JPH0370425A - Circuit selective relay - Google Patents

Circuit selective relay

Info

Publication number
JPH0370425A
JPH0370425A JP20133389A JP20133389A JPH0370425A JP H0370425 A JPH0370425 A JP H0370425A JP 20133389 A JP20133389 A JP 20133389A JP 20133389 A JP20133389 A JP 20133389A JP H0370425 A JPH0370425 A JP H0370425A
Authority
JP
Japan
Prior art keywords
accident
phase
zero
polarity
quantities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20133389A
Other languages
Japanese (ja)
Inventor
Toshiaki Senba
船場 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20133389A priority Critical patent/JPH0370425A/en
Publication of JPH0370425A publication Critical patent/JPH0370425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To operate a circuit selective relay device normally regardless of an accident mode by correcting the phase of zero-phase active-component currents after an accident by using the phase difference of the quantities of polarity before the accident at every phase and the quantities of polarity after the accident. CONSTITUTION:The absolute values of each quantity of electricity and phase are obtained by an arithmetic processing section 20. The quadrature voltage of the quantities of polarity is generated in 21, and zero-phase active-component currents at every phase are arithmetically operated by 22 on normalcy. When an accident is generated, the generation of the accident is detected by 23, and quadrature voltage before the accident is stored in 24. The phase of zero-phase active-component currents after the accident is corrected so as to be made the same as the phase of the phase of the quantities of polarity before the accident by phase difference (the changing section of the phase of the quantities of polarity by the accident) measuring quadrature voltage stored in 24 and quadrature voltage after the accident by 25. Zero-phase active-component currents after the accident are arithmetically operated while using the corrected value as the quantity of correction. Accordingly, normal operation is enabled in a circuit selective relay even to an accident, in which the phase of the quantities of polarity is changed before and after the accident by a two-wire ground-fault accident, etc.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分!l’F) 本発明は回線選択継電装置の改良に係り、特に零相循環
電流の存在下においても事故回線を確実に選択しゃ断で
きるようにした回線選択継電装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application! l'F) The present invention relates to an improvement of a line selection relay device, and in particular, to securely protect a faulty line even in the presence of zero-sequence circulating current. The present invention relates to a line selective relay device that is capable of selectively cutting off the line.

(従来の技術) 並行2回線を代表とする並行多回線の電力系統において
は、平常時においてもかなりの零相電流が循環している
ことが多い。これは各相の自己インピーダンス及び各相
間における相互インピーダンスの不平衡によるもので、
この零相循環電流が事故時の地絡電流に比して無視し得
ない場合(これは特に高抵抗接地方式の電力系統で生じ
やすい)には、保護リレーの検出感度に影響を与え、事
故方向の誤認等を生ずる虞れがあり、保護動作を高感度
にできないという問題点がある。
(Prior Art) In a parallel multi-circuit power system, typically two parallel lines, a considerable amount of zero-sequence current often circulates even during normal times. This is due to the unbalance of the self impedance of each phase and the mutual impedance between each phase.
If this zero-sequence circulating current cannot be ignored compared to the ground fault current at the time of an accident (this is particularly likely to occur in power systems with high resistance grounding), it may affect the detection sensitivity of the protective relay and cause an accident. There is a risk of misperception of direction, etc., and there is a problem that the protection operation cannot be made highly sensitive.

かかる問題点を解決するため、並行2回線送電線の地絡
保護用の回線選択継電装置では、従来から事故前におけ
る両回線電流の零相差電流の値を記憶しておき、事故発
生時にその後の零相差電流と前記記憶値との差から事故
回線を判別するディジタル方式などが実用化されている
In order to solve this problem, line selection relay devices for ground fault protection of parallel two-line transmission lines have traditionally stored the value of the zero-sequence difference current between the two line currents before an accident, and A digital method has been put into practical use that determines a faulty line based on the difference between the zero-sequence difference current and the stored value.

従来のディジタルリレ一方式の回!I選択リレーには、
零相有効分電流の事故前後の差分を用いて事故回線を選
択するものであり、零相有効分電流を求める極性量とし
て当該事故相と直角位相の関係にある2相間電圧を使用
している。即ち、次式により零相有効分電流を演算して
いる。又、この様相を図示すると第3図の如くなる。
Conventional digital relay one type time! For I selection relay,
The fault line is selected using the difference in the zero-sequence active component current before and after the fault, and the voltage between two phases that is in quadrature with the fault phase is used as the polarity quantity for determining the zero-sequence active component current. . That is, the zero-sequence effective current is calculated using the following equation. Moreover, this aspect is illustrated in FIG. 3.

a相 I  =I  −CO3θ8 0a    O θ =1 へVbcZ90゜ O b相 I  −I  −cosθb b−0 θb ”” ’ o AVcaZ90゜a相 I。c=
Io−cosθ0 θ =1 ^V、bZ90゜ O 現状の演算式の極性量は、1つの平常時の零相循環電流
を求める必要があり、常時出力のあるもの、又、もう1
つは1線地絡事故時に事故の影響を受けないものが必要
なことから、直角位相電圧を使用している。
a phase I = I −CO3θ8 0a O θ =1 to VbcZ90°O b phase I −I −cosθb b−0 θb ”” ' o AVcaZ90°a phase I. c=
Io-cosθ0 θ = 1 ^V, bZ90゜O The polarity of the current arithmetic equation requires finding one normal zero-phase circulating current, and one that has a constant output, and one that has a constant output.
One uses quadrature voltage because it requires something that will not be affected by a single-wire ground fault.

(発明が解決しようとする課題) ところで前述の演算式を使用した零相有効分電流の事故
前後の差分により事故関係を選択する回線選択リレーで
は、1線地絡事故を動作対象としているため、内部1線
地絡事故での正常動作又は、外部事故での正常不動作は
十分期待できるが、2線地絡事故などが起きた場合には
、極性量が変化するため、誤動作を生じる虞れがある。
(Problem to be Solved by the Invention) By the way, the line selection relay that selects the fault relationship based on the difference in the zero-sequence active component current before and after the fault using the above-mentioned arithmetic formula is intended for operation in single-line ground faults. Normal operation is fully expected in the event of an internal 1-wire ground fault or normal non-operation in the event of an external fault, but if a 2-wire ground fault occurs, the amount of polarity will change, so there is a risk of malfunction. There is.

この様相を第4図に示す、一般に、2線地絡事故などの
短絡事故では、不足電圧リレー等による短絡優先回路が
設けられており、これによりロックされるが、短絡優先
が掛らない場合、誤動作に至る虞れがある。これを第4
図を参照して説明する。
This situation is shown in Figure 4. Generally, in the event of a short circuit accident such as a two-wire ground fault, a short circuit priority circuit is provided using an undervoltage relay, etc., and the circuit is locked by this, but if short circuit priority is not applied. , there is a risk of malfunction. This is the fourth
This will be explained with reference to the figures.

第5図は並行2回線の系統構成例を示すものである。図
示の系統においては、背後に大電源48を有する自端電
気所母線41aと対向端電気所母線41bとの間に、両
端にしゃ断器42a 、 42cを有する第1の送電線
44aと、両端にしゃ断器42b。
FIG. 5 shows an example of a system configuration of two parallel lines. In the illustrated system, a first power transmission line 44a having circuit breakers 42a and 42c at both ends is provided between a power station bus 41a at its own end, which has a large power source 48 behind it, and a power station bus 41b at the opposite end. Circuit breaker 42b.

42dを有する第2の送電線44bとが並行2回線を構
成するように設けられている。目端電気所母線41a側
において送電線44a 、 44bを流れる回線電流I
、I、が、それぞれ電流変成器43a 、 43bによ
って検出され、その差電流(I  −I。
42d and a second power transmission line 44b are provided so as to constitute two parallel lines. The line current I flowing through the power transmission lines 44a and 44b on the electric station bus 41a side
, I are detected by the current transformers 43a and 43b, respectively, and the difference current (I - I) is detected by the current transformers 43a and 43b, respectively.

I )が回線選択リレー45に入力電流I、として導入
される。又、母線の電圧を電圧変成器46によって検出
され、その電圧を不足電圧リレー47に導入される。こ
の系統において対向端電気所母線以遠のF点で2線地絡
事故が起きた場合、電源が大きいことから、目端電気所
を線41aの電圧が低下しない。このため、母線の電圧
を導入している不足電圧リレー47は動作せず、短絡優
先ロックは行なわれない。
I) is introduced to the line selection relay 45 as an input current I. Further, the voltage of the bus bar is detected by a voltage transformer 46 and the voltage is introduced to an undervoltage relay 47 . In this system, if a two-wire ground fault occurs at point F, which is farther from the opposite end electrical station bus bar, the voltage of the line 41a at the opposite end electrical station will not drop because the power source is large. Therefore, the undervoltage relay 47 that introduces the voltage of the bus does not operate, and short-circuit priority locking is not performed.

一方、零相有効分電流の事故前後の差分により、事故回
線を選択する回線選択リレーは、第4図に示す如く、2
線地絡事故が起きると、極性量が変化し、事故前と事故
後の零相有効分電流がみかけ上置化したようになり、誤
動作の可能性がある。
On the other hand, the line selection relay that selects the faulty line based on the difference in the zero-sequence active current before and after the fault operates as shown in Figure 4.
When a line ground fault occurs, the amount of polarity changes, and the zero-sequence active current before and after the accident appears to be higher than the other, leading to the possibility of malfunction.

以上より短絡優先ロックが行なわれない場合でも、誤動
作しないような回線選択リレーとする必要がある。
From the above, it is necessary to provide a line selection relay that will not malfunction even when short-circuit priority locking is not performed.

本発明は従来装置における上述の如き不都合を除去すべ
くなされたもので、事故モードに係わらず、正常な動作
を行なうことができる回線選択継電装置を提供すること
を目的としている。
The present invention has been made to eliminate the above-mentioned disadvantages of conventional devices, and an object of the present invention is to provide a line selection relay device that can operate normally regardless of the fault mode.

[発明の構成] (課題を解決するための手段〉 本発明の構成を第1図を用いて説明する。[Structure of the invention] (Means for solving problems) The configuration of the present invention will be explained using FIG. 1.

第1図に示されるように、各系統電気量をリレーに必要
な信号に変換する演算処理と、事故の検出を行なう事故
検出部と、各相ごとに事故発生前の極性量をメモリする
事故発生前極性量メモリ部と、メモリされた各相ごとの
事故発生前の極性量と事故発生後の極性量との位相差〈
事故による極性量の位相の変化分)を計測する位相差計
測部と、検出された位相差を用いて事故発生後の零相有
効分電流の位相を補正する極性量補正部とから構成した
As shown in Figure 1, there is a calculation process that converts the amount of electricity in each system into the signal necessary for the relay, an accident detection section that detects an accident, and an accident detector that stores the polarity amount before the accident occurs for each phase. The pre-occurrence polarity amount memory section and the phase difference between the memorized polarity amount before the accident occurrence and the polarity amount after the accident occurrence for each phase are stored.
It consists of a phase difference measurement section that measures the amount of change in the phase of the polarity amount due to an accident), and a polarity amount correction section that uses the detected phase difference to correct the phase of the zero-sequence effective current after the accident occurs.

(作 用〉 したがって、事故発生後も事故前と同じ位相の極性量で
零相有効分電流を演算することができ、事故により事故
前後に極性量の位相が変化する事故に対しても、回線選
択リレーは正常動作が可能となる。
(Function) Therefore, even after an accident occurs, the zero-sequence active current can be calculated using the same polarity amount as before the accident, and even in the event of an accident in which the phase of the polarity amount changes before and after the accident, the line The selection relay can now operate normally.

(実施例) 先ず、説明の都合上、第6図によってマイクロコンピュ
ータを使用した回線選択継電装置の構成図を説明する。
(Example) First, for convenience of explanation, a configuration diagram of a line selection relay device using a microcomputer will be described with reference to FIG.

第6図において補助PCTを集中化して収納している入
力変換器61を介して電力系統の電圧、電流が取り込ま
れ、その電圧、電流の商用周波数成分のみを取り出すフ
ィルタ(Fl)でフィルタリングが行なわれる。各フィ
ルタ出力はアナログ信号であるため、これをサンプルホ
ールド回路(S/I+ )63とマルチプレクサ(HP
X)64を介してアナログ/ディジタル変換器(A/D
 ) 65へ入力し、ディジタル信号に変換する。ここ
で変換された電圧、電流のディジタル信号は、ダイレク
トメモリアクセス(OH八)66を介してデータメモリ
(RAM ) 67に一時点に記憶される。CPU68
はRA)467に記憶されている電流、電圧データをリ
ード・オンリ・メモリ(ROM)69に記憶されている
処理手順に従ってディジタル演算処理をし、回線選択リ
レーの演算を行なう。70は入出力装置である。
In Fig. 6, the voltage and current of the power system are taken in through the input converter 61 that centralizes and houses the auxiliary PCT, and is filtered by a filter (Fl) that extracts only the commercial frequency components of the voltage and current. It will be done. Since each filter output is an analog signal, it is sent to the sample and hold circuit (S/I+) 63 and the multiplexer (HP
X) 64 to analog/digital converter (A/D
) 65 and converts it into a digital signal. The digital signals of voltage and current converted here are stored at one point in a data memory (RAM) 67 via a direct memory access (OH8) 66. CPU68
The current and voltage data stored in the RA) 467 are digitally processed according to the processing procedure stored in the read-only memory (ROM) 69, and the line selection relay is operated. 70 is an input/output device.

ここでI!0869に記憶されている零相有効分電流の
事故前後の差分により、事故回線を選択する回線選択リ
レーの演算を、第2図で示す構成とする。
Here I! The calculation of the line selection relay that selects the faulty line based on the difference between the zero-sequence effective currents stored in 0869 before and after the fault is configured as shown in FIG.

第2図は本発明を実現する具体的な手段例を示したもの
である。
FIG. 2 shows a specific example of means for realizing the present invention.

第2図において20は電力系統の電圧、電流とディジタ
ル量に変換された後の信号を使用して各電気量の絶対値
と位相を求める演算処理部である。
In FIG. 2, reference numeral 20 denotes an arithmetic processing unit that calculates the absolute value and phase of each electrical quantity using the voltage, current, and signals of the power system converted into digital quantities.

21では各相の零相有効分電流を演算するのに使用する
極性量の直角位相電圧を作り、平常時は22で各相ごと
の零相有効分電流を演算する。
At 21, a quadrature voltage having a polarity amount used to calculate the zero-sequence effective current of each phase is created, and at 22 during normal times, the zero-sequence effective current for each phase is calculated.

一方、事故発生時は、事故発生を23で検出し、先ず、
24で事故前の直角位相電圧をメモリする。
On the other hand, when an accident occurs, the occurrence of the accident is detected at 23, and first,
24, the quadrature voltage before the accident is memorized.

そして25にて24でメモリした直角位相電圧と事故後
の直角位相電圧との位相差を計測し、事故後の直角位相
電圧を計測した位相差(事故による極性量の位相の変化
分)で事故前の極性量の位相と同じになるように補正し
、これを極性量として事故後の零相有効分電流を演算す
る。
Then, in step 25, the phase difference between the quadrature phase voltage memorized in step 24 and the quadrature voltage after the accident was measured, and the phase difference (change in phase of the polarity amount due to the accident) of the quadrature phase voltage after the accident was calculated. Correct it so that it is the same as the phase of the previous polarity amount, and use this as the polarity amount to calculate the zero-sequence effective current after the accident.

なお、補正する位相差を求めるには事故により発生した
零相電圧と事故前極性量のメモリとを使用しても良い。
Note that in order to obtain the phase difference to be corrected, the zero-sequence voltage generated due to the accident and the memory of the polarity amount before the accident may be used.

ス、ここで事故前と事故後の零相有効分電流で変化分を
演算する手段は、本発明と直接関係ないので、図示から
は省略している。
Here, the means for calculating the change in the zero-sequence effective current before and after the accident is not directly related to the present invention, so it is omitted from the illustration.

[発明の効果] 以上説明したように、本発明によれば、事故前後の零相
有効分電流の差分より事故回線と選択する回線選択リレ
ーの問題となる事故で、極性量が事故前後で変化しない
ものとすることができ、事故に関与しない極性量となる
。従って事故モードに係わらず、零相有効分電流の変化
を正確に検出でき、外部事故での回線選択リレーの誤動
作を防止することができる。
[Effects of the Invention] As explained above, according to the present invention, the amount of polarity changes before and after the fault in a fault that becomes a problem between the fault line and the line selection relay that selects the fault line based on the difference between the zero-sequence active component current before and after the fault. This is a polar quantity that does not contribute to accidents. Therefore, regardless of the fault mode, changes in the zero-sequence active current can be accurately detected, and malfunction of the line selection relay due to an external fault can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するためのブロック図、第2図は
本発明の実施例ブロック図、第3図は零相電流と極性量
との関係を示す各相等のベクトル図、第4図はab相2
相地絡時の零相電流と極性量との関係を示すa和のベク
トル図、第5図は短絡優先を説明するための系統接続図
、第6図はマイクロコンピュータを使用した回線選択継
電装置の構成例を示す図である。 1・・・演算処理部 2・・・リレー演算ブロック 3・・・事故検出部 4・・・事故発生前極性量メモリ部
Figure 1 is a block diagram for explaining the present invention, Figure 2 is a block diagram of an embodiment of the present invention, Figure 3 is a vector diagram of each phase showing the relationship between zero-sequence current and polarity, and Figure 4. is ab phase 2
A vector diagram of the sum of a showing the relationship between zero-sequence current and polarity at the time of a phase-to-ground fault, Figure 5 is a system connection diagram to explain short-circuit priority, and Figure 6 is a line selection relay using a microcomputer. FIG. 2 is a diagram showing an example of the configuration of a device. 1... Arithmetic processing section 2... Relay computing block 3... Accident detection section 4... Pre-accident polarity amount memory section

Claims (1)

【特許請求の範囲】[Claims] 高抵抗接地系統の並行2回線送電線での各回線間の零相
有効分電流の事故前後の差分により、事故回線を選択す
る地絡回線選択継電装置において、事故発生前の零相有
効分電流導出極性量を記憶する第1の手段と、前記事故
発生前の極性量と事故発生後の零相有効分電流導出極性
量としての電気量との位相差を検出する第2の手段と、
第2の手段にて得られた位相差を用いて事故発生後の零
相有効分電流導出極性量の位相を補正する第3の手段と
を備えたことを特徴とする回線選択継電装置。
In a ground fault line selection relay device that selects a fault line based on the difference in the zero-sequence active current between each circuit before and after a fault in a parallel two-circuit transmission line in a high-resistance grounding system, the zero-sequence active current before the fault occurs a first means for storing a current derived polarity amount; a second means for detecting a phase difference between the polarity amount before the accident occurrence and the electrical quantity as the zero-sequence effective part current derived polarity amount after the accident occurrence;
and third means for correcting the phase of the zero-sequence active component current derived polarity amount after an accident occurs, using the phase difference obtained by the second means.
JP20133389A 1989-08-04 1989-08-04 Circuit selective relay Pending JPH0370425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20133389A JPH0370425A (en) 1989-08-04 1989-08-04 Circuit selective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20133389A JPH0370425A (en) 1989-08-04 1989-08-04 Circuit selective relay

Publications (1)

Publication Number Publication Date
JPH0370425A true JPH0370425A (en) 1991-03-26

Family

ID=16439278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20133389A Pending JPH0370425A (en) 1989-08-04 1989-08-04 Circuit selective relay

Country Status (1)

Country Link
JP (1) JPH0370425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204055A (en) * 2012-01-13 2013-07-17 日信工业株式会社 Support structure for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204055A (en) * 2012-01-13 2013-07-17 日信工业株式会社 Support structure for vehicle

Similar Documents

Publication Publication Date Title
US5773980A (en) One-terminal fault location system that corrects for fault resistance effects
US4996624A (en) Fault location method for radial transmission and distribution systems
US5956220A (en) Adaptive distance protection system
US4281386A (en) Systems for detecting faults in electric power systems
US5783946A (en) Fault type classification algorithm
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
US20180278041A1 (en) Protective relay device
US20020080535A1 (en) Multiple ground fault trip function system and method for same
US20230129666A1 (en) Coordination of protective elements in an electric power system
JPH0370425A (en) Circuit selective relay
JP3832700B2 (en) Busbar protection relay device
JP3792893B2 (en) Busbar protection relay device
EP0155367B1 (en) Short-circuit distance relay
JP3560297B2 (en) Ground fault distance relay device
JPH11191922A (en) Digital ground distance relaying device
JPH0442726A (en) Ground fault indicator for distribution line
JP3450445B2 (en) Ground fault detection relay
JP3503491B2 (en) Ground fault fault locating device for two parallel transmission lines
JP3833821B2 (en) Busbar protection relay device
JP3011420B2 (en) Digital bus protection relay
JP3259556B2 (en) Accident point location device
JP2597653B2 (en) Fault location device
JPH0225768A (en) Locating device for fault point
JPH08308084A (en) Overcurrent relay device
JP2002139538A (en) Base point terminal selection method for multiple-port fault point locating device