JPS63217917A - Failed phase selector - Google Patents

Failed phase selector

Info

Publication number
JPS63217917A
JPS63217917A JP4909287A JP4909287A JPS63217917A JP S63217917 A JPS63217917 A JP S63217917A JP 4909287 A JP4909287 A JP 4909287A JP 4909287 A JP4909287 A JP 4909287A JP S63217917 A JPS63217917 A JP S63217917A
Authority
JP
Japan
Prior art keywords
phase
fault
line
current
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4909287A
Other languages
Japanese (ja)
Other versions
JPH0822130B2 (en
Inventor
繁 渡辺
政夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4909287A priority Critical patent/JPH0822130B2/en
Publication of JPS63217917A publication Critical patent/JPS63217917A/en
Publication of JPH0822130B2 publication Critical patent/JPH0822130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は直接接地系統における事故相選別方法に関する
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for fault phase selection in direct earthing systems.

(従来の技術) 送電線の事故点までの距離を求めるためには故障点標定
装置が用いられる。この場合の距離演算には事故相にお
ける電圧、電流を用いる必要がある。そして第5図の如
きディジタル演算処理装置を用いて故障点標定か行なわ
れる。即ち、補助PCTを集中化して収納している入力
変換器51を介して電力系統の電圧、電流が取込まれ、
その電圧、′it流の商用周波数成分のみを取出すフィ
ルタ(FL)52でフィルタリングが行なわれる。各フ
ィルタ出力はアナログ信号であるため、これをサングル
ホールド回路(S/I() 53とマルチプレクf (
MPX) 54を介してアナログ/ディジタル変換器(
A/D ) 5 sへ入力し、ディジタル信号に変換す
る。ここで変換された電圧、電流のディジタル信号は、
ダイレクトメモリアクセス(DMA) 56を介してデ
ータメモ!J (RAM) 57に一時的に記憶される
。CPU 58はRAM 57に記憶されている電流。
(Prior Art) A fault point locating device is used to determine the distance to a fault point on a power transmission line. In this case, it is necessary to use the voltage and current in the fault phase for distance calculation. Fault point location is then performed using a digital arithmetic processing device as shown in FIG. That is, the voltage and current of the power system are taken in through the input converter 51 that centralizes and houses the auxiliary PCT,
Filtering is performed by a filter (FL) 52 that extracts only the commercial frequency component of the voltage. Since each filter output is an analog signal, it is sent to a sample hold circuit (S/I() 53 and a multiplex f(
MPX) 54 via analog/digital converter (
A/D) 5s and converts it into a digital signal. The converted voltage and current digital signals are
Data memo via Direct Memory Access (DMA) 56! J (RAM) 57 temporarily. CPU 58 is the current stored in RAM 57.

電圧データをリードオンリメモリ(ROM) 59に記
憶されている処理手順に従ってディジタル演算処理をし
、標定起動と標定演算を行なう。
Digital calculation processing is performed on the voltage data according to the processing procedure stored in the read-only memory (ROM) 59, and orientation activation and orientation calculation are performed.

そして標定方法としては大別して次の2つの方法がある
The orientation methods can be broadly classified into the following two methods.

第1の方法は事故相の選別は行なわず、電圧と電流とを
用いて地絡事故とした場合の距離演算及び短絡事故とし
た場合の距離演算を夫々性なって事故点までの距離を求
める方法である。
The first method does not select the fault phase, but uses voltage and current to calculate the distance in the case of a ground fault and the distance to calculate the distance in the case of a short circuit, respectively, to find the distance to the fault point. It's a method.

第2の方法は電流補償付不足電圧リレー(距離リレーの
一種)を用いて事故相選別を行ない、その後に事故点ま
での距離を求める方法である。
The second method is to perform fault phase selection using an undervoltage relay with current compensation (a type of distance relay), and then find the distance to the fault point.

(発明が解決しようとする問題点) 上記した従来方法では、いずれの方法も電圧と電流とを
用いているため処理が極めて複雑になる。
(Problems to be Solved by the Invention) In the conventional methods described above, since both methods use voltage and current, the processing becomes extremely complicated.

特にディジタル処理を行なう装置の場合はプログラムが
大きくなると同時に動作時間が遅くなる欠点がある。な
おプログラムについてはメモリを追加すれば解決できる
が、動作時間の解決にはならない。
Particularly in the case of devices that perform digital processing, there is a drawback that the program becomes larger and the operating time becomes slower. The problem with the program can be solved by adding more memory, but this will not solve the problem of operating time.

本発明は上記問題点を解決するためになされたものであ
シ、直接接地系統において電流のみにて高速かつ確実に
事故相選別することの可能な事故相選別方法を提供する
ことを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a fault phase selection method that can quickly and reliably perform fault phase selection using only current in a directly grounded system. .

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明を実施例に対応する第1図を用いて説明すると、
演算部11にて送電線の線間電流の事故分電流とこの事
故分電流の最大値との比を求め、この比が或る一定値よ
り小さい場合に1相故障検出部121にて1線地絡事故
とし、3つの線間相の全てが或る一定値より大きい場合
に2相故障以上検出部122にて2線以上の故障とする
よう構成した。
(Means for solving the problems) The present invention will be explained using FIG. 1 corresponding to an embodiment.
The calculation unit 11 calculates the ratio between the line-to-line fault current of the power transmission line and the maximum value of this fault current, and if this ratio is smaller than a certain constant value, the 1-phase failure detection unit 121 determines whether the 1-line It is configured such that when a ground fault occurs and all three line-to-line phases are larger than a certain fixed value, the two-phase or more fault detection unit 122 determines that two or more wires are faulty.

(作用) したがってl相故障検出部121゛及び2相故障検出部
122からの出力により事故相検出が可能である。
(Operation) Therefore, the fault phase can be detected by the outputs from the l-phase failure detection section 121' and the two-phase failure detection section 122.

(実施例) 先ず、直接接地系における系統事故時の電流に着目した
場合、次の現象がある。
(Example) First, when focusing on the current at the time of a system fault in a directly grounded system, the following phenomenon occurs.

1線地絡事故時は、事故電流は事故相に集中して健全相
には流れないので、健全線間相の変化分電流は零となる
。例えばa相1線地絡を例にとると、各相の電流変化分
は、 I、=I、    Ib=Ic=0 となる。したがって各線間電流の変化分は、1Iabl
 = IIeal = III −Irbel = 0
となる。即ち、線間電流の変化分の最大相のものと各線
間電流の値の比は、健全線間相のみ、他の場合とは大き
く異なっていることがわかる。ここでab相、ca相を
I PUとすればbe相はOPUとなる。又、2線以上
の事故時には各線間電流の変化分電流は、最大のものに
比較すると約50チ以上の値となる。例えばbe相2線
短絡の場合であると、各相電流は、 1、=OIb=−I、=1 各線間電流は IIabl ” 1Ieal = III 、1Ibc
l = 2111となシ、各線間電流は最大線間相の電
流に対して1/2となる。即ち、be相をI PUとす
ればab相=ca相= 1/2 PUである。以上をま
とめると、直接接地系における系統事故時、事故分電流
(変化分電流)は、事故種別に従って第1表のようにな
る。
At the time of a one-line ground fault, the fault current concentrates on the faulty phase and does not flow to the healthy phases, so the phase change current between the healthy lines becomes zero. For example, if we take an a-phase one-wire ground fault as an example, the current changes in each phase are as follows: I, = I, Ib = Ic = 0. Therefore, the change in each line current is 1Iabl
= IIeal = III-Irbel = 0
becomes. That is, it can be seen that the ratio between the maximum phase of line current change and the value of each line current differs greatly only in the healthy line phase compared to the other cases. Here, if the ab phase and the ca phase are IPU, the be phase is OPU. In addition, in the event of a fault involving two or more lines, the amount of change in current between each line will be approximately 50 degrees or more compared to the maximum value. For example, in the case of a be-phase two-wire short circuit, each phase current is 1, = OIb = -I, = 1. Each line current is IIabl ” 1Ieal = III, 1Ibc
When l = 2111, each line current is 1/2 of the maximum line phase current. That is, if the be phase is IPU, then the ab phase=ca phase=1/2 PU. To summarize the above, when a system fault occurs in a directly grounded system, the fault current (change current) is as shown in Table 1 according to the fault type.

第1表 〔工。’)  I  Il’  Il)’、Ib’ I
。/、■。t−I、tl、1.1b/、 1c′;各相
変化分電流=CI人′〕〔IA′〕m□ ; (:1.
’:)のうちの最大のものa・b、c :相名称 である。第1表から上記のような検出を行なえば、1線
地絡事故と2線以上の事故とを識別できることがわかる
Table 1 [Eng. ') I Il'Il)',Ib' I
. /, ■. t-I, tl, 1.1b/, 1c'; Current for each phase change = CI person'] [IA'] m□; (:1.
':) The largest one a, b, c: phase name. It can be seen from Table 1 that if the above-mentioned detection is performed, it is possible to distinguish between a single wire ground fault fault and a fault involving two or more wires.

第1図は本発明による事故相選別方法を説明するための
一実施例の機能ブロック図である。第1図において10
は事故相選別装置で、演算部11と判定部12とを備え
、前記判定部12は1相故障検出部121と2φ相以上
故障検出部122とから構成されている。
FIG. 1 is a functional block diagram of an embodiment for explaining the accident phase selection method according to the present invention. 10 in Figure 1
1 is a failure phase sorting device, which includes a calculating section 11 and a determining section 12, and the determining section 12 is composed of a 1-phase failure detecting section 121 and a 2φ phase or more failure detecting section 122.

第2図は相選別動作説明のフローチャートであシ、この
場合は単なる相選別のみを示す。系統事故発生時は直ち
に事故前電流を記憶すると共に、下記に述べる判定式に
より事故相選別を行なう。
FIG. 2 is a flowchart illustrating the phase selection operation, and in this case only simple phase selection is shown. When a system fault occurs, the pre-fault current is immediately memorized, and fault phase selection is performed using the judgment formula described below.

先ず、ステップS21では記憶された事故前潮流のうち
事故前電流C1,s )と事故時電流〔I4〕とから、
変化分電流(L’)を演算する。ステップ822では変
化分電流[r、’)のうちで最大のもの(L’ :1m
axを決定する。ステップ23ではX=により小さいか
否かを判定し、X(kであればステップ825へ移って
1線地絡事故と判定し、X)kであればステラ76S2
6へ移って2線以上の事故と判定する。
First, in step S21, from the pre-fault current C1,s) and the fault current [I4] among the stored pre-fault currents,
Calculate the changed current (L'). In step 822, the largest one (L': 1 m
Determine ax. In step 23, it is determined whether X is smaller than
Proceed to step 6 and determine that it is an accident involving two or more lines.

そして判定条件としては下記のようになる。The judgment conditions are as follows.

ここでkは例えば0.2〜0.3とする。また〔工。′
〕mlユは〔工Δ′〕のうちで最小のものである。(1
)式が成立するのは1線地絡事故の場合であシ、この時
事故相は〔工人’)minの相となる。また〔工人′〕
mloは〔工人′〕のうちの最小のものである。事故相
はC’m’ 〕mi nに関係しない相であるとしても
同様な結果が得られる。
Here, k is set to, for example, 0.2 to 0.3. Also [Eng. ′
]ml is the smallest of [unit Δ']. (1
) formula holds only in the case of a one-line ground fault accident, in which case the fault phase becomes the [workman') min phase. Also [artisan']
mlo is the smallest of [artificers']. Similar results can be obtained even if the accident phase is a phase unrelated to C'm' ]min.

(2)式で成立するのは2線以上O事故の場合で、事故
相はC1,’)の最大相である。
Equation (2) holds true in the case of an O accident with two or more wires, and the accident phase is the maximum phase of C1,').

第3図は故障点標定に適用した場合の動作を説明するフ
ローチャートである。第3図においてステラf831〜
834までは前記した事故相選別と同様であシ、ステッ
プ834にて事故相が決定された場合に、ステップS3
5以降の故障点標定演算(従来公知)を行なう。
FIG. 3 is a flowchart illustrating the operation when applied to failure point location. In Figure 3, Stella f831~
The steps up to 834 are the same as the accident phase selection described above, and when the accident phase is determined in step 834, step S3
5 and subsequent fault point location calculations (conventionally known) are performed.

第4図は本発明による他の実施例の処理内容を説明する
フローチャートである。
FIG. 4 is a flowchart illustrating the processing contents of another embodiment according to the present invention.

本実施例はディジタルリレーに適用した場合であり、し
たがって故障点距離が所定範囲内(保護範囲内)にある
場合は、ステラf848において、し中断器にトリップ
出力を導出する以外は前記第3図に示した実施例と同様
である。
This example is applied to a digital relay, and therefore, when the fault point distance is within a predetermined range (within the protection range), in the Stella F848, except for deriving the trip output to the interrupter, as shown in FIG. This is similar to the embodiment shown in .

上記実施例によれば事故相選別が変化分電流の単純な演
算で確実に行なえるため、CPUの負担が小さく、小形
で安価なディジタルリレーが提供できる。
According to the above embodiment, fault phase selection can be reliably performed by simple calculation of the changed current, so that the load on the CPU is small and a small and inexpensive digital relay can be provided.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば故障による変化分電
流だけを用いて事故相選別をするようにしたので、高速
で確実かつプログラム容量も小さく、その上小形で安価
な事故相選別方法を提供できる。
As explained above, according to the present invention, fault phase selection is performed using only the change in current caused by a fault, thereby providing a fault phase selection method that is fast, reliable, has a small program capacity, and is also compact and inexpensive. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による事故相選別方法を説明するための
一実施例の機能ブロック図、第2図は相選別動作説明の
フローチャート、第3図は故障点標定に適用した場合の
70−チャート、第4図は保護リレーに適用した場合の
フローチャート、第5図は一般的なディジタルリレー〇
構成側図である。 10・・・事故相選別装置、11−・・演算部、12・
・・判定部、   121・・・1相故障検出部、12
2・・・2相以上故障検出部。 第1図 第2図 第3図 第5図
Fig. 1 is a functional block diagram of an embodiment for explaining the fault phase selection method according to the present invention, Fig. 2 is a flowchart for explaining the phase selection operation, and Fig. 3 is a 70-chart when applied to failure point location. , FIG. 4 is a flowchart when applied to a protection relay, and FIG. 5 is a side view of a general digital relay configuration. 10... Accident phase sorting device, 11-... Arithmetic unit, 12-...
... Judgment unit, 121... 1-phase failure detection unit, 12
2...Failure detection unit for two or more phases. Figure 1 Figure 2 Figure 3 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)電力系統を構成する送電線へ流れる事故電流値を
基に、送電線事故時の事故相を判別する事故相選別方法
において、前記送電線の線間電流の事故分電流と前記事
故分電流の最大値との比を求め、この求めた比が1つの
線間相については或る一定値より小さい場合を1線地絡
事故とし、3つの線間相の全てが或る一定値より大きい
場合を2線以上の事故とし、1線地絡事故時は各相の変
化分電流の最大相を、また2線以上の事故時は線間電流
の変化分電流が最大となる相を、夫々事故相とすること
を特徴とする事故相選別方法。
(1) In a fault phase sorting method for determining the fault phase at the time of a power transmission line fault based on the fault current value flowing through the power transmission lines constituting the power system, the fault current of the line current of the transmission line and the fault phase The ratio of the current to the maximum value is determined, and if this ratio is smaller than a certain value for one line-to-line phase, it is considered a single-line ground fault, and if all three line-to-line phases are less than a certain value. If the fault is large, it is considered to be a fault involving two or more wires, and in the case of a one-line ground fault, the phase with the maximum change in current for each phase is determined, and in the case of a fault with two or more wires, the phase with the maximum change in current between the lines is An accident phase selection method characterized in that each accident phase is set as an accident phase.
(2)1線地絡事故時は線間電流の変化分電流が最小と
なる線間相以外の1相を事故相とすることを特徴とする
特許請求の範囲第1項記載の事故相選別方法。
(2) Fault phase selection according to claim 1, characterized in that in the event of a one-line ground fault fault, one phase other than the line-to-line phase where the line-to-line current change current is the minimum is determined to be the fault phase. Method.
JP4909287A 1987-03-04 1987-03-04 Accident phase selection method Expired - Lifetime JPH0822130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4909287A JPH0822130B2 (en) 1987-03-04 1987-03-04 Accident phase selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4909287A JPH0822130B2 (en) 1987-03-04 1987-03-04 Accident phase selection method

Publications (2)

Publication Number Publication Date
JPS63217917A true JPS63217917A (en) 1988-09-12
JPH0822130B2 JPH0822130B2 (en) 1996-03-04

Family

ID=12821456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4909287A Expired - Lifetime JPH0822130B2 (en) 1987-03-04 1987-03-04 Accident phase selection method

Country Status (1)

Country Link
JP (1) JPH0822130B2 (en)

Also Published As

Publication number Publication date
JPH0822130B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
WO2001076036A2 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
JPS63217917A (en) Failed phase selector
JP3628143B2 (en) Ground fault distance relay
JP3829614B2 (en) Digital type protective relay device
JP2904497B2 (en) Accident phase sorting device
JP5578888B2 (en) Current differential relay
JP2000224755A (en) Current differential protective relay
JPH03190527A (en) Accident phase sorter
JP3376632B2 (en) Fault location device
JPH08265957A (en) Matrix operation type system protector
JPH0249175A (en) Accident phase selecting device
JP2578550B2 (en) Ground fault line selection protection relay
JPH03107776A (en) Method and device for locating fault point
JPS62268318A (en) Digital distance relay
JPH04223280A (en) Detecting fault section in power cable
JP2692163B2 (en) Fault locator for power transmission system
JPH04364318A (en) Digital distance relay
JP2003315403A (en) Method for locating fault point
JP2002139538A (en) Base point terminal selection method for multiple-port fault point locating device
JPH02116763A (en) Fault point locator
JPH04309874A (en) Finding of trouble point of dc electric train feeder circuit
JPS63124970A (en) Digital fault locator
JPH0370425A (en) Circuit selective relay

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term