JP3763345B2 - Ratio differential relay - Google Patents

Ratio differential relay Download PDF

Info

Publication number
JP3763345B2
JP3763345B2 JP2000258295A JP2000258295A JP3763345B2 JP 3763345 B2 JP3763345 B2 JP 3763345B2 JP 2000258295 A JP2000258295 A JP 2000258295A JP 2000258295 A JP2000258295 A JP 2000258295A JP 3763345 B2 JP3763345 B2 JP 3763345B2
Authority
JP
Japan
Prior art keywords
current
attenuation
constant
communication line
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000258295A
Other languages
Japanese (ja)
Other versions
JP2002078186A (en
Inventor
孝志 川本
裕一 安居
修司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000258295A priority Critical patent/JP3763345B2/en
Publication of JP2002078186A publication Critical patent/JP2002078186A/en
Application granted granted Critical
Publication of JP3763345B2 publication Critical patent/JP3763345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統の保護区間の差電流に基づき内部事故を判定する差動継電装置に係わり、特に通過電流に比例して動作設定値が大きくなる比率差動継電装置に関する。
【0002】
【従来の技術】
一般に、差動継電装置は、保護区間に流入する電流と保護区間から流出する電流との差電流を判別して内部事故か否かの判定を行う。すなわち、内部事故のないときは電流の流入と流出は等しく差電流は零であり、内部事故があると故障電流が流れることから差電流が故障電流として表れる。この差電流が動作設定値を超えたときに内部事故と判定し動作する。
【0003】
また、保護区間の通過電流が大になると、両端の電圧を検出する電流変成器の誤差により保護区間外部故障で誤動作の可能性があるので、動作設定値が通過電流の増加に伴って大きくなる比率差動継電器が用いられている。
【0004】
図4は比率差動継電装置を長距離線路の電力系統に適用した保護継電システムの全体構成図である。電力系統の保護区間の両端A、Bには、それぞれ比率差動継電装置1A、1Bが設置されている。いま、電力系統のA端子を自端子とし、B端子を他端子とする。
【0005】
比率差動継電装置1Aには計器用変成器2Aおよび限流変流器3Aを介してA端子の電流Iaが入力される。このA端子の電流Iaは、絶縁変流器4A1、A通信線路5A、絶縁変流器4A2を介して相手端であるB端子の比率差動継電装置1Bに入力される。相手端の比率差動継電装置1Bにおいては計器用変成器2Bおよび限流変流器3Bを介してB端子の電流Ibが入力され、A端子から送られてきた電流Iaとの差電流が演算される。
【0006】
同様に、比率差動継電装置1Aには、相手端であるB端子の電流Ibが絶縁変流器4B1、B通信線路5、絶縁変流器4B2を介して入力され、自端の電流Iaとの差電流が演算される。そして、比率差動継電装置1A、1Bのいずれかが動作すると、保護区間の遮断器6A、6Bを開放する。
【0007】
図5は、比率差動継電装置1のブロック構成図である。自端と相手端の電流Ia、Ibは、比率差動継電装置1の入力変換器7に入力され、A/D変換器8アナログ量からディジタル量に変換され、リレー判定演算部9に入力される。リレー判定演算部9では自端電流Iaと相手端電流Ibとの差電流を演算し、その差電流が動作設定値を超えたか否かを判定し、動作設定値を超えたときはシーケンス処理部10を介して出力処理部11から遮断器6A、6Bにトリッブ信号を出力し、保護区間の長距離線路の保護を行う。
【0008】
【発明が解決しようとする課題】
ところが、比率差動継電装置を長距離線路に適用した場合には、相手端の電流を取り込むための通信線路5A、5Bが長くなるので、通信線路5A、5Bの線路インダクタンスにより受信側波形に減衰と位相遅れが発生する。相手端の電流に減衰および位相遅れが発生すると、精度良い差動演算を行うことができなくなる。
【0009】
従来の比率差動継電装置1では、相手端の電流の減衰率と位相遅れとを検出する処理が実装されていないため、リレー判定演算部9のリレー演算処理に誤差が生じ、精度の良い演算結果が得られず、誤動作および誤不動作の可能性がある。
【0010】
本発明の目的は、相手端の電流の減衰率および位相遅れを検出でき、精度良くリレー判定演算を行うことができる比率差動継電装置を提供することである。
【0011】
【課題を解決するための手段】
請求項1の発明に係わる比率差動継電装置は、電力系統の保護区間の両端に設けられ、自端の電流は計器用変流器を介して入力し相手端の電流は通信線路を介して入力し、自端の電流と相手端の電流との差電流が前記保護区間の通過電流に比例して大きくなる動作設定値を超えたとき動作する比率差動継電装置において、自端の電流および相手端の電流を所定の周期でサンプリングしてディジタル量に変換するA/D変換器と、前記A/D変換器で得られた自端の電流と相手端の電流との差電流が動作設定値を超えたか否かの判定演算を行い差電流が動作設定値を超えたときに動作するリレー判定演算部と、前記リレー判定演算部が動作したとき保護区間の両端の遮断器にトリップ信号を出力する出力処理部と、前記通信線路による相手端の電流の減衰および位相遅れを補償するための定数を算出し前記リレー判定演算部の判定演算に補正を加える演算補正部とを備え、
演算補正部は、前記通信線路の減衰量および位相遅れを求める検出処理部と、前記検出処理部で求めた減衰量に基づいて減衰定数を算出すると共に前記位相遅れに基づいて位相定数を算出する定数算出部と、前記定数算出部で算出された減衰定数および位相定数を前記リレー判定演算部に出力する補正出力部とを備え、
前記検出処理部は、両端の比例差動継電装置を電力系統から切り離した状態で2つの前記通信線路に試験電流を流し、2つの前記通信線路の減衰量差、位相遅れ差、減衰量和および位相遅れ和を求め、これら2つの前記通信線路の減衰量差、位相遅れ差、減衰量和および位相遅れ和に基づいて前記通信線路の減衰定数および位相定数を求めることを特徴とする
【0012】
請求項1の発明に係わる比率差動継電装置においては、演算補正部は、通信線路による相手端の電流の減衰および位相遅れを補償するための定数を算出しリレー判定演算部の判定演算に補正を加える。リレー判定演算部は、演算補正部からの定数に基づいてA/D変換器で得られた相手端の電流の減衰および位相遅れを補償し、その補償した相手端の電流およびA/D変換器で得られた自端の電流の差電流に基づいてリレー判定演算を行う。そして、差電流が動作設定値を超えたときに、出力処理部から保護区間の両端の遮断器にトリップ信号が出力される。
【0014】
また、演算補正部の検出処理部では、通信線路の減衰量および位相遅れを検出し、定数算出部で、検出処理部で検出した減衰量に基づいて減衰定数を算出すると共に位相遅れに基づいて位相定数を算出する。そして、補正出力部から算出された減衰定数および位相定数をリレー判定演算部に出力する。
【0015】
請求項の発明に係わる比率差動継電装置は、請求項の発明において、リレー判定演算部は、相手端の電流として、通信線路から入力した相手端の電流に演算補正部からの減衰定数で除算すると共に、演算補正部からの位相定数に相当するサンプリング周期分だけ過去の電流データを使用してリレー判定演算を行うことを特徴とする。
【0016】
請求項の発明に係わる比率差動継電装置においては、請求項の発明の作用に加え、通信線路から入力した相手端の電流に演算補正部からの減衰定数で除算する。これにより、減衰による補正を行う。また、演算補正部からの位相定数に相当するサンプリング周期分だけ過去の電流データを使用する。これにより、位相遅れ分を補正する。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる比率差動継電装置のブロック構成図である。この実施の形態は、図4に示した従来例に対し、通信線路5による相手端の電流の減衰および位相遅れを補償するための定数を算出しリレー判定演算部9の判定演算に補正を加える演算補正部12を追加して設けたものである。その他の構成は、図4に示した従来例と同一であるので、同一要素には同一符号を付し重複する説明は省略する。
【0018】
演算補正部12は、通信線路5A、5Bによる相手端の電流の減衰および位相遅れを補償するための定数を算出し、リレー判定演算部9の判定演算に補正を加えるものである。この演算補正部12は、後述するように比率差動継電装置1A、1Bを電力系統から切り離した状態で試験電流Iを流し、通信線路5A、5Bの減衰量および位相遅れを求め、さらに減衰定数および位相定数を算出する。
【0019】
すなわち、演算補正部12の検出処理部13は、試験電流Iが流れている状態で通信線路5A、5Bの減衰量および位相遅れを検出する。この場合、減衰量および位相遅れの計測中であることは計測中表示部14に表示される。
【0020】
定数算出部15は、検出処理部13で検出された減衰量に基づいて減衰定数を算出する。また、検出処理部13で検出された位相遅れに基づいて位相定数を算出する。定数算出部15で算出された減衰定数および位相定数は、定数表示部16に表示されると共に記憶部17に記憶される。そして、補正出力部18は定数算出部15で算出され記憶部17に記憶された減衰定数および位相定数をリレー判定演算部9に出力し、補正を加えるようになっている。
【0021】
次に、検出処理部13での減衰定数および位相定数を求め方を説明する。検出処理部13では、通信線路5Aの減衰量と通信線路5Bの減衰量との減衰量差ΔI、および通信線路5Aの位相遅れと通信線路5Bの位相遅れとの位相遅れ差Δθを求め、さらに、通信線路5Aの減衰量と通信線路5Bの減衰量との減衰量和ΣI、および通信線路5Aの位相遅れと通信線路5Bの位相遅れとの位相遅れ和Σθを求め、減衰量差ΔI、減衰量和ΣI、位相遅れ差Δθ、位相遅れ和Σθに基づいて減衰定数および位相定数を求める。
【0022】
図2は、検出処理部13において、通信線路5Aの減衰量と通信線路5Bの減衰量との減衰量差ΔI、および通信線路5Aの位相遅れと通信線路5Bの位相遅れとの位相遅れ差Δθを求める場合の試験回路構成を示している。なお、図2では自端の比率差動継電装置1Aの内部構成の図示を一部省略している。
【0023】
まず、自端の比率差動継電装置1Aおよび相手端の比率差動継電装置1Bを電力系統から切り離す。すなわち、限流変流器3A、3Bからの入力を遮断し、相手端側に試験電源19を接続し、この試験電源19から通信線路5A、5Bに同一の試験電流Iを流す。
【0024】
いま、A通信線路5Aの減衰率をαa、位相遅れをθaとし、また、B通信線路5Bの減衰率をαb、位相遅れをθbとする。さらに自端の比率差動継電装置1Aに入力されるA通信線路5Aからの電流をIa、B通信線路5Bからの電流をIb、電流Iaと電流Ibとの位相差をΔθとする。
【0025】
この場合、A通信線路5Aからの電流IaおよびB通信線路5Bからの電流Ibは、下記(1)式および(2)式で示される。
【0026】
Ia=(1−αa)I …(1)
Ib=(1−αb)I …(2)
【0027】
また、通信線路5Aの減衰量αaIと通信線路5Bの減衰量αbIとの減衰量差ΔIは、下記(3)式で求められる。
【0028】

Figure 0003763345
【0029】
一方、通信線路5Aの位相遅れθaと通信線路5Bの位相遅れθbとの位相遅れ差Δθは(4)式で示され、電流Iaと電流Ibとの位相差として求められる。従って、下記(5)式により、通信線路5Aの位相遅れθaと通信線路5Bの位相遅れθbとの位相遅れ差Δθが求められる。
【0030】
Δθ=θb−θa …(4)
Δθ=COS-1(Ia・Ib/|Ia||Ib|) …(5)
【0031】
図3は、検出処理部13において、通信線路5Aの減衰量と通信線路5Bの減衰量との減衰量和ΣI、および通信線路5Aの位相遅れと通信線路5Bの位相遅れとの位相遅れ和Σθを求める場合の試験回路構成を示している。なお、図3では自端の比率差動継電装置1Aの内部構成の図示を一部省略している。
【0032】
まず、自端の比率差動継電装置1Aおよび相手端の比率差動継電装置1Bを電力系統から切り離す。すなわち、限流変流器3A、3Bからの入力を遮断し、自端側に試験電源19を接続し、この試験電源19から通信線路5Aおよび通信線路5Bを経由する試験電流Iを流す。
【0033】
いま、A通信線路5Aの減衰率をαa、位相遅れをθaとし、また、B通信線路5Bの減衰率をαb、位相遅れをθbとする。さらに自端の比率差動継電装置1Aに入力される電流をIa’、B通信線路5Bからの電流をIb’、電流Ia’と電流Ib’との位相差をΣθとする。
【0034】
この場合、A通信線路5Aに流れる電流Ia’は試験電流Iそのものとなり、B通信線路5Bからの電流Ib’は、通信線路5Aおよび通信線路5Bを経由してきた電流となり、下記(6)式および(7)式でそれぞれ示される。
【0035】
Ia’=I …(6)
Ib’=(1−αa−αb)I …(7)
【0036】
また、通信線路5Aの減衰量αaIと通信線路5Bの減衰量αbIとの減衰量和ΣΔIは、下記(8)式で求められる。
【0037】
Figure 0003763345
【0038】
一方、通信線路5Aの位相遅れθaと通信線路5Bの位相遅れθbとの位相遅れ和Σθは(9)式で示され、電流Iaと電流Ibとの位相差として求められる。従って、下記(10)式により、通信線路5Aの位相遅れθaと通信線路5Bの位相遅れθbとの位相遅れ和Σθが求められる。
【0039】
Σθ=θa+θb …(9)
Σθ=COS-1(Ia’・Ib’/|Ia’||Ib’|) …(10)
【0040】
従って、A通信線路5Aの減衰量αaIおよびB通信線路5Bの減衰量αbIは、(3)式で求めた減衰量差ΔIと(8)式で求めた減衰量和ΣIとから、下記(11)式および(12)式により求められる。
【0041】
αaI=(ΣI−ΔI)/2 …(11)
αbI=(ΣI+ΔI)/2 …(12)
【0042】
同様に、A通信線路5Aの位相遅れθaおよびB通信線路5Bの位相遅れθbは、(4)式および(9)式より、下記(13)式および(14)式で求められる。
【0043】
θa=(Σθ−Δθ)/2 …(13)
θb=(Σθ+Δθ)/2 …(14)
【0044】
このようにして求めた通信線路5A、5Bの減衰量αaI、αbI、位相遅れθa、θbは、定数算出部15に入力され、定数算出部15において、減衰定数および位相定数を算出する。すなわち、A通信線路5Aの減衰定数βaおよびB通信線路5Bの減衰定数βbは、(15)式および(16)式のように求められる。
【0045】
βa=1−αaI/I=1−αa …(15)
βb=1−αbI/I=1−αb …(16)
【0046】
また、A通信線路5Aの位相定数τaおよびB通信線路5Bの位相定数τbは、(17)式および(18)式のように求められる。ここで、Kは位相遅れθa、θbを何回のサンプリング周期分に相当するかに変換するための定数である。
【0047】
τa=Kθa …(17)
τb=Kθb …(18)
【0048】
すなわち、位相定数τa、τbは、位相遅れθa、θbを補償するために何回前のサンプリング周期の電流データを用いればよいかを示す定数である。
【0049】
定数算出部15で求められた減衰定数βa、βbおよび位相定数τa、τbは定数表示部16に表示されると共に記憶部17に記憶される。そして、記憶部17に記憶された減衰定数βa、βbおよび位相定数τa、τbは、補正出力部18からリレー判定演算部9に出力され、リレー判定演算部9において、通信線路5A、5Bから入力した相手端の電流に演算補正部12からの減衰定数βa、βbで除算すると共に、位相定数τa、τbに相当するサンプリング周期分だけ過去の電流データを使用してリレー判定演算を行う。これにより、減衰および位相遅れを補償する。
【0050】
【発明の効果】
以上、説明したように、本発明によれば、減衰量および位相遅れを計測し相手端の入力電流の減衰定数および位相定数を算出し、これらを補償するので比率差動継電装置の整定時に誤動作および誤不動作を防止できる整定値を設定できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる比率差動継電装置のブロック構成図。
【図2】本発明の実施の形態における検出処理部において、2つの通信線路の減衰量差ΔI、および位相遅れ差Δθを求める場合の試験回路の構成図。
【図3】本発明の実施の形態における検出処理部において、2つの通信線路の減衰量和ΣI、および位相遅れ和Σθを求める場合の試験回路の構成図。
【図4】従来の比率差動継電装置を長距離線路の電力系統に適用した保護継電システムの全体構成図。
【図5】従来の比率差動継電装置1のブロック構成図。
【符号の説明】
1…比率差動継電装置、2…計器用変成器、3…限流変流器、4…絶縁変流器、5…通信線路、6…遮断器、7…入力変換部、8…A/D変換器、9…比率電流差動継電器、10…シーケンス処理部、11…出力処理部、12…演算補正部、13…検出処理部、14…計測中表示部、15…定数算出部、16…定数表示部、17…記憶部、18…補正出力部、19…試験電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential relay device that determines an internal fault based on a difference current in a protection section of a power system, and more particularly to a ratio differential relay device in which an operation set value increases in proportion to a passing current.
[0002]
[Prior art]
Generally, the differential relay device determines whether or not there is an internal accident by determining a difference current between a current flowing into the protection section and a current flowing out from the protection section. That is, when there is no internal fault, the inflow and outflow of current are equal and the difference current is zero. When there is an internal fault, the fault current flows, so the difference current appears as a fault current. When this difference current exceeds the operation set value, it is determined that there is an internal accident and the operation is performed.
[0003]
Also, if the passing current in the protection zone becomes large, there is a possibility of malfunction due to an external failure in the protection zone due to the error of the current transformer that detects the voltage at both ends, so the operation set value increases as the passing current increases Ratio differential relays are used.
[0004]
FIG. 4 is an overall configuration diagram of a protective relay system in which the ratio differential relay device is applied to a long-distance power system. Ratio differential relay devices 1A and 1B are respectively installed at both ends A and B of the protection section of the power system. Now, let the A terminal of the power system be its own terminal and the B terminal be the other terminal.
[0005]
The current Ia at the A terminal is input to the ratio differential relay device 1A via the instrument transformer 2A and the current limiting current transformer 3A. The current Ia at the A terminal is input to the ratio differential relay device 1B at the B terminal, which is the counterpart, via the insulation current transformer 4A1, the A communication line 5A, and the insulation current transformer 4A2. In the counter differential relay device 1B at the other end, the current Ib at the B terminal is input via the instrument transformer 2B and the current limiting current transformer 3B, and the difference current from the current Ia sent from the A terminal is Calculated.
[0006]
Similarly, the current Ib at the B terminal, which is the other end, is input to the ratio differential relay device 1A via the insulation current transformer 4B1, the B communication line 5, and the insulation current transformer 4B2, and the current Ia at its own end is input. Is calculated. And when either of ratio differential relay devices 1A and 1B operate | moves, the circuit breakers 6A and 6B of a protection area will be open | released.
[0007]
FIG. 5 is a block configuration diagram of the ratio differential relay device 1. The currents Ia and Ib of the local end and the counterpart end are input to the input converter 7 of the ratio differential relay device 1, converted from an analog amount to a digital amount by the A / D converter 8, and input to the relay determination calculation unit 9. Is done. The relay determination calculation unit 9 calculates a difference current between the local end current Ia and the counterpart end current Ib, determines whether or not the difference current exceeds the operation set value, and when the operation set value is exceeded, the sequence processing unit A trip signal is output from the output processing unit 11 to the circuit breakers 6A and 6B via 10 to protect the long-distance line in the protection section.
[0008]
[Problems to be solved by the invention]
However, when the ratio differential relay device is applied to a long-distance line, the communication lines 5A and 5B for taking in the current at the other end become longer, so that the receiving side waveform is caused by the line inductance of the communication lines 5A and 5B. Attenuation and phase lag occur. If attenuation and phase delay occur in the current at the other end, accurate differential calculation cannot be performed.
[0009]
In the conventional ratio differential relay device 1, since the process for detecting the attenuation rate and phase delay of the current at the other end is not implemented, an error occurs in the relay calculation process of the relay determination calculation unit 9, and the accuracy is high. An operation result cannot be obtained, and there is a possibility of malfunction and malfunction.
[0010]
An object of the present invention is to provide a ratio differential relay device that can detect the attenuation rate and phase delay of the current at the other end and perform relay determination calculation with high accuracy.
[0011]
[Means for Solving the Problems]
The ratio differential relay device according to the invention of claim 1 is provided at both ends of the protection section of the electric power system, the current at its own end is input via a current transformer for the instrument, and the current at the other end is transmitted via a communication line. In the differential relay device that operates when the difference current between the current at the local end and the current at the other end exceeds an operation set value that increases in proportion to the passing current of the protection section, An A / D converter that samples the current and the current at the other end into a digital quantity by sampling at a predetermined cycle, and a difference current between the current at the end and the current at the other end obtained by the A / D converter is The relay judgment calculation unit that operates when the differential current exceeds the operation set value by performing the calculation of whether or not the operation set value has been exceeded, and trips to the circuit breakers at both ends of the protection section when the relay determination calculation unit operates. An output processing unit that outputs a signal, and the other end of the communication line And an arithmetic correction unit calculates the constants to compensate for the attenuation and phase lag of the flow correction is applied to the determination operation of the relay determination computing unit,
The calculation correction unit calculates the attenuation constant and the phase delay of the communication line, calculates the attenuation constant based on the attenuation obtained by the detection processing unit, and calculates the phase constant based on the phase delay A constant calculation unit, and a correction output unit that outputs the attenuation constant and the phase constant calculated by the constant calculation unit to the relay determination calculation unit,
The detection processing unit causes a test current to flow through the two communication lines in a state in which the proportional differential relay devices at both ends are disconnected from the power system, and the attenuation difference, phase delay difference, and attenuation sum of the two communication lines. The phase delay sum is obtained, and the attenuation constant and phase constant of the communication line are obtained on the basis of the attenuation difference, phase delay difference, attenuation sum, and phase delay sum of the two communication lines .
[0012]
In the ratio differential relay device according to the first aspect of the present invention, the calculation correction unit calculates a constant for compensating for the attenuation and phase delay of the current at the other end by the communication line, and performs the determination calculation of the relay determination calculation unit. Add corrections. The relay determination calculation unit compensates for the attenuation and phase lag of the counterpart current obtained by the A / D converter based on the constant from the calculation correction unit, and the compensated counterpart current and A / D converter The relay determination calculation is performed on the basis of the difference current between the currents obtained at step 1. When the difference current exceeds the operation set value, a trip signal is output from the output processing unit to the circuit breakers at both ends of the protection section.
[0014]
In addition , the detection processing unit of the calculation correction unit detects the attenuation amount and phase delay of the communication line, and the constant calculation unit calculates the attenuation constant based on the attenuation detected by the detection processing unit and based on the phase delay. Calculate the phase constant. Then, the attenuation constant and the phase constant calculated from the correction output unit are output to the relay determination calculation unit.
[0015]
The ratio differential relay device according to the invention of claim 2 is the ratio differential relay device according to claim 1 , wherein the relay determination calculation unit attenuates the current of the other end input from the communication line as the current of the other end from the calculation correction unit. In addition to dividing by a constant, relay determination calculation is performed using past current data for a sampling period corresponding to the phase constant from the calculation correction unit.
[0016]
In the ratio differential relay device according to the invention of claim 2 , in addition to the operation of the invention of claim 1 , the current at the other end inputted from the communication line is divided by the attenuation constant from the calculation correction unit. Thereby, correction by attenuation is performed. Further, past current data is used for the sampling period corresponding to the phase constant from the calculation correction unit. As a result, the phase delay is corrected.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a block diagram of a differential relay device according to an embodiment of the present invention. In this embodiment, a constant for compensating for the attenuation and phase delay of the current at the other end of the communication line 5 is calculated with respect to the conventional example shown in FIG. An arithmetic correction unit 12 is additionally provided. Since the other configuration is the same as that of the conventional example shown in FIG. 4, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0018]
The calculation correction unit 12 calculates a constant for compensating for the attenuation and phase delay of the current at the other end by the communication lines 5A and 5B, and corrects the determination calculation of the relay determination calculation unit 9. As will be described later, the calculation correction unit 12 causes the test current I to flow in a state where the ratio differential relay devices 1A and 1B are disconnected from the power system, obtains attenuation amounts and phase delays of the communication lines 5A and 5B, and further attenuates Calculate constants and phase constants.
[0019]
That is, the detection processing unit 13 of the calculation correction unit 12 detects the attenuation amount and the phase delay of the communication lines 5A and 5B in a state where the test current I is flowing. In this case, the fact that the attenuation amount and the phase delay are being measured is displayed on the display unit 14 during measurement.
[0020]
The constant calculation unit 15 calculates an attenuation constant based on the attenuation amount detected by the detection processing unit 13. Further, the phase constant is calculated based on the phase delay detected by the detection processing unit 13. The attenuation constant and the phase constant calculated by the constant calculation unit 15 are displayed on the constant display unit 16 and stored in the storage unit 17. Then, the correction output unit 18 outputs the attenuation constant and the phase constant calculated by the constant calculation unit 15 and stored in the storage unit 17 to the relay determination calculation unit 9 to be corrected.
[0021]
Next, how to obtain the attenuation constant and phase constant in the detection processing unit 13 will be described. The detection processing unit 13 obtains the attenuation difference ΔI between the attenuation amount of the communication line 5A and the attenuation amount of the communication line 5B, and the phase delay difference Δθ between the phase delay of the communication line 5A and the phase delay of the communication line 5B. Then, the attenuation amount sum ΣI of the attenuation amount of the communication line 5A and the attenuation amount of the communication line 5B, and the sum of phase delays Σθ of the phase delay of the communication line 5A and the phase delay of the communication line 5B are obtained. An attenuation constant and a phase constant are obtained based on the quantity sum ΣI, the phase delay difference Δθ, and the phase delay sum Σθ.
[0022]
2 shows the detection processing unit 13 in which the difference ΔI between the attenuation amount of the communication line 5A and the attenuation amount of the communication line 5B and the phase delay difference Δθ between the phase delay of the communication line 5A and the phase delay of the communication line 5B are detected. 2 shows a test circuit configuration in the case of obtaining. In FIG. 2, a part of the internal configuration of the self-proportional ratio differential relay device 1A is partially omitted.
[0023]
First, the own ratio differential relay device 1A and the counterpart ratio differential relay device 1B are disconnected from the power system. That is, the input from the current limiting current transformers 3A and 3B is cut off, the test power supply 19 is connected to the other end, and the same test current I is supplied from the test power supply 19 to the communication lines 5A and 5B.
[0024]
Now, the attenuation rate of the A communication line 5A is αa, the phase delay is θa, the attenuation rate of the B communication line 5B is αb, and the phase delay is θb. Further, let Ia be the current from the A communication line 5A input to the self-proportional differential relay device 1A, Ib be the current from the B communication line 5B, and Δθ be the phase difference between the current Ia and the current Ib.
[0025]
In this case, the current Ia from the A communication line 5A and the current Ib from the B communication line 5B are expressed by the following expressions (1) and (2).
[0026]
Ia = (1-αa) I (1)
Ib = (1−αb) I (2)
[0027]
Further, the attenuation difference ΔI between the attenuation amount αaI of the communication line 5A and the attenuation amount αbI of the communication line 5B can be obtained by the following equation (3).
[0028]
Figure 0003763345
[0029]
On the other hand, the phase delay difference Δθ between the phase delay θa of the communication line 5A and the phase delay θb of the communication line 5B is expressed by the equation (4), and is obtained as the phase difference between the current Ia and the current Ib. Therefore, the phase delay difference Δθ between the phase delay θa of the communication line 5A and the phase delay θb of the communication line 5B is obtained by the following equation (5).
[0030]
Δθ = θb−θa (4)
Δθ = COS −1 (Ia · Ib / | Ia || Ib |) (5)
[0031]
FIG. 3 illustrates the detection processing unit 13 in which the attenuation amount ΣI of the attenuation amount of the communication line 5A and the attenuation amount of the communication line 5B, and the phase delay sum Σθ of the phase delay of the communication line 5A and the phase delay of the communication line 5B. 2 shows a test circuit configuration in the case of obtaining. In FIG. 3, the internal configuration of the self-proportional ratio differential relay device 1 </ b> A is partially omitted.
[0032]
First, the own ratio differential relay device 1A and the counterpart ratio differential relay device 1B are disconnected from the power system. That is, the input from the current limiting current transformers 3A and 3B is cut off, the test power supply 19 is connected to the self-end side, and the test current I is passed from the test power supply 19 via the communication line 5A and the communication line 5B.
[0033]
Now, the attenuation rate of the A communication line 5A is αa, the phase delay is θa, the attenuation rate of the B communication line 5B is αb, and the phase delay is θb. Further, let Ia ′ be the current input to the self-end ratio differential relay device 1A, Ib ′ be the current from the B communication line 5B, and Σθ be the phase difference between the current Ia ′ and the current Ib ′.
[0034]
In this case, the current Ia ′ flowing through the A communication line 5A is the test current I itself, and the current Ib ′ from the B communication line 5B is the current that has passed through the communication line 5A and the communication line 5B. It is shown by the equation (7).
[0035]
Ia ′ = I (6)
Ib ′ = (1−αa−αb) I (7)
[0036]
Further, the attenuation sum ΣΔI of the attenuation amount αaI of the communication line 5A and the attenuation amount αbI of the communication line 5B can be obtained by the following equation (8).
[0037]
Figure 0003763345
[0038]
On the other hand, the phase delay sum Σθ of the phase delay θa of the communication line 5A and the phase delay θb of the communication line 5B is expressed by the equation (9), and is obtained as a phase difference between the current Ia and the current Ib. Therefore, the phase delay sum Σθ of the phase delay θa of the communication line 5A and the phase delay θb of the communication line 5B is obtained by the following equation (10).
[0039]
Σθ = θa + θb (9)
Σθ = COS −1 (Ia ′ · Ib ′ / | Ia ′ || Ib ′ |) (10)
[0040]
Therefore, the attenuation amount αaI of the A communication line 5A and the attenuation amount αbI of the B communication line 5B are expressed by the following (11) from the attenuation amount difference ΔI obtained by the equation (3) and the attenuation amount sum ΣI obtained by the equation (8). ) And (12).
[0041]
αaI = (ΣI−ΔI) / 2 (11)
αbI = (ΣI + ΔI) / 2 (12)
[0042]
Similarly, the phase delay θa of the A communication line 5A and the phase delay θb of the B communication line 5B are obtained by the following expressions (13) and (14) from the expressions (4) and (9).
[0043]
θa = (Σθ−Δθ) / 2 (13)
θb = (Σθ + Δθ) / 2 (14)
[0044]
The attenuation amounts αaI and αbI and the phase delays θa and θb of the communication lines 5A and 5B thus obtained are input to the constant calculation unit 15, and the constant calculation unit 15 calculates the attenuation constant and the phase constant. That is, the attenuation constant βa of the A communication line 5A and the attenuation constant βb of the B communication line 5B are obtained as in Expressions (15) and (16).
[0045]
βa = 1−αaI / I = 1−αa (15)
βb = 1−αbI / I = 1−αb (16)
[0046]
Further, the phase constant τa of the A communication line 5A and the phase constant τb of the B communication line 5B are obtained as in Expressions (17) and (18). Here, K is a constant for converting the number of sampling periods corresponding to the phase delays θa and θb.
[0047]
τa = Kθa (17)
τb = Kθb (18)
[0048]
That is, the phase constants τa and τb are constants that indicate how many times the current data of the previous sampling period should be used to compensate for the phase delays θa and θb.
[0049]
The attenuation constants βa and βb and the phase constants τa and τb obtained by the constant calculation unit 15 are displayed on the constant display unit 16 and stored in the storage unit 17. Then, the attenuation constants βa and βb and the phase constants τa and τb stored in the storage unit 17 are output from the correction output unit 18 to the relay determination calculation unit 9 and input from the communication lines 5A and 5B in the relay determination calculation unit 9. The current at the other end is divided by the attenuation constants βa and βb from the calculation correction unit 12 and the relay determination calculation is performed using the past current data for the sampling period corresponding to the phase constants τa and τb. This compensates for attenuation and phase lag.
[0050]
【The invention's effect】
As described above, according to the present invention, the attenuation amount and the phase delay are measured, the attenuation constant and the phase constant of the input current at the other end are calculated, and these are compensated. A settling value that can prevent malfunction and malfunction can be set.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of a ratio differential relay device according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a test circuit for obtaining an attenuation difference ΔI and a phase delay difference Δθ between two communication lines in the detection processing unit according to the embodiment of the present invention.
FIG. 3 is a configuration diagram of a test circuit in a case where an attenuation amount sum ΣI and a phase delay sum Σθ of two communication lines are obtained in the detection processing unit according to the embodiment of the present invention.
FIG. 4 is an overall configuration diagram of a protective relay system in which a conventional ratio differential relay device is applied to a long-distance power system.
FIG. 5 is a block diagram of a conventional ratio differential relay device 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ratio differential relay device, 2 ... Instrument transformer, 3 ... Current limiting current transformer, 4 ... Insulation current transformer, 5 ... Communication line, 6 ... Circuit breaker, 7 ... Input conversion part, 8 ... A / D converter, 9 ... ratio current differential relay, 10 ... sequence processing unit, 11 ... output processing unit, 12 ... calculation correction unit, 13 ... detection processing unit, 14 ... display unit during measurement, 15 ... constant calculation unit, 16 ... Constant display section, 17 ... Storage section, 18 ... Correction output section, 19 ... Test power supply

Claims (2)

電力系統の保護区間の両端に設けられ、自端の電流は計器用変流器を介して入力し相手端の電流は通信線路を介して入力し、自端の電流と相手端の電流との差電流が前記保護区間の通過電流に比例して大きくなる動作設定値を超えたとき動作する比率差動継電装置において、 自端の電流および相手端の電流を所定の周期でサンプリングしてディジタル量に変換するA/D変換器と、
前記A/D変換器で得られた自端の電流と相手端の電流との差電流が動作設定値を超えたか否かの判定演算を行い差電流が動作設定値を超えたときに動作するリレー判定演算部と、
前記リレー判定演算部が動作したとき保護区間の両端の遮断器にトリップ信号を出力する出力処理部と、
前記通信線路による相手端の電流の減衰および位相遅れを補償するための定数を算出し前記リレー判定演算部の判定演算に補正を加える演算補正部とを備え、
演算補正部は、前記通信線路の減衰量および位相遅れを求める検出処理部と、前記検出処理部で求めた減衰量に基づいて減衰定数を算出すると共に前記位相遅れに基づいて位相定数を算出する定数算出部と、記定数算出部で算出された減衰定数および位相定数を前記リレー判定演算部に出力する補正出力部とを備え、
前記検出処理部は、両端の比例差動継電装置を電力系統から切り離した状態で2つの前記通信線路に試験電流を流し、2つの前記通信線路の減衰量差、位相遅れ差、減衰量和および位相遅れ和を求め、これら2つの前記通信線路の減衰量差、位相遅れ差、減衰量和および位相遅れ和に基づいて前記通信線路の減衰定数および位相定数を求めることを特徴とする比率差動継電装置。
Provided at both ends of the protection section of the power system, the current at the local end is input via a current transformer for the instrument, the current at the other end is input via a communication line, and the current between the local end and the current at the other end In a differential relay device that operates when the differential current exceeds an operation set value that increases in proportion to the passing current in the protection section, the current at the local end and the current at the other end are sampled at a predetermined cycle and digitally An A / D converter for converting into a quantity;
It operates when the difference current between the current at the local end and the current at the other end obtained by the A / D converter exceeds the operation set value, and operates when the difference current exceeds the operation set value. A relay determination calculation unit;
An output processing unit that outputs a trip signal to the circuit breakers at both ends of the protection section when the relay determination calculation unit operates;
A calculation correction unit that calculates a constant for compensating for attenuation and phase lag of the current at the other end by the communication line and adds correction to the determination calculation of the relay determination calculation unit, and
The calculation correction unit calculates the attenuation constant and the phase delay of the communication line, calculates the attenuation constant based on the attenuation obtained by the detection processing unit, and calculates the phase constant based on the phase delay A constant calculation unit, and a correction output unit that outputs the attenuation constant and the phase constant calculated by the writing constant calculation unit to the relay determination calculation unit,
The detection processing unit causes a test current to flow through the two communication lines in a state where the proportional differential relay devices at both ends are disconnected from the power system, and the attenuation difference, phase delay difference, and attenuation sum of the two communication lines. And a phase delay sum, and a ratio difference characterized in that an attenuation constant and a phase constant of the communication line are obtained based on an attenuation difference, a phase delay difference, an attenuation sum and a phase delay sum between the two communication lines. Relay device.
リレー判定演算部は、相手端の電流として、通信線路から入力した相手端の電流に演算補正部からの減衰定数で除算すると共に、演算補正部からの位相定数に相当するサンプリング周期分だけ過去の電流デー夕を使用してリレー判定演算を行うことを特徴とする請求項1に記載の比率差動継電装置。 The relay determination calculation unit divides the current at the other end input from the communication line by the attenuation constant from the calculation correction unit as the current at the other end, and the past sampling period corresponding to the phase constant from the calculation correction unit. The ratio differential relay device according to claim 1, wherein the relay determination calculation is performed using current data .
JP2000258295A 2000-08-29 2000-08-29 Ratio differential relay Expired - Fee Related JP3763345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258295A JP3763345B2 (en) 2000-08-29 2000-08-29 Ratio differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258295A JP3763345B2 (en) 2000-08-29 2000-08-29 Ratio differential relay

Publications (2)

Publication Number Publication Date
JP2002078186A JP2002078186A (en) 2002-03-15
JP3763345B2 true JP3763345B2 (en) 2006-04-05

Family

ID=18746627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258295A Expired - Fee Related JP3763345B2 (en) 2000-08-29 2000-08-29 Ratio differential relay

Country Status (1)

Country Link
JP (1) JP3763345B2 (en)

Also Published As

Publication number Publication date
JP2002078186A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US6791315B2 (en) Current detector and current measuring apparatus including such detector with temperature compensation
US8050806B2 (en) Ground fault interruption using DSP based SSPC module
JPS59226615A (en) Offset compensator
KR20190110411A (en) Out of order discrimination apparatus and protective relay apparatus
JP3763345B2 (en) Ratio differential relay
JP3829614B2 (en) Digital type protective relay device
JP5359543B2 (en) Accident phase sorting device
JP4406143B2 (en) Protective relay device for DC transmission system
JP2581061B2 (en) Power system protection device
JP2009017680A (en) Protective relay system
JPS6341285B2 (en)
JPH0365016A (en) Ground fault detector for distribution line
JP2733397B2 (en) Undervoltage relay device with current compensation
JP2715090B2 (en) Fault location device
JP2615598B2 (en) Distance relay
JPS638690B2 (en)
JP2721166B2 (en) Ground fault distance relay method
JPH08126187A (en) Protection of digital protective relay
JPH0246127A (en) Symmetric component protective relay
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
JP2003177155A (en) Accident point locating device
JPS605130B2 (en) Current differential relay method
JPH01178876A (en) Trouble point locater
JPH02122276A (en) Measuring instrument for electrode consumption rate of disconnecting switch
JPH04223280A (en) Detecting fault section in power cable

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050630

TRDD Decision of grant or rejection written
A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20051220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R151 Written notification of patent or utility model registration

Ref document number: 3763345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees