission spectrum measured in Comparative Example 1 was very poor, and included noise caused by excitation light. FIG. 8 shows overlapping angle dependent photoluminescence emission spectra measured on the first day, two weeks after the first day, and three weeks after the first day for the same subject sample in Comparative Example 1. FIG. As shown in FIG. 8, the spectra measured on different days for the same sample were inconsistent. From the results in FIGS. 7 and 8, it can be seen that the reproducibility of the apparatus of the comparative example is very poor.
본 발명에 따라, 매트릭스 재료 내에 도핑된 소형 분자 에미터(small molecular emitter)에 기초한 OLED에 있어서, 사용되는 소형 분자 에미터의 분자 다이폴 배향율을 정확하고 재현성 있게 측정할 수 있다.According to the present invention, in OLEDs based on small molecular emitters doped in a matrix material, the molecular dipole orientation of the small molecular emitters used can be measured accurately and reproducibly.

Claims (10)

  1. 반원주면과 평탄면을 갖는 반원통형 프리즘;A semi-cylindrical prism having a semi-circumferential surface and a flat surface;
    상기 반원통형 프리즘의 상기 평탄면을 향하여 여기광을 조사하는 여기광 조사 수단; 및 Excitation light irradiation means for irradiating excitation light toward the flat surface of the semi-cylindrical prism; And
    상기 반원통형 프리즘의 길이방향 축에 수직인 일 평면상에 놓이며 또한 상기 반원통형 프리즘의 반원주면을 둘러싸는 반원주(semicircumference) 형태를 갖는 이동 경로를 따라 이동하면서, 상기 반원통형 프리즘을 통과하는 방출광을 검출하는 방출광 검출 수단;을 포함하며,An emission passing through the semi-cylindrical prism, while traveling along a travel path lying on one plane perpendicular to the longitudinal axis of the semi-cylindrical prism and having a semicircumference shape surrounding the semi-circumferential surface of the semi-cylindrical prism Emission light detecting means for detecting light;
    상기 여기광의 입사 경로가, 상기 방출광 검출 수단의 이동 경로가 놓이는 평면 밖에 위치하는,The incident path of the excitation light is located outside the plane on which the movement path of the emission light detecting means lies,
    각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.Angle dependent photoluminescence emission spectrum measurement device.
  2. 제 1 항에 있어서, 상기 방출광 검출 수단의 상기 이동 경로가 상기 반원통형 프리즘이 정지해 있는 상태에서 상기 방출광 검출 수단이 이동함으로써 형성되는 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The angle dependent photoluminescence emission spectrum measuring apparatus according to claim 1, wherein the movement path of the emission light detecting means is formed by moving the emission light detecting means while the semi-cylindrical prism is stationary. .
  3. 제 1 항에 있어서, 상기 방출광 검출 수단의 상기 이동 경로가 상기 방출광 검출 수단이 정지해 있는 상태에서, 상기 반원통형 프리즘이, 상기 반원통형 프리즘의 길이방향 축을 중심으로 회전함으로써 형성되는 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The semi-cylindrical prism is formed by rotating about the longitudinal axis of the semi-cylindrical prism, according to claim 1, wherein the semi-cylindrical prism is formed while the movement path of the emission light detecting means is stationary. An angle dependent photoluminescence emission spectrum measuring apparatus.
  4. 제 1 항에 있어서, 상기 방출광 검출 수단의 상기 이동 경로가 상기 방출광 검출 수단이 이동함과 동시에, 상기 반원통형 프리즘이, 상기 반원통형 프리즘의 길이방향 축을 중심으로 회전함으로써 형성되는 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The semi-cylindrical prism is formed by rotating the semi-cylindrical prism about the longitudinal axis of the semi-cylindrical prism, as the movement path of the emission light detecting means moves. Angle dependent photoluminescence emission spectrum measurement apparatus.
  5. 제 1 항에 있어서, 상기 방출광 검출 수단이 상기 이동 경로를 따라 이동하는 각속도는 0.1°/sec 내지 10°/sec인 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The angle dependent photoluminescence emission spectrum measuring apparatus according to claim 1, wherein the angular velocity at which the emission light detecting means moves along the movement path is 0.1 ° / sec to 10 ° / sec.
  6. 제 1 항에 있어서, 상기 방출광 검출 수단의 상기 이동 경로의 반경은 20 cm 내지 200 cm인 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.2. An angle dependent photoluminescence emission spectrum measurement apparatus according to claim 1, wherein a radius of the movement path of the emission light detecting means is 20 cm to 200 cm.
  7. 제 1 항에 있어서, 상기 여기광의 입사각의 수직성분(θP)은 15° 내지 75°인 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The angle dependent photoluminescence emission spectrum measuring apparatus according to claim 1, wherein the vertical component θ P of the incident angle of the excitation light is 15 ° to 75 °.
  8. 제 1 항에 있어서, 상기 여기광의 입사각의 수평성분(θH)은 0°인 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The angle dependent photoluminescence emission spectrum measuring apparatus according to claim 1, wherein the horizontal component (θ H ) of the incident angle of the excitation light is 0 °.
  9. 제 1 항에 있어서, 상기 여기광은 자외선 또는 가시광선인 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.The angle dependent photoluminescence emission spectrum measuring apparatus according to claim 1, wherein the excitation light is ultraviolet or visible light.
  10. 제 1 항에 있어서, 상기 방출광 검출 수단과 상기 반원통형 프리즘 사이에 위치하는 편광기를 더 포함하는 것을 특징으로 하는 각도 의존성 광루미네선스 방출 스펙트럼 측정 장치.2. An angle dependent photoluminescence emission spectrum measuring apparatus according to claim 1, further comprising a polarizer positioned between said emission light detecting means and said semi-cylindrical prism.
PCT/KR2014/011785 2013-12-05 2014-12-03 Angle-dependent photoluminescence emission spectrum measurement device WO2015084057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0150834 2013-12-05
KR1020130150834A KR101468065B1 (en) 2013-12-05 2013-12-05 Apparatus for angular dependent measurement of photoluminescence emission spectrum

Publications (1)

Publication Number Publication Date
WO2015084057A1 true WO2015084057A1 (en) 2015-06-11

Family

ID=52677274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011785 WO2015084057A1 (en) 2013-12-05 2014-12-03 Angle-dependent photoluminescence emission spectrum measurement device

Country Status (2)

Country Link
KR (1) KR101468065B1 (en)
WO (1) WO2015084057A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575790A (en) * 2022-12-12 2023-01-06 季华实验室 Method and equipment for detecting defects of micron light-emitting diode chip and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11800788B2 (en) 2018-12-28 2023-10-24 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including i he same
US11937496B2 (en) 2019-03-29 2024-03-19 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and electronic apparatus including the organic light-emitting device
US11773123B2 (en) 2019-03-29 2023-10-03 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including organometallic compound, and diagnostic composition including organometallic compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815132A (en) * 1994-07-05 1996-01-19 Nippon Laser Denshi Kk Light ray reflector for generating surface plasmon
JPH09292335A (en) * 1996-04-30 1997-11-11 Fuji Photo Film Co Ltd Surface plasmon sensor
KR20080051002A (en) * 2006-12-04 2008-06-10 한국전자통신연구원 Surface plasmon resonance sensor and system capable of absolute calibration
KR20080070440A (en) * 2007-01-26 2008-07-30 충북대학교 산학협력단 Surface plasmon resonance sensing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815132A (en) * 1994-07-05 1996-01-19 Nippon Laser Denshi Kk Light ray reflector for generating surface plasmon
JPH09292335A (en) * 1996-04-30 1997-11-11 Fuji Photo Film Co Ltd Surface plasmon sensor
KR20080051002A (en) * 2006-12-04 2008-06-10 한국전자통신연구원 Surface plasmon resonance sensor and system capable of absolute calibration
KR20080070440A (en) * 2007-01-26 2008-07-30 충북대학교 산학협력단 Surface plasmon resonance sensing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575790A (en) * 2022-12-12 2023-01-06 季华实验室 Method and equipment for detecting defects of micron light-emitting diode chip and storage medium

Also Published As

Publication number Publication date
KR101468065B1 (en) 2014-12-02

Similar Documents

Publication Publication Date Title
WO2015084057A1 (en) Angle-dependent photoluminescence emission spectrum measurement device
Flämmich et al. Oriented phosphorescent emitters boost OLED efficiency
KR102060939B1 (en) Organic electroluminescent element and electronic instrument
KR101471501B1 (en) Surface light emitting device
US9711665B2 (en) Color converters
CN113412542A (en) Color-tunable LED-OLED hybrid guided lighting device
CN103080794B (en) Sun exposure device
RU2601329C2 (en) New lighting devices
US8128272B2 (en) Illumination apparatus
RU2633765C2 (en) Layer packet containing luminescent material, lamp, illuminator and method of manufacture of layer package
CN1159572C (en) Improved fluorescent sensing device
KR20090073095A (en) Lighting device
CN104302986A (en) Light collector device
CN102089402B (en) Luminescence concentrators and luminescence dispersers on the basis of oriented dye zeolite antennas
TW200931076A (en) Wavelength converter and light emitting device
CN112179874B (en) Method and device for measuring exciton orientation of luminescent material
WO2012088333A1 (en) 3d light extraction system with uniform emission across
JP4432299B2 (en) Planar light emitter
JP2004177247A (en) Method of measuring carbon dioxide
Piasecki et al. White LEDs as broad spectrum light sources for spectrophotometry: Demonstration in the visible spectrum range in a diode‐array spectrophotometric detector
CN111077122A (en) Quantum dot temperature detection device
Bi et al. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices
CN211825690U (en) Quantum dot temperature detection device
WO2013051359A1 (en) Planar light emitting body
CN116577622A (en) Measuring system and measuring method for angle luminescence of light-emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868133

Country of ref document: EP

Kind code of ref document: A1