JPH02223331A - Accident phase detection device - Google Patents

Accident phase detection device

Info

Publication number
JPH02223331A
JPH02223331A JP4115389A JP4115389A JPH02223331A JP H02223331 A JPH02223331 A JP H02223331A JP 4115389 A JP4115389 A JP 4115389A JP 4115389 A JP4115389 A JP 4115389A JP H02223331 A JPH02223331 A JP H02223331A
Authority
JP
Japan
Prior art keywords
fault
phase
line
current
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4115389A
Other languages
Japanese (ja)
Other versions
JP2904497B2 (en
Inventor
Masao Hori
政夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4115389A priority Critical patent/JP2904497B2/en
Publication of JPH02223331A publication Critical patent/JPH02223331A/en
Application granted granted Critical
Publication of JP2904497B2 publication Critical patent/JP2904497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To select an accident phase accurately in multiple accidents extending over two circuits by discriminating the accident phase in a transmission line accident with an operation section and a decision section on the basis of the value of the fault current that flows to the transmission line. CONSTITUTION:An accident phase selection device is equipped with an operation section 11 and a decision section 12. The operation section 11 is composed of the 1st operation section 111 finding the differential current of the currents before and after the accident, the 2nd operation section 112 operating the ratio of line currents in two-circuit sum current, the 3rd operation section 113 operating the ratio between the maximum value and minimum value of each phase current in two-circuit sum current, the 4th operation section 114 operating in comparison the volume of two-circuit each-phase current with respect to the accident phase and the 5th operation section 115 operating the ratio of line currents in a self-circuit. An accident circuit and an accident phase are detected by the output from accident phase number detection sections 121 to 124 in a two-circuit accident and the output of detection sections 125 to 127 to detect the accident circuit side of the two circuits. The accident phase can thereby be accurately selected in multiple accidents extending over two circuits.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は直接接地系送電線の多重事故時の事故相選別装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fault phase sorting device in the event of multiple faults in a directly grounded power transmission line.

(従来の技術) 送電線の事故点までの距離を求めるためには故障点標定
装置が用いられる。この場合の距離演算には事故相にお
ける電圧、電流を用いる必要がある。そして第4図の如
きディジタル演算処理装置を用いて故障点標定か行なわ
れる。図に示されるように、補助PCTを集中化して収
納している入力変換器41を介して電力系統の電圧、電
流が取込まれ、その電圧、電流の商用周波数成分のみを
取出すフィルタ(FL)41でフィルタリングが行なわ
れる。各フィルタ出力はアナログ信号であるため、これ
をサンプルホールド回路(S/H) 43とマルチプレ
クサ(MPX ) 44を介してアナログ/ディジタル
変換器(^/D ) 45へ入力し、ディジタル信号に
変換する。ここで変換された電圧、電流のディジタル信
号は、ダイレクトメモリアクセス(DMA)46を介し
てデータメモリ(RAM)47に一時的に記憶される。
(Prior Art) A fault point locating device is used to determine the distance to a fault point on a power transmission line. In this case, it is necessary to use the voltage and current in the fault phase for distance calculation. Fault point location is then performed using a digital arithmetic processing device as shown in FIG. As shown in the figure, the voltage and current of the power system are taken in through the input converter 41 that centralizes and houses the auxiliary PCT, and a filter (FL) extracts only the commercial frequency components of the voltage and current. Filtering is performed at 41. Since each filter output is an analog signal, it is inputted to an analog/digital converter (^/D) 45 via a sample hold circuit (S/H) 43 and a multiplexer (MPX) 44, and converted into a digital signal. . The digital signals of voltage and current converted here are temporarily stored in a data memory (RAM) 47 via a direct memory access (DMA) 46.

CPU 48はIIAH47に記憶されている電流。CPU 48 is the current stored in IIAH47.

電圧データをリードオンリメモリ(ROM ) 49に
記憶されている処理手順に従ってディジタル演算処理を
し、標定起動と標定演算を行なう、50は入出力装置で
ある。
Reference numeral 50 denotes an input/output device which digitally processes the voltage data according to a processing procedure stored in a read-only memory (ROM) 49 and performs orientation start-up and orientation calculations.

なお標定方法としては大別して次の2つの方式第1の方
法は事故相の選別は行なわず、電圧と電流とを用いて地
絡事故とした場合の距離演算及び短絡事故とした場合の
距離演算を夫々行なって事故点までの距離を求める方式
である。
The location methods can be roughly divided into the following two methods.The first method does not select the fault phase, but uses voltage and current to calculate the distance in the case of a ground fault fault, and the distance calculation in the case of a short circuit fault. This method calculates the distance to the accident point by performing the following steps.

第2の方法は電流補償付不足電圧リレー(距離リレーの
一種)を用いて事故相選別を行ない、その後に事故点ま
での距離を求める方式である。
The second method uses an undervoltage relay with current compensation (a type of distance relay) to perform fault phase selection, and then calculates the distance to the fault point.

或いは特開昭63−217917号に示されるような事
故相選別を行ない、その後に事故点までの距離を求める
方式である。
Alternatively, there is a method in which accident phase selection is performed as shown in Japanese Patent Laid-Open No. 63-217917, and then the distance to the accident point is determined.

(発明が解決しようとする課題) 直接接地系の送電線は一般に電力の安定供給を確保する
ため平行2回線構成が多い。このため事故も2回線同時
に発生することがある。しかし、上記した従来方法では
1回線事故時は正確に測距できるが、2回線にまたがる
多重事故では事故回線の事故相識別が困難となり、事故
点までの距離標定が不正確となる欠点がある。
(Problems to be Solved by the Invention) Directly grounded power transmission lines generally have two parallel circuit configurations to ensure a stable supply of electric power. For this reason, accidents may occur on two lines at the same time. However, although the above-mentioned conventional method can accurately measure the distance when a fault occurs on a single line, it has the disadvantage that when multiple faults occur across two lines, it becomes difficult to identify the fault phase of the fault line, and the distance to the fault point becomes inaccurate. .

本発明は上記問題点を解決するためになされたものであ
り、直接接地系の2回線にまたがる多重事故時において
も電流のみにて事故相を高速かつ確実に選別することの
可能な事故相選別装置を提供することを目的としている
The present invention has been made to solve the above problems, and is a fault phase selection system that can quickly and reliably select fault phases using only current even in the event of multiple faults spanning two circuits in a directly grounded system. The purpose is to provide equipment.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明では送電線に流れる事
故電流値を基に、以下に示す各手段を備えて送電線事故
時の事故前を判別するよう構成した。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides the following means based on the value of fault current flowing through the power transmission line, so that the It was configured to determine the

■ 事故前後の差電流より各回線毎の各・相電流。■Each phase current for each line based on the difference current before and after the accident.

各線間電流9両回線の各相和電流及び両回線の各線間和
電流を演算する差電流演算手段11゜■ 各線間電流を
用いて、この最大値と各線間電流の比を求める第1の演
算手段と、前記第1の演算手段にて求めた比が所定値よ
り小さい場合に2回線での1線地絡事故とし、3つの線
間相の全てが所定値より大きい場合に2回線での2線以
上の事故と判定する第1の判定手段121 、122゜
■ 2回線における各相電流の最大値と最小値の大きさ
の比を求める第2の演算手段と、前記第2の演算手段に
て求めた比が所定値より小さい場合に2回線での2相以
下の事故とし、所定値より大きい場合に2回線での3相
事故と判定する第2の判定手段123 、124゜ ■ 2回線の各相事故分電流の差と自回線事故分電流と
の比を求める第3の演算手段と、前記第3の演算手段に
て求めた比が全ての事故相について所定値より小さい場
合に隣回線事故とし、1つの事故相について所定値より
大きい場合に自回線の1相事故とし、2つ以上の事故相
について所定値より大きい場合に自回線の2相以上の事
故と判定する第3の判定手段125 、126 、12
7゜(作 用) 先ず、差電流演算手段111においては、事故前後の差
電流(事故分電流)より各回線毎の各相電流(I )、
各線間差電流CIA)、両回線の大 各相和電流(■  )1両回線の各線間和電流入■ (I   )を求める。
Difference current calculation means 11゜ which calculates each phase sum current of each line current 9 and each line sum current of both lines. If the ratio obtained by the calculation means and the first calculation means is smaller than a predetermined value, it is considered a one-line ground fault fault in two lines, and if all three interline phases are larger than the predetermined value, it is considered a two-line ground fault. A first determining means 121, 122°■ for determining a fault in two or more lines; a second calculating means for calculating the ratio of the maximum value and minimum value of each phase current in the two lines; If the ratio obtained by the means is smaller than a predetermined value, it is determined to be a two-phase or less fault in two lines, and if it is larger than the predetermined value, it is determined to be a three-phase fault in two lines. a third calculation means that calculates the ratio between the difference between the fault currents of each phase of the two lines and the own line fault current, and when the ratio obtained by the third calculation means is smaller than a predetermined value for all fault phases; If the fault is greater than a predetermined value for one fault phase, it is determined to be a fault in one phase of the own line, and if two or more fault phases are larger than a predetermined value, it is determined to be a fault in two or more phases of the own line. 3 determining means 125 , 126 , 12
7゜(Function) First, in the difference current calculation means 111, each phase current (I) for each line is calculated from the difference current before and after the accident (fault portion current),
Find the difference current between each line (CIA), the sum of each phase current of both lines (■), and the sum of each line current input (I) of one and both lines.

Δ■ 第1の演算手段112では前記した差電流演算手段で求
めた各線間電流I  を用いてこの最大値Δ丁 と各線間電流の比を求める。そして、この比が或る一定
値(K1)より小さい場合に第1の判定手段内の1相事
故検出部121にて2回線での1線地絡事故とし、3つ
の線間相の全てが成る一定値(K1)より大きい場合に
同じく第1の判定手段内の2相事故検出部122にて2
回線での2線以上の事故とする。また第2の演算手段1
13では2回線における各相電流の最大値と最小値の大
きさの比(X、)を求め、この比が成る一定値(KF)
より小さい場合は第2の判定手段内の判定部123で2
回線での2相以下の事故とし、成る一定値(K、)より
大きい場合は同じく第2の判定手段内の判定部124で
2回線での3相事故と判定する。
Δ■ The first calculation means 112 uses each line current I obtained by the above-mentioned difference current calculation means to calculate the ratio of this maximum value ΔD and each line current. If this ratio is smaller than a certain constant value (K1), the 1-phase fault detection unit 121 in the first determination means determines that a 1-line ground fault fault has occurred in 2 lines, and all 3 inter-line phases are detected. If it is larger than a certain value (K1), the two-phase fault detection unit 122 in the first determination means
This is considered an accident involving two or more lines. Also, the second calculation means 1
In step 13, find the ratio (X,) between the maximum value and the minimum value of each phase current in the two lines, and find the constant value (KF) that this ratio corresponds to.
If it is smaller than 2, the determining unit 123 in the second determining means
If the fault is greater than a certain value (K,), the determining unit 124 in the second determining means determines that it is a three-phase fault in two lines.

さらに第3の演算手段114にて送電線2回線の事故相
に着目して、送電線2回線の各相変化分電流の差と自回
線事故分電流(I   )との比を求人1 め、この比が全ての事故相について成る一定値(Kd)
より小さい場合は第3の判定手段内の判定部125で隣
回線事故とし、1つの事故相について成る一定値(K、
)より大きい場合は同じく第3の判定手段内の判定部1
26で自回線の1相手故とし、2つ以上の事故相につい
て成る一定値(K、)より大きい場合は同じく第3の判
定手段内の判定部127にて自回線の2相以上の事故と
判定する。
Furthermore, the third calculating means 114 focuses on the fault phase of the two transmission lines, and calculates the ratio of the difference between the phase change currents of the two transmission lines and the fault current (I) of the own line. A constant value (Kd) that this ratio holds for all accident phases
If it is smaller, the determining unit 125 in the third determining means determines that the adjacent line is a fault, and a constant value (K,
), if the determination unit 1 in the third determination means is larger than
26, it is assumed that one party in the own line is at fault, and if the fault is greater than a certain value (K,) for two or more fault phases, the determination unit 127 in the third judgment means determines that there is an accident in two or more phases of the own line. judge.

なお、演算部11内にある演算手段115は2回線送電
線の場合の事故相検出手段である。
Note that the calculation means 115 in the calculation section 11 is a fault phase detection means in the case of a two-circuit power transmission line.

したがって2回線事故での事故相数検出部121゜12
2 、123 、124からの出力と、事故相に着目し
て2回線のうちの事故回線側を検出する検出部125 
、126 、127の出力により事故回線と事故相の検
出が可能となる。
Therefore, the fault phase number detection unit 121゜12 in a two-line fault
A detection unit 125 that detects the faulty line of the two lines by focusing on the outputs from 2, 123, and 124 and the fault phase.
, 126, and 127 make it possible to detect fault lines and fault phases.

(実施例) 先ず、直接接地系の平行2回線送電線において、系統事
故時の2回線各相毎の和電流に着目した場合、次の現象
がある。
(Example) First, in a directly grounded parallel two-circuit power transmission line, when focusing on the sum current of each phase of the two lines at the time of a system fault, the following phenomenon occurs.

1線地絡事故時は、事故電流は事故相に集中して健全相
には流れないので、健全線同相の変換分電流は零となる
0例えばa相1線地絡を例にとると、各相の電流変化分
は、 ■、□=I 、     I b□=IC1=0となる
。したがって各線間電流の変化分は、 1  1=lI   1=lIl、II   1=Oa
bT    caT        bcTとなる。即
ち、線間電流の変化分の最大相のものと各線間電流の値
の比は、健全線同相のみ他の場合゛とは大きく異なって
いることがわかる。ここでab相、ca相をIPUとす
ればbc相はopuとなる。又、2線以上の事故時には
各線間電流の変化分電流は、最大のものに比較すると約
50%以上の値となる。例えばbc相2線短絡の場合で
あると、各相電流は、 ■a■=0.Ib■=−IC丁=I 各線間電流は、 II    I=lI    1=lI+。
In the event of a single-wire ground fault, the fault current concentrates on the faulty phase and does not flow to the healthy phase, so the converted current of the healthy lines in the same phase becomes zero.For example, taking an A-phase single-wire ground fault as an example, The amount of current change in each phase is (1), □=I, Ib□=IC1=0. Therefore, the change in each line current is: 1 1=lI 1=lIl, II 1=Oa
bT caT bcT. That is, it can be seen that the ratio of the maximum phase of the change in the line current to the value of each line current differs greatly from that in the case where only the normal lines are in phase. Here, if the ab phase and the ca phase are IPU, the bc phase is opu. In addition, in the event of a fault involving two or more lines, the amount of change in current between each line will be approximately 50% or more compared to the maximum value. For example, in the case of a short circuit between two wires of the bc phase, the current of each phase is: ■a■=0. Ib■=-ICd=I The current between each line is II I=lI 1=lI+.

abT      caT II    I=211 bcT となり、各線間電流は最大線間相の電流に対して1/2
となる。即ち、bc相をIPUとすればab相=ca相
=1/2PUである。以上をまとめると、直接接地系に
おける系統事故時、事故分電流(変化分電流)は、事故
種別に従って第1表のようになる。
abT caT II I=211 bcT, and each line current is 1/2 of the maximum line phase current.
becomes. That is, if the bc phase is IPU, the ab phase=ca phase=1/2PU. To summarize the above, when a system fault occurs in a directly grounded system, the fault current (change current) is as shown in Table 1 according to the fault type.

第1表 (1’    )  ;I’  −1’   、  I
’  −1’  。
Table 1 (1');I'-1', I
'-1'.

bT       abbc 1’i’ a 1’l’、I’  ・各相変化分電流=〔1′よ〕aT
l   bT   aTl (1’   )   ;I:I’ユ〕のうちの最大のも
のbT   1laX a、b、c;相名称 である、第1表から上記のような検出を行なえば、2回
線送電線での1線地絡事故と2線以上の事故との識別で
きることがわかる。
bT abbc 1'i' a 1'l', I' ・Each phase change current = [1'] aT
l bT aTl (1') ;I:I'U] bT 1laX a, b, c; It can be seen that it is possible to distinguish between a single-wire ground fault accident and an accident involving two or more wires.

また2回線にまたがる多f!事故の場合両回線の各相事
故分電流は事故回線の方が大きいため、両回線各相電流
の差を自回線相電流で除した値は、第2表のようになる
Multi-f that spans two lines again! In the case of a fault, the fault current for each phase of both lines is larger in the fault line, so the value obtained by dividing the difference between the phase currents of both lines by the own line phase current is as shown in Table 2.

第2表 但し  I  :自回線事故分電流 入1 ■  =隣回線事故分電流 入2 第2表から上記のような検出を行なえば2回線多重事故
時の事故回線側の識別ができることがわかる。
Table 2 provides that: I: Current input for own line fault 1 ■ = Current input for adjacent line fault 2 It can be seen from Table 2 that if the above detection is performed, it is possible to identify the faulty line in the event of a two-line multiple fault.

第1図は本発明による事故相選別装置を説明するための
一実施例の機能ブロック図である。第1図において10
は事故相選別装置で、演算部11と判定部12とを備え
、演算部11には事故前後の電流の差電流を求める第1
の演算部111 、2回線和電流での線間電流の比を演
算する第2の演算部112゜2回線和電流での各相電流
の最大値と最小値の比を演算する第3の演算部113.
事故相について2回線各相電流の大きさを比較演算する
第4の演算部114.自回線の線間電流の比を演算する
第5の演算部115と、2回線での1相事故検出部12
1゜2相以上の事故検出部122 、2相以下の事故検
出部123 、2回線での3相事故検出部124.隣回
線事故検出部125.自回線1相事故検出部126.自
回線2相以上事故検出部127と、1回線事故での1相
事故検出部128 、2相以上事故検出部129とから
構成されている。
FIG. 1 is a functional block diagram of an embodiment of the accident phase sorting device according to the present invention. 10 in Figure 1
is a fault phase sorting device, which includes a calculation section 11 and a determination section 12, and the calculation section 11 includes a first circuit that calculates the difference current between the currents before and after the accident.
A calculation unit 111, a second calculation unit 112 that calculates the ratio of the line current in the two-line sum current, a third calculation unit that calculates the ratio of the maximum value and minimum value of each phase current in the two-line sum current. Part 113.
A fourth calculation unit 114 that compares and calculates the magnitude of each phase current of the two circuits for the fault phase. A fifth calculation unit 115 that calculates the ratio of line currents of own lines, and a one-phase fault detection unit 12 in two lines
1° 2-phase or more fault detection unit 122, 2-phase or less fault detection unit 123, 2-line 3-phase fault detection unit 124. Adjacent line accident detection unit 125. Own line 1 phase fault detection unit 126. It is composed of an own line 2-phase or more fault detection section 127, a 1-phase fault detection section 128 for one line fault, and a 2-phase or more fault detection section 129.

なお、(工よ)は各回線毎の各相電流、(IA)は各線
間電流、(I  )は両回線の各相和電流。
In addition, (work) is each phase current of each line, (IA) is each line current, and (I) is each phase sum current of both lines.

人■ (I   >は両回線の各線間和電流である。person■ (I> is the sum of current between each line of both lines.

Δ■ 第2図は相選別動作説明のフローチャートであり、この
場合は事故相選別のみを示す。系統事故発生時は直ちに
事故前電流を記憶すると共に、下記に述べる判定式によ
り事故相選別を行なう。
Δ■ FIG. 2 is a flowchart illustrating the phase selection operation, and in this case only the accident phase selection is shown. When a system fault occurs, the pre-fault current is immediately memorized, and fault phase selection is performed using the judgment formula described below.

先ず、ステップS21では記憶された2回線の事故前潮
流を事故時の電流から差し引いた変化分電流を2回線各
相和電流f′よ1とその線間電流分■′、各回線各相電
流分1’   、  ”、t2 、自回Δ■     
     人1 線の線間電流分■′ユそれぞれを演算する。なおダッシ
ュ′を付加した記号は変化分電流であることを示してい
る。
First, in step S21, the changed current obtained by subtracting the stored pre-failure power flow of the two lines from the current at the time of the fault is calculated as the sum of each phase current f' for the two lines, 1, its interline current ■', and each phase current for each line. Min1', ”, t2, own rotation Δ■
Person 1 Calculate each of the line-to-line currents. Note that the symbol with a dash ′ indicates a changed current.

ステップS22は2回線系統が平行回線運用が否かの選
択処理である。この場合は予め2回線運用時に設定して
もよいし、相互インダクタンス(ZH)が設定されてい
るがどうがで判定するようにしてもよい。2回線が平行
回線運用であるとステップS23において、2回線各相
電流の和の最大のもの〔I′〕   と最小のもの人1
1a× 〔I′〕  ・ 及び2回線各相電流の和がら線間人T
  nun 電流の最大のもの〔I′〕   を決定する。スΔT 
  nax を求める。ステップS26では各回線の各相電流f’、
I”   より 大1   人2 める。ステップ5241ではXlがKTより大きいが否
かを判定し、Xl<K、であればステップ5291にて
2回線で〔1′〕   相のl相事故と判定部T  l
aX する。ス、XT≧に、であればステップ5251にてX
rがKrより大きいが否かを判定し、X「くKFであれ
ばステップ5292にて2回線で〔I′〕   相に関
連する2相事故を判定する。
Step S22 is a selection process for determining whether or not the two line systems operate in parallel. In this case, it may be set in advance during two-line operation, or the mutual inductance (ZH) may be set and determined. If the two lines are in parallel line operation, in step S23, the maximum sum [I'] and the minimum sum of the phase currents of the two lines are determined.
1a × [I'] ・And the sum of the currents of each phase of the two lines is the line-to-line conductor T
Determine the maximum nun current [I']. SΔT
Find nax. In step S26, each phase current f' of each line,
I” is larger than 1 person 2. In step 5241, it is determined whether or not Xl is larger than KT. If Xl<K, in step 5291, it is determined that there is a phase l fault in the [1'] phase in 2 lines. Department T l
aX Do. If XT≧, then in step 5251
It is determined whether or not r is greater than Kr, and if X'KF, then in step 5292 a two-phase fault related to the [I'] phase is determined in two lines.

ΔT   nax Xr≧に、であればステップ5293にて2回線で3相
全相の事故と判定する。ステラ75261では事故相に
ついてYがKdより大きいが否かを判定し、YAK、で
あればステップ8305にて隣回線事故と判定する。Y
≧Kdであればステップ5262にて(Y>K、)の相
が2相以上あるがどうかを判定し、CY>K、)の相が
2相以上の場合ステップ3304にて自回線の2線以上
の事故とし、[Y>Kd)の相が1相の場合ステップ3
303にて自回線の1線地絡事故と判定する。
If ΔT nax Stellar 75261 determines whether or not Y is greater than Kd for the fault phase, and if YAK, it is determined in step 8305 that there is an adjacent line fault. Y
If ≧Kd, it is determined in step 5262 whether there are two or more phases of (Y>K,), and if there are two or more phases of (CY>K,), in step 3304 the two lines of the own line are determined. If the above accident is assumed and the phase of [Y>Kd) is one phase, step 3
In step 303, it is determined that there is a ground fault in one line of the own line.

ステップS22において、2回線運用でないと判断され
ると、ステップ327にて自回線の線間電流の最大のも
の〔1′〕   を決定する。ステップΔ  laX プ5281ではXがKより小さいか否かを判定し、Xく
Kであればステップ5301へ移って1線地絡事故と判
定し、X>Kであれば、ステップ5302へ移って2線
以上の事故と判定する。そして判定条件は下記のように
なる。
If it is determined in step S22 that the two-line operation is not performed, the maximum line-to-line current [1'] of the own line is determined in step 327. In step ΔlaX step 5281, it is determined whether or not X is smaller than K. If It is determined that the accident involved two or more lines. And the judgment conditions are as follows.

ここでに1及びKは例えば0.2〜0.3とする。Here, 1 and K are, for example, 0.2 to 0.3.

また[1’   )  、  、(1’  )  ・ 
は、それぞれΔT   l1nn       Δ  
l1In(1’   )、(1’ユ〕のうちの最小のも
のである。
Also [1') , (1') ・
are respectively ΔT l1nn Δ
This is the smallest of l1In(1') and (1'Y).

Δ■ そして、(1) 、 (4)式が成立するのは2回線合
計で1線地絡(同各相事故含む)事故の場合であり、2
相以上の事故の場合は成立しない。ス、KFは3相事故
か否かの識別であり、3相事故時に生じる各相電流の不
平衡分を考えた値とする。
Δ■ Then, equations (1) and (4) hold true in the case of a one-wire ground fault (including faults in the same phase) for two circuits in total, and 2
This does not hold true in the case of an accident involving more than one phase. KF and KF are used to identify whether or not it is a three-phase fault, and are values that take into account the unbalanced currents in each phase that occur in the event of a three-phase fault.

例えばに−よ0.6〜0.8とする。K、は、例えば−
0,15〜−0,3とする。[1’よ、]は自回線の1
tIA電流であり〔1′)、2〕は隣回線の@電流であ
る。
For example, it is set to 0.6 to 0.8. K, for example -
0.15 to -0.3. [1'yo,] is 1 of own line
The tIA current is [1'), and 2] is the @ current of the adjacent line.

もし、自回線のある相に事故があり隣回線のその相に事
故がない場合は、(1’)、1) > CI’、2)で
あり、Y>Oとなる。両回線とも同じ相が事故の場合同
一時点の事故では、 〔■′〕中(1’よ2〕であり、やはりY>0と人1 なる、自回線に事故がなく隣回線に事故がある場合は、
(I’   ) < [1’よ。]となり、Y<Oと人
1 なる。
If there is a fault in a certain phase of the own line and there is no fault in that phase of the adjacent line, (1'), 1) >CI', 2), and Y>O. If there is an accident on the same phase on both lines, the accident at the same time is [■'] medium (1' yo 2), and Y > 0 and person 1. There is no accident on the own line and there is an accident on the adjacent line. In case,
(I') <[1'. ], and Y<O and person 1.

このように自回線に事故がある場合は必ずY〉0となり
、事故がない場合はY<Oとなる。但し、判定値に、は
対向端至近端事故時の両回線インダクタンスのバラツキ
、装置の誤差などを考慮して裕度を持たせる。これは自
回線事故でないとき自回線事故と判定しても故障点の標
定値は自回間長を越え、棄却されるため問題はないが、
自回線事故なのに自回線事故でないと判定して標定しな
い場合は、致命的な問題となるためである。
In this way, if there is an accident on the own line, Y>0, and if there is no accident, Y<O. However, the judgment value is given a margin in consideration of variations in the inductance of both lines in the event of an accident at the opposite end and the nearest end, errors in the equipment, etc. This is not a problem because even if it is determined that the fault is a fault on the own line when it is not a fault on the own line, the orientation value of the fault point exceeds the length between the own lines and the fault is rejected.
This is because if it is determined that it is not an own-line accident and the location is not determined even though it is an own-line accident, it will be a fatal problem.

(1)式、(4)式が成立するのは1線地絡事故の場合
であり、このとき事故相は〔■′〕   の摺入  1
aX となる。〔I′]   は(1’よ〕のうちの最大の人
・18X ものである。また事故相は[1’)、  に関係しΔ 
l1In ない相であるとしても同じ結果が得られる。
Equations (1) and (4) hold true in the case of a single-wire ground fault, and in this case, the fault phase is [■'] 1
It becomes aX. [I'] is the largest person of (1'), 18X. Also, the accident phase is [1'], which is related to Δ
The same result can be obtained even if the phase does not contain l1In.

(5)式と(6)式が成立するのは2線以上の事故の場
合で事故相は(1’A、)スは[1’ユ〕の最大相であ
る。
Equations (5) and (6) hold true in the case of an accident involving two or more lines, and the accident phase is (1'A,) is the maximum phase of [1'Y].

(3)式で述べた事故回線の識別方法としては事故相に
ついて次の式で与えても良い。
As a method for identifying the faulty line described in equation (3), the fault phase may be given by the following equation.

ここでKdlは例えば1.1〜1.5とする。(7)式
は自回線のみ事故であれば(1’   ) > CI’
よ、〕人1 でありYl〉1となり、両回線の事故であれば〔1′〕
中(1’よ2〕でありY1中1、自回人1 線に事故がなく、隣回線に事故がある場合は(1’  
 ) < (1’よ、〕となる。
Here, Kdl is set to, for example, 1.1 to 1.5. Equation (7) is (1') >CI' if only the own line has an accident.
yo, [person 1] and Yl〉1, and if there is an accident on both lines, [1']
middle (1' yo 2), Y1 middle 1, own line 1 If there is no accident on the line and there is an accident on the adjacent line, (1'
) <(1', ).

人1 第3図は事故相検出装置によって事故相が検出された場
合、これを故障点標定に適用した場合の動作を説明する
フローチャートである。第3図においてステップ831
〜S34までは前記した事故相選別と同様である。ステ
ップ834にて事故相が決定された場合に、ステップS
35以降の故障点標定演算(従来公知)を行なう。
Person 1 FIG. 3 is a flowchart illustrating the operation when a fault phase is detected by the fault phase detection device and this is applied to failure point location. Step 831 in FIG.
The process from S34 to S34 is the same as the above-mentioned accident phase selection. If the accident phase is determined in step 834, step S
35 and subsequent fault point location calculations (conventionally known) are performed.

[発明の効果] 以上説明した如く、本発明によれば1回線時の事故は勿
論のこと、平行2回線時の2回線にまたがる多重事故時
であっても正確な事故相選別ができ、事故点までの精度
の良い故障点標定も可能となる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to accurately classify fault phases, not only in the case of an accident in one line, but also in the case of multiple faults spanning two lines in the case of two parallel lines. It is also possible to locate fault points with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による事故相選別装置を説明するための
一実施例の機能ブロック図、第2図は相選別動作説明の
フローチャート、第3図は故障点標定を行なう場合のフ
ローチャートの例、第4図はマイクロコンピュータを使
用した故障点標定装置の構成例を示す図である。 10・・・事故相選別装置  11・・・演算部12・
・・判別部
FIG. 1 is a functional block diagram of an embodiment for explaining the fault phase sorting device according to the present invention, FIG. 2 is a flowchart for explaining phase sorting operation, and FIG. 3 is an example of a flowchart for locating a fault point. FIG. 4 is a diagram showing an example of the configuration of a failure point locating device using a microcomputer. 10... Accident phase sorting device 11... Arithmetic unit 12.
・Discrimination part

Claims (1)

【特許請求の範囲】 送電線に流れる事故電流値を基に、以下に示す各手段を
備えて送電線事故時の事故相を判別することを特徴とす
る事故相選別装置。 (1)事故前後の差電流より各回線毎の各相電流、各線
間電流、両回線の各相和電流及び両回線の各線間和電流
を演算する差電流演算手段。 (2)各線間電流を用いて、この最大値と各線間電流の
比を求める第1の演算手段と、前記第1の演算手段にて
求めた比が所定値より小さい場合に2回線での1線地絡
事故とし、3つの線間相の全てが所定値より大きい場合
に2回線での2線以上の事故と判定する第1の判定手段
。 (3)2回線における各相電流の最大値と最小値の大き
さの比を求める第2の演算手段と、前記第2の演算手段
にて求めた比が所定値より小さい場合に2回線での2相
以下の事故とし、所定値より大きい場合に2回線での3
相事故と判定する第2の判定手段。 (4)2回線の各相事故分電流の差と自回線事故分電流
との比を求める第3の演算手段と、前記第3の演算手段
にて求めた比が全ての事故相について所定値より小さい
場合に隣回線事故とし、1つの事故相について所定値よ
り大きい場合に自回線の1相事故とし、2つ以上の事故
相について所定値より大きい場合に自回線の2相以上の
事故と判定する第3の判定手段。
[Scope of Claims] A fault phase sorting device characterized by comprising the following means to determine the fault phase at the time of a power transmission line fault based on the fault current value flowing through the power transmission line. (1) Difference current calculation means for calculating each phase current of each line, each line current, each phase sum current of both lines, and each line sum current of both lines from the difference current before and after the accident. (2) a first calculation means that uses each line current to calculate the ratio between this maximum value and each line current; and if the ratio calculated by the first calculation means is smaller than a predetermined value, A first determining means that determines a one-line ground fault fault and determines a two-wire or more fault in two lines when all three inter-line phases are larger than a predetermined value. (3) a second calculating means for calculating the ratio between the maximum value and the minimum value of each phase current in the two lines; and when the ratio calculated by the second calculating means is smaller than a predetermined value, 2-phase or less, and if it is larger than the specified value, a 3-phase accident on 2 lines
A second determining means for determining a mutual accident. (4) a third calculating means for calculating the ratio between the difference between the fault currents of each phase of the two lines and the own line fault current, and the ratio obtained by the third calculating means is set to a predetermined value for all fault phases; If it is smaller than the specified value, it is considered an adjacent line fault; if one fault phase is larger than a predetermined value, it is considered a one-phase fault in the own line, and if two or more fault phases are larger than the predetermined value, it is considered a fault in two or more phases of the own line. Third determining means for determining.
JP4115389A 1989-02-21 1989-02-21 Accident phase sorting device Expired - Lifetime JP2904497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4115389A JP2904497B2 (en) 1989-02-21 1989-02-21 Accident phase sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115389A JP2904497B2 (en) 1989-02-21 1989-02-21 Accident phase sorting device

Publications (2)

Publication Number Publication Date
JPH02223331A true JPH02223331A (en) 1990-09-05
JP2904497B2 JP2904497B2 (en) 1999-06-14

Family

ID=12600477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115389A Expired - Lifetime JP2904497B2 (en) 1989-02-21 1989-02-21 Accident phase sorting device

Country Status (1)

Country Link
JP (1) JP2904497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190527A (en) * 1989-12-13 1991-08-20 Toshiba Corp Accident phase sorter
JP2010268658A (en) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp Accident phase selector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190527A (en) * 1989-12-13 1991-08-20 Toshiba Corp Accident phase sorter
JP2010268658A (en) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp Accident phase selector

Also Published As

Publication number Publication date
JP2904497B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
JPH02223331A (en) Accident phase detection device
JP3652584B2 (en) Leakage detection protection method and apparatus for low-voltage ground circuit
JPH03190527A (en) Accident phase sorter
JPS63217917A (en) Failed phase selector
JPH0249175A (en) Accident phase selecting device
JP2003009381A (en) Troue phase selector
JPH03107776A (en) Method and device for locating fault point
JPH07107653A (en) Regular supervisory system for single phase
KR0146148B1 (en) Input circuit of 3phase overcurrent relay
JP2692163B2 (en) Fault locator for power transmission system
JPH03211476A (en) Short-circuit fault point locating method for three-terminal and parallel-two-line power transmission line
JP2818125B2 (en) Three-phase four-wire ground fault detector
JPH02116763A (en) Fault point locator
JP2794237B2 (en) Fault detection method for power cable lines
JP2578550B2 (en) Ground fault line selection protection relay
JPH073449B2 (en) Ground fault current direction determination device
JPH08189944A (en) Method for detecting and utilizing zero-phase current in parallel two-circuit transmission line
JPH0370425A (en) Circuit selective relay
JPH04223280A (en) Detecting fault section in power cable
JP2000166082A (en) Short-circuit directional relay
JPH09166639A (en) Accident point locating system
JPS63124970A (en) Digital fault locator
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
JPH01164222A (en) Directional relay

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

EXPY Cancellation because of completion of term