JP2000166082A - Short-circuit directional relay - Google Patents

Short-circuit directional relay

Info

Publication number
JP2000166082A
JP2000166082A JP10339586A JP33958698A JP2000166082A JP 2000166082 A JP2000166082 A JP 2000166082A JP 10339586 A JP10339586 A JP 10339586A JP 33958698 A JP33958698 A JP 33958698A JP 2000166082 A JP2000166082 A JP 2000166082A
Authority
JP
Japan
Prior art keywords
short
circuit
current
trouble
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10339586A
Other languages
Japanese (ja)
Other versions
JP3535395B2 (en
Inventor
Kazuma Mito
一磨 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33958698A priority Critical patent/JP3535395B2/en
Publication of JP2000166082A publication Critical patent/JP2000166082A/en
Application granted granted Critical
Publication of JP3535395B2 publication Critical patent/JP3535395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve trouble detection precision by changing operating characteristics by inputting a setting from the outside, converting a secondary analog value into a digital data for determining a phase difference between power system current and power system voltage, and attaining optimum operation measurement in response to characteristic values of a power system and conditions in the event of a short-circuit trouble. SOLUTION: In a short-circuit directional relay 4 detecting a short-circuit trouble on a transmission line 3, the direction indicated in a short-circuit trouble detected section 8 is taken as a short-circuit trouble direction. If a short-circuit trouble is detected at a trouble position 9, it is regarded as a short-circuit trouble in the short-circuit trouble detected section 8 according to a phase difference between voltage inputted through a voltage transformer 6 and current inputted through a current transformer 5 and the magnitude of input current, so that a protective output is conducted for a breaker 7. If a short-circuit trouble is detected at a fault position 10, it is regarded as a trouble outside the short- circuit trouble detected section 8 according to a phase difference between voltage and current and the magnitude of input current, so that no protective output is conducted. It is thus possible to improve trouble detection precision.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統上の短絡
事故を検出する短絡方向継電器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short circuit directional relay for detecting a short circuit accident on a power system.

【0002】[0002]

【従来の技術】従来の短絡方向継電器を用いた場合の電
力系統の構成図を図6に示す。遮断器7が投入されてい
る三相交流電源1と他の三相交流電源2を結ぶ送電線3
上での短絡事故を検出する短絡方向継電器(67Q)4
において、短絡事故検出区間8で示す方向を、短絡方向
継電器4の短絡事故検出方向とする。
2. Description of the Related Art FIG. 6 shows a configuration diagram of a power system when a conventional short-circuit direction relay is used. A transmission line 3 connecting the three-phase AC power supply 1 into which the circuit breaker 7 is turned on and another three-phase AC power supply 2
Short-circuit relay (67Q) 4 for detecting short circuit accidents
, The direction indicated by the short-circuit fault detection section 8 is defined as the short-circuit fault detection direction of the short-circuit direction relay 4.

【0003】この状況下、事故点9にて短絡事故が発生
すると、系統上の計器用変圧器6を介して入力される電
圧と変流器5を介して入力される電流との位相差、およ
び入力電流の大きさにより短絡方向継電器4は、短絡事
故検出区間8内で短絡事故が発生したと判定し、遮断器
7に対して保護出力を行なう。
In this situation, when a short-circuit fault occurs at fault point 9, the phase difference between the voltage input via the instrument transformer 6 on the system and the current input via the current transformer 5, The short-circuit direction relay 4 determines that a short-circuit fault has occurred in the short-circuit fault detection section 8 based on the magnitude of the input current and outputs a protection output to the circuit breaker 7.

【0004】一方、三相交流電源1と遮断器7を結ぶ線
路上での事故点10にて発生する短絡事故に対しては、
系統上の計器用変圧器6を介して入力される電圧と変流
器5を介して入力される電流との位相差、および入力電
流の大きさにより、短絡方向継電器4は、短絡事故検出
区間8外で短絡事故発生と判定し、保護出力を行なわな
い。
On the other hand, with respect to a short circuit accident occurring at an accident point 10 on a line connecting the three-phase AC power supply 1 and the circuit breaker 7,
Depending on the phase difference between the voltage input via the instrument transformer 6 on the system and the current input via the current transformer 5 and the magnitude of the input current, the short-circuit directional relay 4 is connected to the short-circuit fault detection section. It is determined that a short-circuit accident has occurred outside of the circuit 8, and no protection output is performed.

【0005】線間電圧に対し、90度進み電流接続され
ている従来の短絡方向継電器の動作特性を図7に示す。
図において、短絡方向継電器の動作が、電圧に対する電
流の位相差と大きさにより判定されること、また角度φ
は短絡方向継電器の最大感度角を示し、短絡時に線路イ
ンピーダンス角θfだけ遅れることになる短絡電流の位
相が、このφより進んでも遅れても感度が落ちることを
表している。Isは最小動作電流整定値(可変設定
値)、φは継電器の最大感度角(固定値)である。
FIG. 7 shows the operating characteristics of a conventional short-circuit direction relay which is connected by a 90-degree current with respect to the line voltage.
In the figure, the operation of the short-circuit direction relay is determined by the phase difference and magnitude of the current with respect to the voltage, and the angle φ
Indicates the maximum sensitivity angle of the short-circuit direction relay, and indicates that the sensitivity drops even if the phase of the short-circuit current, which is delayed by the line impedance angle θf at the time of short-circuiting, advances or delays from this φ. Is is the minimum operating current setting value (variable setting value), and φ is the maximum sensitivity angle (fixed value) of the relay.

【0006】[0006]

【発明が解決しようとする課題】実際に短絡事故が発生
した際の相電流ベクトルと、従来の短絡方向継電器の動
作特性との関係を図8に示す。短絡方向継電器の最大感
度角をφ、電流の動作整定値短絡事故が発生した場合の
事故時インピーダンス角をθfとすると、θfは方向短
絡継電器から事故点に至る閉回路の抵抗分Rとリアクタ
ンス分X、および短絡点でのアーク抵抗などにより決定
されるが、RおよびXは、送電線ごとに異なる値となる
ため、また事故発生状況によりアーク抵抗などの短絡抵
抗も異なる値となるため、θfは常に一定の値とはなら
ない。従って、事故時のインピーダンス角θfと短絡方
向継電器の最大感度角φは必ずしも一致せず、その差
(φ−θf)に比例する誤差が事故検出の際発生する。
FIG. 8 shows the relationship between the phase current vector when a short-circuit accident actually occurs and the operating characteristics of a conventional short-circuit direction relay. Assuming that the maximum sensitivity angle of the short-circuit directional relay is φ and the current operation setting value is θf, the impedance angle at the time of an accident in the event of a short-circuit accident is θf, θf is the resistance R and reactance of the closed circuit from the directional short-circuit relay to the fault point. X and the arc resistance at the short-circuit point are determined. However, since R and X have different values for each transmission line, and short-circuit resistances such as arc resistance also have different values depending on the accident occurrence situation, θf Is not always constant. Therefore, the impedance angle θf at the time of the accident and the maximum sensitivity angle φ of the short-circuit direction relay do not always coincide with each other, and an error proportional to the difference (φ−θf) occurs when the accident is detected.

【0007】このため短絡事故発生時、短絡方向と検出
方向が一致し、かつ事故電流Ifの大きさが整定値Is
より大きい場合にも関わらず、短絡方向継電器が動作し
ない状況が発生していた。
For this reason, when a short circuit fault occurs, the direction of the short circuit coincides with the detection direction, and the magnitude of the fault current If is equal to the set value Is.
In spite of the case of being larger than that, the situation where the short-circuit direction relay did not operate occurred.

【0008】本発明は上記問題を解決するためになされ
たもので、その目的は、電力系統の事故発生時、検出さ
れるインピーダンス角に適合した最大感度角の自動設定
が可能である短絡方向継電器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a short-circuit directional relay capable of automatically setting a maximum sensitivity angle suitable for a detected impedance angle when a power system accident occurs. Is to provide.

【0009】[0009]

【課題を解決するための手段】上記目的を解決するため
に、本発明の請求項1は、電力系統上の短絡事故の発生
を、方向要素と過電流要素の2要素より検出する短絡方
向継電器において、外部からの設定入力により動作特性
を変化させる動作特性設定手段と、電力系統上に設けら
れた変流器および計器用変圧器を介して、その二次アナ
ログ量をディジタルデータに変換し、そのデータの演算
結果により電力系統電流と電力系統電圧との位相差を測
定する位相差測定手段と、その結果を用いて動作特性を
自動設定する自動設定手段とを備え、電力系統の固有値
および短絡事故の発生状況に応じて最適な動作特性とす
ることで事故検出判定を可能としたことを特徴とする。
In order to solve the above-mentioned object, a first aspect of the present invention is a short-circuit direction relay for detecting occurrence of a short-circuit accident in a power system from two elements, a direction element and an overcurrent element. In, through an operation characteristic setting means for changing the operation characteristics by an external setting input, and through a current transformer and an instrument transformer provided on the power system, the secondary analog amount is converted into digital data, A phase difference measuring unit that measures a phase difference between the power system current and the power system voltage based on a calculation result of the data; and an automatic setting unit that automatically sets an operation characteristic using the result. The present invention is characterized in that it is possible to make an accident detection determination by setting an optimum operation characteristic according to an accident occurrence situation.

【0010】この請求項1によると、動作特性を決定す
る要素の一つである最大感度角を可変設定とし、外部か
らの入力により系統に適合した最大感度角の設定および
事故発生時に検出されるインピーダンス角に適合した最
大感度角の自動設定が可能であるので、事故検出精度が
向上する。
According to the first aspect, the maximum sensitivity angle, which is one of the factors for determining the operation characteristics, is variably set, and the maximum sensitivity angle adapted to the system is set by an external input and detected when an accident occurs. Since the automatic setting of the maximum sensitivity angle suitable for the impedance angle is possible, the accident detection accuracy is improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図を
用いて説明する。図1は、本発明による短絡方向継電器
を適用した電力系統の構成図であり、既に説明した従来
の図6と同一であるので、同一部分には同一符号を付し
て、その説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a power system to which a short-circuit direction relay according to the present invention is applied, which is the same as that of the conventional FIG. 6 described above. .

【0012】図において、遮断器7が投入されている三
相交流電源1と他の三相交流電源2を結ぶ送電線3上で
の短絡事故を検出する短絡方向継電器4において、短絡
事故検出区間8で示す方向を短絡方向継電器4の短絡事
故検出方向とする。
In the figure, in a short-circuit directional relay 4 for detecting a short-circuit fault on a transmission line 3 connecting a three-phase AC power supply 1 with a breaker 7 turned on and another three-phase AC power supply 2, a short-circuit fault detection section The direction indicated by 8 is the short-circuit direction detection direction of the short-circuit direction relay 4.

【0013】この状況下、事故点9にて短絡事故が発生
すると、系統上の計器用変圧器6を介して入力される電
圧と変流器5を介して入力される電流との位相差、およ
び入力電流の大きさにより、短絡方向継電器4は短絡事
故検出区間8内で短絡事故が発生したと判定し、遮断器
7に対して保護出力を行なう。
In this situation, when a short circuit fault occurs at fault point 9, the phase difference between the voltage input via the instrument transformer 6 on the system and the current input via the current transformer 5, Based on the input current and the magnitude of the input current, the short-circuit direction relay 4 determines that a short-circuit fault has occurred in the short-circuit fault detection section 8, and outputs a protection output to the circuit breaker 7.

【0014】一方、三相交流電源1と遮断器7を結ぶ線
路上での事故点10にて発生する短絡事故に対しては、
系統上の計器用変圧器6を介して入力される電圧と変流
器5を介して入力される電流との位相差、および入力電
流の大きさにより短絡方向継電器4は、短絡事故検出区
間8外での短絡事故発生と判定し、保護出力を行なわな
い。
On the other hand, with respect to a short circuit accident occurring at an accident point 10 on a line connecting the three-phase AC power supply 1 and the circuit breaker 7,
Depending on the phase difference between the voltage input through the instrument transformer 6 on the system and the current input through the current transformer 5 and the magnitude of the input current, the short-circuit directional relay 4 is connected to the short-circuit fault detection section 8. Judging that a short circuit accident has occurred outside, and does not perform protection output.

【0015】次に、本発明の短絡方向継電器の内部構成
を図2を用いて説明する。本発明の短絡方向継電器4
は、入力変換モジュール11とアナログ/ディジタル変
換モジュール12と外部整定モジュール13と演算モジ
ュール14とトリップ出力モジュール15と外部インタ
フェースモジュール16と事故検出モジュール17と表
示用LCDモジュール18と記憶モジュール19とデー
タバス20とから構成されている。
Next, the internal structure of the short-circuit direction relay of the present invention will be described with reference to FIG. Short-circuit direction relay 4 of the present invention
Are an input conversion module 11, an analog / digital conversion module 12, an external settling module 13, an operation module 14, a trip output module 15, an external interface module 16, an accident detection module 17, a display LCD module 18, a storage module 19, and a data bus. 20.

【0016】この短絡方向継電器4を適用する系統イン
ピーダンスのリアクタンス分Xと抵抗分Rの比X/R
と、最小動作電流整定値Isと、短絡方向継電器の進み
接続角度と、動作特性変化のトリガーとなる電流データ
の変化率設定値μと、最大感度角復帰時間Tと、最大感
度角可変幅±δを、外部整定モジュール13へ入力す
る。このデータは記憶モジュール19に格納される一
方、このデータを基に演算モジュール14にて保護対象
電力系統に適合した最大感度角φsを算出し、短絡方向
継電器の動作特性を決定し、その結果を事故検出モジュ
ール17および記憶モジュール19に格納する。
The ratio X / R of the reactance X and the resistance R of the system impedance to which the short-circuit direction relay 4 is applied.
, The minimum operating current setting value Is, the advancing connection angle of the short-circuit direction relay, the change rate setting value μ of current data that triggers a change in operating characteristics, the maximum sensitivity angle return time T, and the maximum sensitivity angle variable width ±. δ is input to the external settling module 13. While this data is stored in the storage module 19, the operation module 14 calculates the maximum sensitivity angle φs suitable for the power system to be protected based on this data, determines the operating characteristics of the short-circuit direction relay, and determines the result. It is stored in the accident detection module 17 and the storage module 19.

【0017】一方、系統上の変流器5および計器用変圧
器6を介して短絡方向継電器4へ流入する相電流Iと相
間電圧Vは、入力変換モジュール11及びアナログ/デ
ィジタル変換モジュール12にてデータ処理された後デ
ータバス20へ導かれる。このデータは記憶モジュール
19に格納される一方、事故検出モジュール17に送ら
れる。
On the other hand, the phase current I and the inter-phase voltage V flowing into the short-circuit direction relay 4 through the current transformer 5 and the instrument transformer 6 on the system are input to the input conversion module 11 and the analog / digital conversion module 12. After the data processing, it is led to the data bus 20. This data is stored in the storage module 19 and sent to the accident detection module 17.

【0018】事故検出モジュール17では、決定された
動作特性と、相電流I,相間電圧Vのデータとの比較を
行ない、事故発生の有無を判定する。事故発生が検出さ
れると、そのデータはデータバス20を介して直ちにト
リップ出力モジュール15へ伝えられる。
The fault detection module 17 compares the determined operating characteristics with data on the phase current I and the inter-phase voltage V to determine whether a fault has occurred. When an accident is detected, the data is immediately transmitted to the trip output module 15 via the data bus 20.

【0019】また、このモジュール15では、入力され
る電流データIの変化率の監視も実施しており、事故検
出の如何に関わらず、電流データIの変化率(単位時間
あたりの変化量)ΔIが、あらかじめ入力された設定値
μを超えた場合、演算モジュール14では、直ちに最新
の電流データIと電圧データVを用いて現時点でのイン
ピーダンス角φs’を算出し、その値が(φs−δ)≦
φs’≦(φs+δ)の範囲内に収まっていれば、φ
s’を最大感度角とする新しい動作特性を再設定する。
再設定された動作特性は記憶モジュール20に格納され
る一方、速やかに事故検出モジュール17と転送され、
再設定された動作特性を用いた事故検出判定が行なわれ
る。事故が検出されると、そのデータはデータバス20
を介して直ちにトリップ出力モジュール15へ伝えられ
る。事故が検出されなかった場合、設定された最大感度
角復帰時間Tの時限をもって最初の動作特性に復帰す
る。
The module 15 also monitors the rate of change of the input current data I. The rate of change of the current data I (the amount of change per unit time) ΔI Exceeds the set value μ input in advance, the arithmetic module 14 immediately calculates the current impedance angle φs ′ using the latest current data I and voltage data V, and the value is (φs−δ). ) ≤
If it is within the range of φs ′ ≦ (φs + δ), φ
Reset a new operating characteristic with s' as the maximum sensitivity angle.
The reset operation characteristics are stored in the storage module 20, and are immediately transferred to the accident detection module 17,
Accident detection determination is performed using the reset operation characteristics. When an accident is detected, the data is transferred to the data bus 20.
Is immediately transmitted to the trip output module 15. If no accident is detected, the operation characteristic returns to the initial operation characteristic with a set time limit of the maximum sensitivity angle return time T.

【0020】事故検出モジュール17より事故検出デー
タを受けたトリップ出力モジュール15では、外部に対
し保護出力を行なう。外部I/Fモジュール16では、
リクエスト入力に応じて各種設定値、算出値、電流など
のアナログ値を外部へ出力可能であり、表示用LCDモ
ジュール18ではそれらデータをLCD上に表示可能で
ある。
The trip output module 15 that has received the accident detection data from the accident detection module 17 performs a protection output to the outside. In the external I / F module 16,
Analog values such as various set values, calculated values, and currents can be output to the outside in response to a request input, and the display LCD module 18 can display those data on the LCD.

【0021】本発明による短絡方向継電器を、90度進
み電流接続した場合の動作特性を図3及び図4に示す。
図3は送電線リアクタンス分と抵抗分の比であるX/R
を基に設定された最大感度角φsと、最小動作電流整定
値Isより決定した動作特性を図示したものである。送
電線上で完全短絡事故が発生した場合、そのインピーダ
ンス角θfは、最大感度角φsと合致し、常に最大感度
で事故判別を行なうことが可能である。
FIG. 3 and FIG. 4 show operating characteristics when the short-circuit direction relay according to the present invention is connected by a 90-degree lead current.
Figure 3 shows the ratio of the reactance and the resistance of the transmission line, X / R.
Is a diagram illustrating an operation characteristic determined from the maximum sensitivity angle φs set based on the above and the minimum operation current setting value Is. When a complete short-circuit accident occurs on the transmission line, the impedance angle θf matches the maximum sensitivity angle φs, and it is possible to always perform accident discrimination with the maximum sensitivity.

【0022】図4は入力電流の変化率ΔIの増大により
最大感度角をφs’に変化させた後の動作特性を図示し
たものである。短絡点のアーク抵抗が大きい場合など、
最大感度角φs及び最小動作電流整定値Isにて設定さ
れた動作特性では検出不可能である短絡事故も、最大感
度角をφs’へと変化させることにより検出可能とな
る。
FIG. 4 shows the operating characteristics after the maximum sensitivity angle is changed to φs ′ by increasing the change rate ΔI of the input current. When the arc resistance at the short-circuit point is large,
A short-circuit accident that cannot be detected by the operation characteristics set by the maximum sensitivity angle φs and the minimum operation current set value Is can be detected by changing the maximum sensitivity angle to φs ′.

【0023】実際には、図3の動作特性を図4の動作特
性へと変化させるために演算時間が必要であるため、そ
の時間分、保護出力が遅れることになる。しかし、短絡
電流Ifが十分に大きければ、動作特性を変化させるま
でもなく瞬時に事故検出/保護出力が可能であること、
また、動作特性を変化させねば検出不可能である短絡電
流は、完全短絡電流と比較して相対的に小さいことか
ら、保護対象となる機器、送電線の過電流耐量を考慮し
て最小動作電流整定値Isを決定することにより、演算
時間の遅れによる影響を除外することが可能である。
Actually, since the operation time is required to change the operation characteristic of FIG. 3 to the operation characteristic of FIG. 4, the protection output is delayed by that time. However, if the short-circuit current If is sufficiently large, the fault detection / protection output can be performed instantaneously without changing the operation characteristics.
In addition, the short-circuit current that cannot be detected unless the operating characteristics are changed is relatively small compared to the complete short-circuit current. By determining the set value Is, it is possible to exclude the influence of the delay in the calculation time.

【0024】図5は本発明による短絡方向継電器の動作
のフローチャートである。まず、電力系統上に存在する
他の保護継電器との保護協調と、短絡方向継電器が保護
対象とする送電線の特性を考慮し、短絡方向継電器に対
して、系統線インピーダンスのリアクタンス分Xと抵抗
分Rの比X/R、最小動作電流整定値Is、方向短絡継
電器の進み接続角度、動作特性変化のトリガーとなる電
流データの変化率設定値μ、最大感度角復帰時間T、最
大感度角可変幅±δを入力する(ステップS1)。短絡
方向継電器は、入力された進み接続角度、X/R比より
保護対象となる系統に最適な最大感度角φsを算出/設
定し(ステップS2)、さらに動作特性を設定する(ス
テップS3)。
FIG. 5 is a flowchart of the operation of the short-circuit direction relay according to the present invention. First, considering the protection coordination with other protection relays existing in the power system and the characteristics of the transmission line to be protected by the short-circuit direction relay, the reactance X and the resistance of the system line impedance are considered for the short-circuit direction relay. The ratio X / R of the minute R, the minimum operating current setting value Is, the leading connection angle of the directional short-circuit relay, the change rate setting value μ of the current data that triggers a change in the operating characteristics, the maximum sensitivity angle return time T, the maximum sensitivity angle variable The width ± δ is input (step S1). The short-circuit direction relay calculates / sets the maximum sensitivity angle φs optimal for the system to be protected from the input lead connection angle and X / R ratio (step S2), and further sets the operation characteristics (step S3).

【0025】以上の初期設定が完了した後、アナログ/
ディジタル変換処理が行われた入力電流I/電圧Vのデ
ータより(ステップS4)、電力系統の事故検出を開始
する(ステップS5)。短絡方向継電器が系統上の短絡
事故を検出すると、瞬時に保護出力を行なう(ステップ
S6)。短絡事故が検出されない場合、入力電流の変化
率ΔIと電流変化率設定値μとの比較が行なわれ(ステ
ップS7)、ΔI<μの時、電流/電圧入力フェーズ
(ステップS4)に戻る。ΔI≧μの時、事故発生の有
無に関係なく、系統に何らかの瞬間的な変化が発生した
と考えられるため、最新の入力電流/電圧データを基に
最大感度角を再算出してφs’とし(ステップS8)、
(φs−δ)≦φs’≦(φs+δ)を満たしていれば
(ステップS9)、φsを用いて一時的に動作特性を変
化させる(ステップ10)。その後、再度短絡事故検出
を試み(ステップS11)、事故が検出されれば保護出
力を行ない(ステップS6)、検出されなければ、最大
感度角を再設定時点からの経過時間が、最大感度復帰時
間設定値Tに到達しているかの判定を行ない(ステップ
12)、到達するまで事故検出を試みる。最大感度角復
帰時間が経過しても事故が検出できなかった場合、最大
感度角および動作特性を変化前の設定に戻し(ステップ
S13)、短絡事故検出フェーズ(ステップS5)以降
のルーチンを繰り返す。
After the above initial settings are completed, the analog /
Based on the input current I / voltage V data that has been subjected to the digital conversion processing (step S4), detection of a fault in the power system is started (step S5). When the short-circuit direction relay detects a short-circuit accident on the system, protection output is instantaneously performed (step S6). If no short-circuit fault is detected, the change rate ΔI of the input current is compared with the current change rate set value μ (step S7). When ΔI <μ, the process returns to the current / voltage input phase (step S4). When ΔI ≧ μ, it is considered that some kind of instantaneous change has occurred in the system regardless of the occurrence of an accident. Therefore, the maximum sensitivity angle is recalculated based on the latest input current / voltage data and set as φs'. (Step S8),
If (φs−δ) ≦ φs ′ ≦ (φs + δ) is satisfied (step S9), the operating characteristics are temporarily changed using φs (step 10). Thereafter, a short-circuit fault detection is attempted again (step S11), and if a fault is detected, protection output is performed (step S6). If no fault is detected, the elapsed time from the point of resetting the maximum sensitivity angle is the maximum sensitivity return time. It is determined whether the set value T has been reached (step 12), and an accident detection is attempted until the set value T is reached. If an accident has not been detected even after the maximum sensitivity angle return time has elapsed, the maximum sensitivity angle and the operating characteristics are returned to the settings before the change (step S13), and the routine after the short-circuit accident detection phase (step S5) is repeated.

【0026】[0026]

【発明の効果】以上説明したように、本発明(請求項1
対応)によれば、従来の短絡方向継電器では、動作電流
整定値より大きな短絡電流が流れているにもかかわらず
検出不可能であった短絡事故の検出が可能となり、事故
検出感度を向上させることが可能になる、という優れた
効果を奏する。
As described above, the present invention (Claim 1)
According to the above, according to the conventional short-circuit direction relay, it is possible to detect a short-circuit fault that could not be detected even though a short-circuit current larger than the operating current setting value flows, thereby improving the fault detection sensitivity. It has an excellent effect that it becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の短絡方向継電器を適用した電力系統の
系統図。
FIG. 1 is a system diagram of a power system to which a short-circuit direction relay according to the present invention is applied.

【図2】本発明の短絡方向継電器の内部構成図。FIG. 2 is an internal configuration diagram of a short-circuit direction relay of the present invention.

【図3】本発明の短絡方向継電器の最大感度角と最小動
作電流整定値より決定した動作特性図。
FIG. 3 is an operation characteristic diagram determined from a maximum sensitivity angle and a minimum operation current setting value of the short-circuit direction relay of the present invention.

【図4】本発明の短絡方向継電器の最大感度角を変化さ
せた後の動作特性図。
FIG. 4 is an operational characteristic diagram after changing the maximum sensitivity angle of the short-circuit direction relay of the present invention.

【図5】本発明の短絡方向継電器の動作フローチャー
ト。
FIG. 5 is an operation flowchart of the short-circuit direction relay of the present invention.

【図6】従来の短絡方向継電器を適用した電力系統の系
統図。
FIG. 6 is a system diagram of a power system to which a conventional short-circuit direction relay is applied.

【図7】線間電圧に対し90度進み電流接続された従来
の短絡方向継電器の動作特性図。
FIG. 7 is an operation characteristic diagram of a conventional short-circuit direction relay connected by a current advanced by 90 degrees with respect to a line voltage.

【図8】短絡事故が発生した際の従来の短絡方向継電器
の動作特性図。
FIG. 8 is an operation characteristic diagram of a conventional short-circuit direction relay when a short-circuit accident occurs.

【符号の説明】[Explanation of symbols]

1…三相交流電源A、2…三相交流電源B、3…送電
線、4…本発明による短絡方向継電器、5…変流器、6
…計器用変圧器、7…遮断器、8…短絡事故検出区間、
9…事故点、10…事故点、11…入力変換モジュー
ル、12…アナログ/ディジタル変換モジュール、13
…外部整定モジュール、14…演算モジュール、15…
トリップ出力モジュール、16…外部インタフェースモ
ジュール、17…事故検出モジュール、18…表示用L
CDモジュール、19…記憶モジュール、20…データ
バス、|Is|…最小動作電流の絶対値、|If|…事
故電流の絶対値、φs…最大感度角(初期設定値)、φ
s’…最大感度角(再設定値)、θf…事故発生時のイ
ンピーダンス角。
DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply A, 2 ... Three-phase alternating current power supply B, 3 ... Transmission line, 4 ... Short-circuit direction relay by this invention, 5 ... Current transformer, 6
… Instrument transformer, 7… circuit breaker, 8… short circuit accident detection section,
9: Accident point, 10: Accident point, 11: Input conversion module, 12: Analog / digital conversion module, 13
... External setting module, 14 ... Calculation module, 15 ...
Trip output module, 16: external interface module, 17: accident detection module, 18: display L
CD module, 19: storage module, 20: data bus, | Is |: absolute value of minimum operating current, | If |: absolute value of fault current, φs: maximum sensitivity angle (initial setting value), φ
s ′: maximum sensitivity angle (reset value), θf: impedance angle at the time of accident occurrence.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力系統上の短絡事故の発生を、方向要
素と過電流要素の2要素より検出する短絡方向継電器に
おいて、外部からの設定入力により動作特性を変化させ
る動作特性設定手段と、電力系統上に設けられた変流器
および計器用変圧器を介して、その二次アナログ量をデ
ィジタルデータに変換し、そのデータの演算結果により
電力系統電流と電力系統電圧との位相差を測定する位相
差測定手段と、その結果を用いて動作特性を自動設定す
る自動設定手段とを備え、電力系統の固有値および短絡
事故の発生状況に応じて最適な動作特性とすることで、
事故検出判定を可能としたことを特徴とする短絡方向継
電器。
1. A short-circuit direction relay for detecting the occurrence of a short-circuit accident on a power system from two elements, a direction element and an overcurrent element, wherein: an operation characteristic setting means for changing operation characteristics by an external setting input; The secondary analog amount is converted into digital data via a current transformer and an instrument transformer provided on the system, and the phase difference between the power system current and the power system voltage is measured based on the calculation result of the data. By providing a phase difference measuring means and an automatic setting means for automatically setting an operating characteristic using the result, by setting an optimal operating characteristic according to a characteristic value of a power system and an occurrence situation of a short circuit accident,
A short-circuit directional relay characterized in that an accident detection judgment can be made.
JP33958698A 1998-11-30 1998-11-30 Short-circuit direction relay Expired - Fee Related JP3535395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33958698A JP3535395B2 (en) 1998-11-30 1998-11-30 Short-circuit direction relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33958698A JP3535395B2 (en) 1998-11-30 1998-11-30 Short-circuit direction relay

Publications (2)

Publication Number Publication Date
JP2000166082A true JP2000166082A (en) 2000-06-16
JP3535395B2 JP3535395B2 (en) 2004-06-07

Family

ID=18328889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33958698A Expired - Fee Related JP3535395B2 (en) 1998-11-30 1998-11-30 Short-circuit direction relay

Country Status (1)

Country Link
JP (1) JP3535395B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498563A (en) * 2012-01-20 2013-07-24 Ge Aviat Systems Ltd Determination of the location of an electrical fault or disturbance
US9997048B2 (en) 2015-07-28 2018-06-12 Lsis Co., Ltd. Power failure monitoring device of digital protection relay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498563A (en) * 2012-01-20 2013-07-24 Ge Aviat Systems Ltd Determination of the location of an electrical fault or disturbance
US9997048B2 (en) 2015-07-28 2018-06-12 Lsis Co., Ltd. Power failure monitoring device of digital protection relay

Also Published As

Publication number Publication date
JP3535395B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
EP0932235B1 (en) A directional element
JPH0340718A (en) Static tripping device in protective breaker in system of ac power
JP2000125462A (en) Distance relay
JP3456952B2 (en) Digital type distance relay
JP2000166082A (en) Short-circuit directional relay
JP2000074978A (en) Fault point locator at parallel two-line transmission line
US5710542A (en) Method of measuring the A.C. current in a conductor in an A.C. power transmission network
JP3829614B2 (en) Digital type protective relay device
JPH10313531A (en) Ratio differential relay
US4296451A (en) Ultra high speed protective relay circuit
CN112578310A (en) Detection method for single-phase grounding line selection tripping function
JP4620497B2 (en) Transmission direction discriminating device for distribution lines
JP3817555B2 (en) Distribution line short circuit detector
JP3191527B2 (en) One-phase disconnection continuous monitoring method
JP2733397B2 (en) Undervoltage relay device with current compensation
JPH11191922A (en) Digital ground distance relaying device
JP2577364B2 (en) 1-line ground fault detection relay system
JP3449379B2 (en) Line selection relay
JPH073449B2 (en) Ground fault current direction determination device
JP3763345B2 (en) Ratio differential relay
JPH08308084A (en) Overcurrent relay device
Henville et al. How Low Can you Go?–More on the Limits of Sensitivity
JPH0134521Y2 (en)
JP2000341851A (en) Ground directional relay
JPH02223331A (en) Accident phase detection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

LAPS Cancellation because of no payment of annual fees