JPH02222593A - Wiring board and manufacture thereof - Google Patents

Wiring board and manufacture thereof

Info

Publication number
JPH02222593A
JPH02222593A JP1044975A JP4497589A JPH02222593A JP H02222593 A JPH02222593 A JP H02222593A JP 1044975 A JP1044975 A JP 1044975A JP 4497589 A JP4497589 A JP 4497589A JP H02222593 A JPH02222593 A JP H02222593A
Authority
JP
Japan
Prior art keywords
wiring board
conductive
insulating resin
resin layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044975A
Other languages
Japanese (ja)
Inventor
Shoichi Shimizu
正一 清水
Hiroshi Shimamura
博 島村
Hidetaka Kumota
雲田 英隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP1044975A priority Critical patent/JPH02222593A/en
Priority to KR1019900002270A priority patent/KR920010176B1/en
Publication of JPH02222593A publication Critical patent/JPH02222593A/en
Priority to US08/460,878 priority patent/US5633069A/en
Priority to US08/460,885 priority patent/US5573632A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Abstract

PURPOSE:To make an electric equipment miniature, thin, and lightweight by a method wherein the equipment is equipped with a wiring board provided with a sheet-like insulating base formed of hydrophilic polymer, an insulating resin layer formed on the surface of the insulating base, and a metal conductive circuit etched into a specified pattern. CONSTITUTION:An insulating resin layer 2 is provided to the surface of a sheet- like insulating base 1, conductive metal layer 3 is provided through the intermediary of the resin layer 2, and the obtained laminated body is hot-welded by pressure into an integral structure. Then, the conductive metal layer 3 is etched into a specified pattern to form a conductive circuit 4, and through-holes 5 required for mounting electronic components or the like are bored. Then, the insulating base 1 is made to contain water to become plastic. The base 1 is formed into a specified shape through a plastic working such as bending, drawing, or the like, which is dried up to be formed into an end product provided with a bend 8. By this setup, the shape of the base 1 becomes coincident with that of an electronic equipment board housing space and meets the requirement for the miniaturization of the electronic equipment.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、配線基板及びその製造法に係り、特に軽量
かつ絶縁信頼性に優れ、しかも、曲げ成形や絞り成形等
の塑性加工性に優れた配線基板又は多層配線基板あるい
はこれらのHa法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a wiring board and a method for manufacturing the same, and particularly relates to a wiring board that is lightweight and has excellent insulation reliability, and also has excellent plastic workability such as bending and drawing. The present invention relates to a wiring board or a multilayer wiring board, or the Ha method thereof.

[従来の技術] 種々の電子機器で使用される配線基板としては、その基
材として従来より一般的にはガラス、セラミック、ガラ
スエポキシ等の剛性を有するリジッドな絶縁板が使用さ
れている。そして、このような配線基板は、通常、平板
状に形成され、電子機器内に形成された基板収納空間内
に納められて使用されている。
[Prior Art] As a base material for wiring boards used in various electronic devices, a rigid insulating board made of glass, ceramic, glass epoxy, etc., has been generally used. Such a wiring board is usually formed into a flat plate shape and is used by being housed in a board storage space formed within an electronic device.

しかしながら、このような配線基板はその塑性加工が困
難であり、電子機器に設けられる基板収納空間の都合か
ら1枚の平板状の基板として使用できないような場合に
は、これを2枚、3枚等の複数に分割し、各分割基板の
間をケーブルやコネクタを使用して接続する分割接続構
造が採用されている。このため、このような配線基板に
おいては、必然的にその部品点数が多くなり、小型化、
軽量化、薄型化等が要求される電子機器については充分
に対応しきれない事態が発生するという問題があった。
However, it is difficult to plastically process such wiring boards, and in cases where it cannot be used as a single flat board due to the board storage space provided in electronic equipment, two or three boards may be used. A split connection structure is adopted in which the board is divided into multiple parts, such as, and each divided board is connected using cables and connectors. For this reason, such wiring boards inevitably have a large number of components, and are required to be miniaturized and
There has been a problem in that electronic devices that are required to be lighter and thinner may not be able to be adequately addressed.

また、近年、小型化や薄型化等に対処する目的で、例え
ば第9図に示すように、基材としてアルミニウム板や鋼
板等の金属板101を使用し、その表面にエポキシ樹脂
、ガラスエポキシ、ポリイミド、ポリアミドイミド等の
絶縁樹脂による絶縁層102を介して銅箔等に所定のパ
ターンでエツチングを施して形成した導電回路103を
積層した金属ベース基板と称される配線基板や、第10
図に示すように、金属板101に透孔104を形成し、
その後にこの金属板101の全面をその透孔104内部
も含めてエポキシ樹脂等の絶縁樹脂による絶縁層102
で被覆し、この絶縁層102で覆われた透孔105を形
成し、絶縁層102を介してそれぞれ表裏両面に積層さ
れた導電回路103a、103bの間を上記透孔105
内に形成された導通部106で接続したメタルコア基板
と称される配線基板等が提案されている。
In addition, in recent years, for the purpose of dealing with miniaturization and thinning, for example, as shown in FIG. 9, a metal plate 101 such as an aluminum plate or a steel plate is used as a base material, and epoxy resin, glass epoxy, A wiring board called a metal base board in which a conductive circuit 103 formed by etching a copper foil or the like in a predetermined pattern is laminated through an insulating layer 102 made of an insulating resin such as polyimide or polyamideimide, or a wiring board called a metal base board;
As shown in the figure, a through hole 104 is formed in the metal plate 101,
After that, the entire surface of this metal plate 101, including the inside of the through hole 104, is covered with an insulating layer 102 made of an insulating resin such as epoxy resin.
A through hole 105 covered with this insulating layer 102 is formed, and a through hole 105 is formed between the conductive circuits 103a and 103b laminated on both the front and back surfaces, respectively, with the insulating layer 102 interposed therebetween.
A wiring board called a metal core board, which is connected through a conductive portion 106 formed therein, has been proposed.

そして、このような金属板101を基材とする配線基板
は、それが優れた強度と塑性加工性とを有するものであ
ることから、電子機器が要求する所定の形状に曲げ成形
あるいは絞り成形することが可能であり、これによって
電子機器に設ける基板収納空間の形成に自由度が増すと
いう特長がある。
Since the wiring board using such a metal plate 101 as a base material has excellent strength and plastic workability, it can be bent or drawn into a predetermined shape required by electronic equipment. This has the advantage of increasing the degree of freedom in forming the substrate storage space provided in the electronic device.

しかしながら、このような金属板101を基材とする配
線基板においても、その塑性加工の際や使用途中に角部
に位置する絶縁層102が損傷し易く、この絶縁層10
2が損傷すると絶縁信頼性が低下し、また、メタルコア
基板の場合にはその透孔104内までボイド無く完全に
絶縁1iJ102で被覆する必要があり、このための加
工に多大な手間を要するという問題があった。
However, even in a wiring board using such a metal plate 101 as a base material, the insulating layer 102 located at the corners is easily damaged during plastic processing or during use.
2 is damaged, the insulation reliability decreases, and in the case of a metal core substrate, it is necessary to completely cover the inside of the through hole 104 with insulation 1iJ102 without voids, which requires a lot of effort. was there.

このため、このような金属ベース基板やメタルコア基板
においても、塑性加工を行うのは通常その非配線部に限
られる等の制約があるほか、高密度化のための多層化も
困難であり、電子機器の小型化、薄型化、軽量化等を推
進する上でいまだ充分であるとはいえない。
For this reason, even with such metal-based substrates and metal-core substrates, plastic processing is usually limited to non-wiring areas, and it is difficult to create multiple layers for high density. It cannot be said that this is still sufficient to promote miniaturization, thinning, and weight reduction of equipment.

[発明が解決しようとする問題点] この発明は、かかる観点に鑑みて創案されたもので、そ
の目的とするところは、軽量かつ絶縁信頼性に優れ、し
かも曲げ成形や絞り成形等の手段で種々の電子機器が要
求する基板収納空間の形状に合わせて塑性加工可能な配
線基板及びその製造法を提供することにある。
[Problems to be Solved by the Invention] This invention has been devised in view of the above points, and its purpose is to provide lightweight and excellent insulation reliability, and to provide a material that can be formed by bending, drawing, or other means. It is an object of the present invention to provide a wiring board that can be plastically processed to fit the shape of a board storage space required by various electronic devices, and a method for manufacturing the same.

また、本発明の他の目的は、軽量かつ絶縁信頼性に優れ
、しかも曲げ成形や絞り成形等の手段で塑性加工されて
彎曲部を有し、電子機器の基板収納空間の形状に一致し
た形状を有する配線基板及びその製造法を提供すること
にある。
Another object of the present invention is to be lightweight and have excellent insulation reliability, and to have a curved portion formed by plastic processing by means such as bending or drawing, and to have a shape that matches the shape of a board storage space of an electronic device. An object of the present invention is to provide a wiring board having the following features and a method for manufacturing the same.

[問題を解決するための手段] すなわち、本発明は、吸水して可塑化し乾燥して硬化す
る親水性高分子で形成されたシート状絶縁基材と、この
絶縁基材の表面に積層されて加熱加圧下の圧着時に硬化
した絶縁樹脂層と、この絶縁樹脂層を介して上記絶縁基
材に固着しかつ所定のパターンにエツチングされた金属
製導電回路とを有する塑性加工可能な配線基板であり、
また、塑性加工されて所定の彎曲部を有する配線基板で
あり、ざらに、このような配線基板を製造するための方
法である。
[Means for Solving the Problem] That is, the present invention includes a sheet-like insulating base material formed of a hydrophilic polymer that absorbs water, becomes plasticized, and dries to harden; A plastically processable wiring board comprising an insulating resin layer that is cured during crimping under heat and pressure, and a metal conductive circuit that is fixed to the insulating base material through the insulating resin layer and etched into a predetermined pattern. ,
It is also a wiring board that has been plastically worked and has a predetermined curved portion, and roughly speaking, it is a method for manufacturing such a wiring board.

また、本発明は、吸水して可塑化し乾燥して硬化する親
水性高分子で形成されたシート状絶縁基材と、この絶縁
基材の表面に積層され加熱加圧下の圧着時に硬化した複
数の絶縁樹脂層と、これら各絶縁樹脂層の間及び上面に
位置しかつ所定のパターンにエツチングされた複数の金
属製導電回路と、各導電回路の間の所定の位置で上記絶
縁樹脂層を貫通しこれら各導電回路間を電気的に接続す
る導通部とを有する塑性加工可能な多層配線基板であり
、また、塑性加工されて所定の彎曲部を有する多層配線
基板であり、ざらに、このような多層配線基板を製造す
るための方法である。
The present invention also provides a sheet-like insulating base material made of a hydrophilic polymer that absorbs water, plasticizes, dries, and hardens; An insulating resin layer, a plurality of metal conductive circuits located between and on the top surface of each of these insulating resin layers and etched in a predetermined pattern, and penetrating the insulating resin layer at a predetermined position between each conductive circuit. It is a multilayer wiring board that can be plastically processed and has a conductive part that electrically connects each of these conductive circuits, and it is also a multilayer wiring board that is plastically processed and has a predetermined curved part. This is a method for manufacturing a multilayer wiring board.

本発明において使用するシート状絶縁基材は、水に浸漬
した際に水を吸収し、この吸収した水を可塑剤として軟
質化し、曲げ成形や絞り成形等の塑性加工に適した可塑
性を発揮するようになり、また、塑性加工を行い、乾燥
した後には再び硬化し、所定の形状を維持する性質を有
するものであり、具体的にはバルカナイズドファイバー
やプレスポード等の天然セルロース系のものや、アラミ
ド紙と称される芳香族ポリアミド製不織布等の結晶性ポ
リマー系のもの等が挙げられる。
The sheet-shaped insulating base material used in the present invention absorbs water when immersed in water, softens the absorbed water as a plasticizer, and exhibits plasticity suitable for plastic processing such as bending and drawing. It also hardens again after plastic processing and dries, and has the property of maintaining a predetermined shape.Specifically, natural cellulose-based materials such as vulcanized fiber and presspod, and aramid fibers are used. Examples include crystalline polymer-based materials such as aromatic polyamide nonwoven fabrics called paper.

また、この絶縁基材の表面に積層される絶縁樹脂層とし
ては、配線基板が1層の導電回路を有するものである場
合には、この導電回路を絶縁基材に固着でき、塑性加工
の際の加熱温度や電子機器から要求される耐熱温度を満
たすものであれば、熱可塑性樹脂であっても、また、熱
硬化性樹脂であってもよく、例えばエポキシ系樹脂、ジ
アリルフタレート系樹脂、ポリイミド系樹脂、ポリアミ
ドイミド系樹脂、メラミン樹脂、尿素樹脂等を挙げるご
とができるが、塑性加工の際における導電回路の延びや
切れを保護するという観点からは、好ましくはアラミド
紙やガラス不織布等のような可撓性シートに熱硬化性樹
脂、より好ましくはジアリルテレフタレート、ジアリル
イソフタレート、ジアリルオルソフタレート等の安定な
半硬化状態を示すジアリルフタレート系樹脂を含浸させ
、絶縁基材と導電性金属層との間に挟み込んで行う加熱
ha圧下の圧着時にこの熱可塑性樹脂を硬化させて1q
られるものがよい。
In addition, as for the insulating resin layer laminated on the surface of this insulating base material, when the wiring board has one layer of conductive circuit, this conductive circuit can be fixed to the insulating base material, and it can be used during plastic processing. It may be a thermoplastic resin or a thermosetting resin as long as it satisfies the heating temperature and heat resistance temperature required by electronic equipment, such as epoxy resin, diallyl phthalate resin, polyimide, etc. Examples of such resins include polyamide-based resins, polyamide-imide resins, melamine resins, urea resins, etc., but from the viewpoint of protecting the conductive circuit from stretching or breaking during plastic processing, it is preferable to use materials such as aramid paper or glass non-woven fabric. A flexible sheet is impregnated with a thermosetting resin, more preferably a diallyl phthalate resin showing a stable semi-cured state such as diallyl terephthalate, diallyl isophthalate, diallyl orthophthalate, etc., and an insulating base material and a conductive metal layer are impregnated. This thermoplastic resin is cured during crimping under heating ha pressure by sandwiching it between
It is better to be able to

また、この配線基板が複数の導電回路を有する多層配線
基板である場合には、各層の導電回路間を確実に絶縁す
る必要があり、しかも、上記と同様に塑性加工の際にお
ける導電回路の延びや切れを保護する必要があることか
ら、好ましくはアラミド紙やガラス不織布等のような可
撓性シートに熱硬化性樹脂、より好ましくはジアリルテ
レフタレート、ジアリルイソフタレート、ジアリルオル
ソフタレート等の安定な半硬化状態を示すジアリルフタ
レート系樹脂を含浸させ、絶縁基材と導電性金属層との
間に挟み込んで行う加熱加圧下の圧着時にこの熱可塑性
樹脂を硬化させて得られるものがよい。
In addition, if this wiring board is a multilayer wiring board having multiple conductive circuits, it is necessary to reliably insulate the conductive circuits in each layer. Since it is necessary to protect the paper and cuts, it is preferable to apply a thermosetting resin to a flexible sheet such as aramid paper or glass nonwoven fabric, and more preferably a stable semiconducting material such as diallyl terephthalate, diallyl isophthalate, diallyl orthophthalate, etc. It is preferable to use a thermoplastic resin impregnated with a hardened diallyl phthalate resin and then sandwiched between an insulating base material and a conductive metal layer and hardening this thermoplastic resin during compression bonding under heat and pressure.

さらに、所定のパターンにエツチングされた導電回路に
ついては、通常この種の配線基板に使用される金属、例
えば銅、ニッケル、アルミニウム等が使用される。
Further, for the conductive circuits etched into a predetermined pattern, metals commonly used in this type of wiring board, such as copper, nickel, aluminum, etc., are used.

そして、配線基板が多層配線基板である場合、各導電回
路間にはその所定位置に導通部が形成されるが、この導
通部については互いに隣接する導電回路間を電気的に接
続することができるものであればよく、特に制限される
ものではないが、電気的な接続の確実性を確保する上で
、好ましくは上位の導電回路とその下面側に配設された
絶縁樹脂層とを貫通する透孔を設け、この透孔内に銅、
銀、カーボン等の導電ペーストやハンダ等の導電性物質
を充填し、これによって上位の導電回路と下位の導電回
路との間を電気的に接続した構造を有するものである。
When the wiring board is a multilayer wiring board, conductive parts are formed at predetermined positions between each conductive circuit, and these conductive parts can electrically connect adjacent conductive circuits. Although it is not particularly limited, it is preferable that it penetrates the upper conductive circuit and the insulating resin layer disposed on the lower side thereof in order to ensure the reliability of the electrical connection. A through hole is provided, and copper,
It has a structure in which it is filled with a conductive paste such as silver or carbon or a conductive substance such as solder, thereby electrically connecting an upper conductive circuit and a lower conductive circuit.

本発明の配線基板又は多層配線基板は、それが曲げ成形
や絞り成形等の塑性加工により目的の形状に成形される
前の平板状態で製品とすることができるほか、さらに曲
げ成形や絞り成形等の塑性加工により電子機器の基板収
納空間が要求する形状に成形されて彎曲部を有する製品
とすることもできる。
The wiring board or multilayer wiring board of the present invention can be made into a product in a flat state before being formed into a desired shape by plastic processing such as bending or drawing, or can be further processed by bending or drawing. Through plastic working, it is possible to form a product into a shape required by the substrate storage space of an electronic device, thereby making it possible to produce a product having a curved portion.

次に、このような本発明の配線基板及び多層配線基板の
製造法について説明する。
Next, a method for manufacturing the wiring board and multilayer wiring board of the present invention will be explained.

先ず、1層の導電回路のみを有する配線基板の製造法は
、基本的には、上記シート状絶縁基材の表面に絶縁樹脂
層を設けると共にこの絶縁樹脂層の上に導電性金属層を
設け、得られた積層物を加熱加圧下に圧着して一体化し
、上記導電性金属層を所定のパターンにエツチングして
導電回路を形成する工程と、上記絶縁基材に含水させて
可塑化し、塑性加工により所定の形状に成形し乾燥する
工程とからなる。
First, the manufacturing method of a wiring board having only one layer of conductive circuit basically involves providing an insulating resin layer on the surface of the above-mentioned sheet-like insulating base material and providing a conductive metal layer on the insulating resin layer. , the obtained laminate is bonded and integrated under heat and pressure, the conductive metal layer is etched in a predetermined pattern to form a conductive circuit, and the insulating base material is made to contain water to make it plastic. It consists of the steps of forming into a predetermined shape by processing and drying.

また、複数の導電回路が積層された多層配線基板の製造
法については、基本的には、安定な半硬化状態を示す半
硬化絶縁樹脂層に導電性金属層を積層し、得られた積層
物の導電性金属層に所定のパターンをエツチングし、上
記半硬化絶縁樹脂層と導電回路とを有する積層体を作製
する工程と、このようにして作製された複数の積層体を
シート状絶縁基材の表面にそれぞれその導電回路を上に
して順次積層し、加熱加圧下に圧着しかつ一次積層体の
半硬化絶縁樹脂層を硬化させて多層の積層体を形成する
工程と、この多層の積層体を製造する過程でその上位の
導電回路と下位の導電回路との間を電気的に接続する導
通部を形成する工程と、絶縁基材に含水させて可塑化し
、所定の形状に塑性加工する工程とから構成される。
In addition, regarding the manufacturing method of a multilayer wiring board in which multiple conductive circuits are laminated, basically, a conductive metal layer is laminated on a semi-cured insulating resin layer that exhibits a stable semi-cured state, and the resulting laminate is A step of etching a predetermined pattern on the conductive metal layer to produce a laminate having the semi-cured insulating resin layer and a conductive circuit; A process of forming a multilayer laminate by sequentially laminating the conductive circuits on the surface of the primary laminate with their conductive circuits facing upward, pressing them together under heat and pressure, and curing the semi-hardened insulating resin layer of the primary laminate; In the manufacturing process, a process of forming a conductive part that electrically connects the upper conductive circuit and the lower conductive circuit, and a process of plasticizing the insulating base material by impregnating it with water and plasticizing it into a predetermined shape. It consists of

以下、これら配線基板及び多層配線基板の製造法を添付
図面に従って具体的に説明する。
Hereinafter, methods for manufacturing these wiring boards and multilayer wiring boards will be explained in detail with reference to the accompanying drawings.

先ず、第1図は1層のみの導電回路を有する配線基板の
製造例を示すものであり、シート状絶縁基材1の表面に
絶縁樹脂層2を設けると共にこの絶縁樹脂層2を介して
導電性金属層3を設け、得られた積層物を加熱加圧下に
圧着して一体化する(第1図(a)及び(b)参照)。
First, FIG. 1 shows an example of manufacturing a wiring board having only one layer of conductive circuit, in which an insulating resin layer 2 is provided on the surface of a sheet-like insulating base material 1, and conductive circuits are formed through this insulating resin layer 2. A metal layer 3 is provided, and the resulting laminate is bonded under heat and pressure to be integrated (see FIGS. 1(a) and 1(b)).

この圧着時の加熱加圧条件は、第2図に拡大して示すよ
うに、使用された樹脂の一部が絶縁基材1の表面に含浸
して樹脂含浸層Aを形成する、いわゆるアンカー効果を
発揮する程度がよく、絶縁基材1及び絶縁樹脂層2に使
用する樹脂の種類、厚さ及びその組合せ等によって異な
るが、絶縁基材1の耐熱温度を越えないでかつ絶縁樹脂
層2に使用する樹脂が圧着する温度であればよい。また
、圧力は、絶縁基材1と絶縁樹脂層2が密着し、気泡が
残らないような状態を保てればよい。例えば、絶縁樹脂
M2として熱硬化性樹脂を使用する場合、温度120〜
170℃、圧力5〜70に’j/cM−G及び時間30
〜60分程度の程度がよい。絶縁樹脂層2は、これを先
に絶縁基材1に積層してからこの絶縁樹脂層2の上に導
電性金属層3を積層してもよく、また、これを先に導電
性金属層3に積層してからこれを絶縁基材1の上に積層
してもよく、また、絶縁樹脂層2を構成する樹脂として
熱硬化性樹脂を使用した場合、この加熱加圧下の圧着時
に硬化させる。
As shown in an enlarged view in FIG. 2, the heating and pressing conditions during this crimping are such that a part of the resin used impregnates the surface of the insulating base material 1 to form a resin-impregnated layer A, which is the so-called anchor effect. Although it varies depending on the type, thickness, and combination of resins used for the insulating base material 1 and the insulating resin layer 2, the heat resistance temperature of the insulating base material 1 is not exceeded and the insulating resin layer 2 It is sufficient if the temperature is such that the resin used can be compressed. Moreover, the pressure may be such that the insulating base material 1 and the insulating resin layer 2 are brought into close contact with each other and no air bubbles remain. For example, when using a thermosetting resin as the insulating resin M2, the temperature is 120~
170℃, pressure 5-70'j/cM-G and time 30
~60 minutes is best. The insulating resin layer 2 may be first laminated on the insulating base material 1 and then the conductive metal layer 3 may be laminated on the insulating resin layer 2. This may be laminated on the insulating base material 1 after being laminated, and if a thermosetting resin is used as the resin constituting the insulating resin layer 2, it is hardened during the compression bonding under heat and pressure.

このようにして形成された積層物は、次にその導電性金
属層2を所定のパターンにエツチングして導電回路4を
形成し、ざらに電子部品搭載用等に使用する必要な貫通
孔5を穿設する(第1図(C)参照)。このエツチング
の工程は、従来公知の方法でよく、例えば導電性金属層
3の表面を脱脂処理し、次いでアルカリ可溶性耐酸イン
キのエツチングレジストで回路のパターンをスクリーン
印刷し、乾燥してから塩化第二鉄溶液でエツチングし、
さらに水酸化ナトリウム等のアルカリ溶液でレジストを
剥離した後、硫酸等の酸性溶液で中和し、水洗して常温
で乾燥する。
In the thus formed laminate, the conductive metal layer 2 is then etched into a predetermined pattern to form a conductive circuit 4, and the necessary through holes 5 used for mounting electronic components etc. are roughly formed. (See Figure 1(C)). This etching process may be carried out by a conventionally known method. For example, the surface of the conductive metal layer 3 is degreased, then a circuit pattern is screen printed with an etching resist made of alkali-soluble acid-resistant ink, dried, and then etched with dichloromethane. Etched with iron solution,
Furthermore, after removing the resist with an alkaline solution such as sodium hydroxide, it is neutralized with an acidic solution such as sulfuric acid, washed with water, and dried at room temperature.

このようにして形成され、導電回路4が積層された積層
体は、次にその絶縁基材1に含水させてこれを可塑化さ
せる。この方法としては、水を噴霧したり、一定時間高
湿度下に晒す等の方法もとれるが、好ましくは第1図(
d)に示すように、水槽6に水7を張り、この水7中に
一定時間浸漬する方法がよい。この際の条件については
、この絶縁基材1の材質や厚さ等によって異なるが、例
えば天然セルロース系のバルカナイズドファイバーのの
場合には常温で10〜40分程度、程度、芳香族ポリア
ミド系の7ラミド紙の場合には常温で6〜24時間程度
浸漬すればよく、このときの絶縁基材1の水分含有量は
、通常15〜35重量%程度、好ましくは20〜30重
量%程度である。
In the thus formed laminate in which the conductive circuits 4 are laminated, the insulating base material 1 is then impregnated with water to be plasticized. This can be done by spraying water or exposing it to high humidity for a certain period of time, but it is preferable to do so as shown in Figure 1 (
As shown in d), it is preferable to fill a water tank 6 with water 7 and immerse it in this water 7 for a certain period of time. The conditions at this time vary depending on the material, thickness, etc. of this insulating base material 1, but for example, in the case of natural cellulose-based vulcanized fibers, it takes about 10 to 40 minutes at room temperature, and for aromatic polyamide-based vulcanized fibers, In the case of laminated paper, it is sufficient to soak it at room temperature for about 6 to 24 hours, and the moisture content of the insulating base material 1 at this time is usually about 15 to 35% by weight, preferably about 20 to 30% by weight.

この程度の水分含有量になれば、材料の破断時の伸びが
2倍近くになり、強靭で柔軟性の材料に変化する。
At this level of water content, the material's elongation at break nearly doubles, making it a tough and flexible material.

このようにして絶縁基材1を可塑化した後、次に曲げ成
形や絞り成形等の塑性加工により所定の形状に成形し乾
燥して所定の彎曲部8を有する最終製品とする(第1図
(e)参照)。この塑性加工の条件についても、絶縁基
材1の材質や厚さ、絶縁樹脂層2を構成する樹脂の種類
や厚さ等により適宜選択し得るものであるが、例えば曲
げ形状を保持した状態で、加熱温度が常温〜150℃程
度の範囲で選択でき、好ましくは水の沸点を越える温度
、例えば100〜130℃程度で水分が揮発する時間、
例えば2〜3時間程度がよく、この塑性加工の際に同時
に加熱乾燥させ硬化させると彎曲部8の戻りを可及的に
防止することができる。
After the insulating base material 1 is plasticized in this way, it is then formed into a predetermined shape by plastic processing such as bending or drawing, and dried to form a final product having a predetermined curved portion 8 (see Fig. 1). (see (e)). The conditions for this plastic working can be appropriately selected depending on the material and thickness of the insulating base material 1, the type and thickness of the resin constituting the insulating resin layer 2, etc. , the heating temperature can be selected in the range of room temperature to about 150°C, preferably at a temperature exceeding the boiling point of water, for example, about 100 to 130°C, and the time for water to volatilize;
For example, about 2 to 3 hours is good, and if the plastic working is simultaneously heated and dried and hardened, the return of the curved portion 8 can be prevented as much as possible.

次に、第3図は配線基板が複数の導電回路を有する多層
配線基板である場合の第1の例を示すものである。
Next, FIG. 3 shows a first example in which the wiring board is a multilayer wiring board having a plurality of conductive circuits.

すなわち、先ず、ジアリルフタレート系樹脂等の安定な
半硬化状態を示す半硬化樹脂をアラミド紙等の可撓性シ
ートに含浸させて得られた半硬化絶縁樹脂層12aに導
電性金属層13を積層し、得られた積層物の導電性金属
層13に所定のパターンをエツチングし、導電回路14
aを有する積層体15aを作製する。このときのエツチ
ングは、上記と同様に常法に従って行うことができる。
That is, first, a conductive metal layer 13 is laminated on a semi-cured insulating resin layer 12a obtained by impregnating a flexible sheet such as aramid paper with a semi-cured resin exhibiting a stable semi-cured state such as a diallyl phthalate resin. Then, a predetermined pattern is etched on the conductive metal layer 13 of the obtained laminate to form a conductive circuit 14.
A laminate 15a having a shape is produced. Etching at this time can be performed according to the conventional method as described above.

このようにして得られた積層体15aを、その導電回路
14aを上にして、バルカナイズドファイバー等のシー
ト状絶縁基材11の表面に積層し、得られた積層物を加
熱加圧下に圧着し、積層体15aの半硬化絶縁樹脂層1
2aを硬化させ、上面に第一の導電回路14aを有する
積層体16を形成する。このときの加熱加圧下の圧着条
件も上記と同様の条件で行うことができる。
The thus obtained laminate 15a is laminated on the surface of a sheet-like insulating base material 11 such as vulcanized fiber with the conductive circuit 14a facing upward, and the obtained laminate is crimped under heat and pressure. Semi-hardened insulating resin layer 1 of laminate 15a
2a is cured to form a laminate 16 having a first conductive circuit 14a on the upper surface. The crimping conditions under heat and pressure at this time can also be carried out under the same conditions as above.

次に、上記と同様にして表面に導電回路14aと同じ又
は異なるパターンの第二の導電回路14bを有する積層
体15bを作製し、この積層体15bには上記積層体1
5aの導電回路14aと電気的に接続するのに使用する
透孔17aや電子部品搭載用等の目的で必要な透孔18
aを穿設する。そして、この積層体15bを上記積層体
16の上面に積層し、この積層体16を作製したと同様
な方法で上面に導電回路14bを有する積層体19を形
成する。
Next, a laminate 15b having a second conductive circuit 14b having the same or different pattern as the conductive circuit 14a on the surface is produced in the same manner as above, and this laminate 15b has the laminate 1
A through hole 17a used for electrical connection with the conductive circuit 14a of 5a and a through hole 18 necessary for the purpose of mounting electronic components, etc.
Drill a. Then, this laminate 15b is laminated on the upper surface of the laminate 16, and the laminate 19 having the conductive circuit 14b on the upper surface is formed in the same manner as that used to produce the laminate 16.

この第3図に示1方法では、ざらに上記と同様に表面に
第三の導電回路14cを有すると共に透孔17b 、 
18b及び18cをそれぞれ有する積層体15cを形成
し、これを上記と同様に上記積層体19上に積層し、上
面に導電回路14Cを有する最終の積層体20を形成し
、しかる後に、導電回路14bを有する積層体15bの
透孔17a及び導電回路14Cを有する積層体15cの
透孔17bにそれぞれ導電性物質を充填し、必要により
これを加熱硬化させてこれらの導電回路14a 、 1
4b及び14cの間を電気的に接続する導通部21a及
び21bを形成すると共に、透孔18a及び18cを介
して二次積層体16を貫通する電子部品搭載用の貫通孔
22を穿設している。
In method 1 shown in FIG. 3, the third conductive circuit 14c is provided on the surface as described above, and the through hole 17b,
18b and 18c are formed, and this is laminated on the laminate 19 in the same manner as above to form the final laminate 20 having the conductive circuit 14C on the upper surface, and then the conductive circuit 14b is formed. The through holes 17a of the laminate 15b having the conductive circuits 14C and the through holes 17b of the laminate 15c having the conductive circuits 14C are filled with a conductive substance, and if necessary, the conductive substances are heated and hardened to form these conductive circuits 14a and 1.
4b and 14c are formed, and a through hole 22 for mounting an electronic component is formed to penetrate through the secondary laminate 16 via the through holes 18a and 18c. There is.

ここで、各積層体isa 、 i5b及び15Cの半硬
化絶縁樹脂層12a 、12b及び12cは、この多層
配線基板の製造過程における加熱加圧下の圧着工程でそ
れぞれ硬化して絶縁樹脂層(第4図において、上記と同
一符号12a 、12b及び12cを付しである)とな
るが、この際に上方に位置する積層体15b及び15C
の各半硬化絶縁樹脂層12b及び12Cはその一部が溶
融し下方に位置する積層体15a及び15t)の各導電
回路14a及び14bの非導電部空間内に入込んで硬化
し、これによってこれら導電回路14a及び14bが保
護される。
Here, the semi-cured insulating resin layers 12a, 12b, and 12c of each of the laminates isa, i5b, and 15C are cured in the crimping process under heat and pressure in the manufacturing process of this multilayer wiring board to form the insulating resin layer (Fig. 4). , the same reference numerals 12a, 12b and 12c as above are attached), but in this case, the stacked bodies 15b and 15C located above
Part of each of the semi-cured insulating resin layers 12b and 12C melts and enters the non-conductive space of each of the conductive circuits 14a and 14b of the laminates 15a and 15t located below and hardens. Conductive circuits 14a and 14b are protected.

なお、上記積層体19から最終の積層体20を経て導通
部21a及び21bを形成する工程は、この第3図に示
す手順に限られるものではなく、積層体19を製造した
後に引続いてその2つの導電回路14a及び14bの間
を電気的に接続する導通部21aを形成し、その後に積
層体15Cを積層して最終の積層体20とし、次いでこ
の最終の積層体20に形成された各導電回路14b及び
14cの間を電気的に接続する導通部21bを形成する
ようにしてもよい。また、この第3図では、3層の導電
回路を有する多層配線基板を製造する場合について説明
しているが、各積層体を順次積層し、導通部を形成する
工程を適宜回数繰返すことにより導電回路が所定の数だ
け積層された多層配線基板を製造することができる。
Note that the process of forming the conductive parts 21a and 21b from the laminate 19 through the final laminate 20 is not limited to the procedure shown in FIG. A conductive portion 21a that electrically connects between the two conductive circuits 14a and 14b is formed, and then a laminate 15C is laminated to form a final laminate 20, and each of the layers formed in this final laminate 20 is then A conductive portion 21b may be formed to electrically connect the conductive circuits 14b and 14c. In addition, although this FIG. 3 explains the case of manufacturing a multilayer wiring board having three layers of conductive circuits, the process of sequentially laminating each laminate and forming a conductive part is repeated an appropriate number of times to provide conductivity. A multilayer wiring board in which a predetermined number of circuits are laminated can be manufactured.

そして、このようにして形成された最終の積層体20は
、次に上記と同様の手段でその絶縁基材11に含水させ
てこれを可塑化し、ざらに、上記と同様にして曲げ成形
や絞り成形等の塑性加工に付され、第4図に示すように
所定の彎曲部23が形成され、最後に上記と同様に乾燥
されて最終製品である多層配線基板になる。
The final laminate 20 thus formed is then plasticized by impregnating the insulating base material 11 with water in the same manner as above, and then roughly bent and drawn in the same manner as above. It is subjected to plastic processing such as molding to form a predetermined curved portion 23 as shown in FIG. 4, and finally dried in the same manner as above to form a final product, a multilayer wiring board.

ざらに、第5図は配線基板が多層配線基板の第2の例を
示すものである。
Briefly, FIG. 5 shows a second example in which the wiring board is a multilayer wiring board.

この第5図の場合には、安定な半硬化状態を示す半硬化
絶縁樹脂層12a 、 12b及び12Cにそれぞれ導
電性金属層13を積層し、得られた各積層物の導電性金
属層13に所定のパターンをエツチングし、導電回路1
4a 、14b及び14cを有する積層体15a、15
b及び15cを作製し、さらに上記積層体15b及び1
5Cについてはその所定位置に上位と下位の各導電回路
の間を電気的に接続するのに使用したりあるいは電子部
品搭載用等の目的で必要な透孔17a 117b 、 
18a 118b 118cを穿設する工程と、上記各
積層体15a 、15b及び15cをその導電回路14
a 、14b及び14Cをを上にして順次積層し、加熱
加圧下に圧着して各積層体15a 、15b及び15c
の半硬化絶縁樹脂層12a 、 12b及び12Cを硬
化させ、硬化した絶縁樹脂層12a 、12b及び12
cにより各積層体15a 115b及び15cを一体化
する工程と、この一体化した各積層体15a 、 15
b及び15Cの下面側に接着剤層24を介してシート状
絶縁基材11を固着し、最終の積層体20を形成する工
程と、この最終の積層体20においてその各透孔17a
及び17bに導電性物質を充填し上位の導電回路14b
及び4Cとその下位に位置する導電回路14a及び14
bとの間を電気的に接続する導通部21a及び21bを
形成する工程と、上記透孔18a及び18cを介して電
子部品搭載用の貫通孔22を穿設する工程と、このよう
にして得られた最終の積層体20についてその絶縁基材
11に含水させて可塑化し、上記と同様にして曲げ成形
や絞り成形等の塑性加工を行う工程とで構成されている
In the case of this FIG. 5, the conductive metal layer 13 is laminated on each of the semi-cured insulating resin layers 12a, 12b and 12C which are in a stable semi-cured state, and the conductive metal layer 13 of each of the obtained laminates is A predetermined pattern is etched to form a conductive circuit 1.
Laminated bodies 15a, 15 having 4a, 14b and 14c
b and 15c, and further the above laminates 15b and 1
Regarding 5C, through holes 17a, 117b, which are used for electrically connecting between upper and lower conductive circuits, or for mounting electronic components, etc., are provided at predetermined positions.
18a, 118b, and 118c;
a, 14b, and 14C are stacked one after another with the sides facing upward, and are bonded under heat and pressure to form each laminate 15a, 15b, and 15c.
The semi-cured insulating resin layers 12a, 12b and 12C are cured to form the cured insulating resin layers 12a, 12b and 12.
a step of integrating each of the laminates 15a, 115b and 15c by c, and each of the integrated laminates 15a, 15;
A step of fixing the sheet-like insulating base material 11 to the lower surface side of b and 15C via the adhesive layer 24 to form the final laminate 20, and forming each through hole 17a in the final laminate 20.
and 17b are filled with a conductive substance to form an upper conductive circuit 14b.
and 4C and conductive circuits 14a and 14 located below it.
a step of forming conductive portions 21a and 21b for electrically connecting between The final laminate 20 thus obtained is made to contain water in the insulating base material 11 to be plasticized, and is then subjected to plastic working such as bending and drawing in the same manner as described above.

以上のような配線基板又は多層配線基板の製造において
、その絶縁基材11に含水させ可塑化させた後に行う塑
性加工の際に、例えば第6図(aHb)に示すように、
予め絶縁基材11にV字状の切込み25を入れておき、
これによって塑性加工の際の応力の発生を可及的に減少
させたり、比較的鋭角な彎曲部23の形成を行うことが
できる。
In manufacturing the wiring board or multilayer wiring board as described above, during plastic processing performed after the insulating base material 11 is hydrated and plasticized, for example, as shown in FIG. 6 (aHb),
A V-shaped cut 25 is made in the insulating base material 11 in advance,
This makes it possible to reduce stress generation during plastic working as much as possible, and to form a curved portion 23 with a relatively acute angle.

[作 用] 本発明によれば、配線基板の基材として使用するシート
状絶縁基材が吸水して可塑化し乾燥して硬化する親水性
高分子で形成されているので、吸水させることにより金
属板を基材として使用する場合と同様に曲げ成形や絞り
成形等の塑性加工が可能であるほか、形成された彎曲部
での応力集中が極めて少なく、また、製造時に絶縁基材
と導電回路との間に介装される絶縁樹脂層がこの絶縁基
材の表面に一部含浸していわゆるアンカー効果を発揮す
るので、この塑性加工の際に導電回路が絶縁基材から剥
離するようなことがなく、ざらに、金属板を基材とする
場合と異なって基材が絶縁材料であるので電子部品搭載
用の貫通孔等の孔明は加工が極めて容易である。
[Function] According to the present invention, the sheet-like insulating base material used as the base material of the wiring board is made of a hydrophilic polymer that absorbs water, becomes plasticized, and dries to harden. In addition to being able to perform plastic processing such as bending and drawing in the same way as when using a plate as a base material, there is extremely little stress concentration at the curved parts that are formed, and the insulating base material and conductive circuit can be easily connected during manufacturing. The insulating resin layer interposed between the parts partially impregnates the surface of the insulating base material and exerts a so-called anchor effect, so there is no possibility that the conductive circuit will peel off from the insulating base material during this plastic processing. Moreover, unlike the case where the base material is a metal plate, since the base material is an insulating material, it is extremely easy to form holes such as through holes for mounting electronic components.

[実施例] 以下、実施例に基いて、本発明の配線基板及びその製造
法を具体的に説明する。
[Example] Hereinafter, the wiring board of the present invention and its manufacturing method will be specifically described based on Examples.

実施例1 厚さ35mの銅箔と芳香族ポリアミド繊維の不織布にジ
アリルフタレート樹脂系組成物を含浸させた厚さ65屑
の半硬化絶縁樹脂シートとの積層体(ダイソー−製商品
名:アミフレックス、品番P−96B>を使用し、その
銅箔上をフレオン脱脂した後、この銅箔上にアルカリ可
溶性耐酸インキ(太陽インキ製造■製、品番X−77>
を使用して第7図に示す回路パターンをスクリーン印刷
し、24時間自然乾燥させた後、塩化第二鉄溶液でエツ
チングし、2.4wt%−水酸化ナトリウム溶液でレジ
スト剥離を行い、次いで0.61wt%−硫酸溶液で中
和した後水洗し、減圧下に乾燥させて導電回路と半硬化
絶縁樹脂シートの積層体10枚を作製した。この状態で
各積層体に形成された導電回路の4箇所のポイントでの
平均導通抵抗を測定した結果、0.491Ωであった。
Example 1 A laminate of a 35 m thick copper foil and a 65 m thick semi-hardened insulating resin sheet made by impregnating a non-woven fabric of aromatic polyamide fiber with a diallyl phthalate resin composition (product name: Amiflex manufactured by Daiso). , product number P-96B>, and after degreasing the copper foil with Freon, apply an alkali-soluble acid-resistant ink (manufactured by Taiyo Ink Manufacturing ■, product number X-77>) on the copper foil.
After screen printing the circuit pattern shown in Figure 7 using After neutralizing with a .61 wt % sulfuric acid solution, it was washed with water and dried under reduced pressure to produce 10 laminates of conductive circuits and semi-cured insulating resin sheets. In this state, the average conduction resistance at four points of the conductive circuit formed on each laminate was measured and found to be 0.491Ω.

次に、この積層体をその導電回路を上にして縦170層
×横65#X厚ざ0.5履の大きさのバルカナイズドフ
ァイバー(北越製紙(11)¥A商品名二FR−781
>の上に重合わせ、160℃、70Kfj/cat・G
及び5分の条件で加熱加圧し、ざらに120℃、70に
’J/cm−G及び60分の条件で加熱加圧下に圧着し
、半硬化絶縁樹脂シートの半硬化樹脂を硬化させると共
に積層体をバルカナイズドファイバーに一体的に固着さ
せ、次いでその所定の位置に孔明は加工を行った。
Next, this laminate was placed with its conductive circuit facing up, and a vulcanized fiber (Hokuetsu Paper Co., Ltd. (11) ¥A product name 2FR-781
>, 160℃, 70Kfj/cat・G
The semi-cured resin of the semi-cured insulating resin sheet is cured and laminated by heating and pressing at roughly 120°C, 70'J/cm-G and 60 minutes. The body was integrally fixed to the vulcanized fibers, and then Komei processed the body into its predetermined positions.

このようにして得られた最終積層物を水槽内の水中に浸
漬し、常温で30分故装してバルカナイズドファイバー
に含水させた。含水前の平均重量が8.2gであり、含
水後の平均重量が10.49であって、水分含有量は1
4〜26重最%の範囲であった。
The final laminate obtained in this way was immersed in water in a water tank, and then immersed at room temperature for 30 minutes to make the vulcanized fibers absorb water. The average weight before adding water is 8.2g, the average weight after adding water is 10.49, and the water content is 1
The range was 4% to 26%.

次に、このようにして含水処理した最終積層物について
、半分の5枚は導電回路を内側にし、また、残りの半分
は導電回路を外側にし、それぞれ第7図A−A線に沿っ
て曲げ半径7mに曲げ形状を保持しつつ、100℃、2
時間の条件で曲げ成形及び乾燥を行った。
Next, with respect to the final laminate treated with water in this way, half of the five sheets had the conductive circuit on the inside, and the other half had the conductive circuit on the outside, and each was bent along the line A-A in Figure 7. While maintaining the bent shape with a radius of 7 m, the temperature was 100°C, 2
Bending forming and drying were performed under the condition of time.

得られた各配線基板について、その導電回路の4箇所の
ポイントで平均導通抵抗を測定した結果、その変化は最
大でも1%に満たず、導電回路に破断点は認められず正
常であった。
For each wiring board obtained, the average conduction resistance was measured at four points in the conductive circuit, and the change was less than 1% at most, and the conductive circuit was normal with no break points observed.

実施例2 上記実施例1と同様にして第8図(a)に示す第1層目
パターンの導電回路と半硬化絶縁樹脂シートとが積層さ
れた積層体を作製し、この積層体を厚さ0.51mの芳
香族ポリアミド繊維の不織布(デュポン・ジャパン・リ
ミテッド製商品名:ノーメックス、品番410)に重合
わせ、160℃、70KI/ci−G及び60分の条件
で加熱加圧下に圧着し、半硬化絶縁樹脂シートの半硬化
樹脂を硬化させると共に積層体を芳香族ポリアミド繊維
の不織布に一体的に固着させた。
Example 2 A laminate in which a conductive circuit having the first layer pattern shown in FIG. It was superimposed on a 0.51 m nonwoven fabric of aromatic polyamide fiber (trade name: Nomex, product number 410, manufactured by DuPont Japan Limited), and crimped under heat and pressure at 160° C., 70 KI/ci-G, and 60 minutes, The semi-cured resin of the semi-cured insulating resin sheet was cured, and the laminate was integrally fixed to the nonwoven fabric of aromatic polyamide fibers.

次に、孔明けを行うと共に、上記と同様にして第8図(
b)に示す第2層目パターンの導電回路と半硬化絶縁樹
脂シートとが積層された積層体を作製し、この第2H目
の積層体を芳香族ポリアミド繊維の不織布が固着された
第1層目の積層体の上に重合わせ、160℃、30KI
/ci−G及び30分の条件で加熱加圧下に圧着し、第
2層目の積層体の半硬化絶縁樹脂シートを硬化させると
共に上下2層の積層体が芳香族ポリアミド繊維の不織布
に一体的に固着された最終積層物を作製した。
Next, holes are drilled and the same procedure as shown in Fig. 8 (
A laminate in which the conductive circuit of the second layer pattern shown in b) and the semi-hardened insulating resin sheet are laminated is produced, and this 2H laminate is used as the first layer to which the nonwoven fabric of aromatic polyamide fiber is fixed. Superimposed on the eye laminate, 160°C, 30KI
/ci-G and 30 minutes of heat and pressure to harden the semi-cured insulating resin sheet of the second layer laminate, and at the same time, the upper and lower two-layer laminate is integrally bonded to the nonwoven fabric of aromatic polyamide fibers. A final laminate was made that was adhered to.

この最終積層物の上層積層体に形成された透孔に導電ペ
ースト(三井金属■製商品名:E−1000)をスクリ
ーン印刷で充填し、160℃、30分の条件で硬化させ
、この上層積層体の導電回路と下層積層体の導電回路と
の間を接続する導通部を形成した。この状態で、各導電
回路の2箇所のポイントで導通抵抗を測定した結果、平
均導通抵抗は0.650であった。
Conductive paste (product name: E-1000 manufactured by Mitsui Kinzoku ■) is filled into the through holes formed in the upper layer laminate of this final laminate by screen printing, and cured at 160°C for 30 minutes. A conductive portion was formed to connect the conductive circuit of the body and the conductive circuit of the lower layer laminate. In this state, the conduction resistance was measured at two points in each conductive circuit, and the average conduction resistance was 0.650.

この最終積層物については、さらに上記実施例1と同様
にして水中に24時間浸漬し、芳香族ポリアミド繊維の
不織布に含水させた。含水前の平均重量が8.1gであ
り、含水後の平均重量が9゜629であって、水分含有
聞は15〜24重偵%の範囲であった。
This final laminate was further immersed in water for 24 hours in the same manner as in Example 1 above to impregnate the nonwoven fabric of aromatic polyamide fibers with water. The average weight before adding water was 8.1 g, and the average weight after adding water was 9°629, and the water content ranged from 15 to 24%.

次に、このようにして含水処理した最終積層物について
、半分の5枚は導電回路を内側にし、また、残りの半分
は導電回路を外側にし、それぞれ第8図(a) (b)
 B −B線に沿って曲げ半径7mに曲げ形状を保持し
つつ、100℃、2時間の条件で曲げ成形及び乾燥を行
った。
Next, regarding the final laminate treated with moisture in this manner, half of the five sheets had the conductive circuit on the inside, and the other half had the conductive circuit on the outside, as shown in Figures 8(a) and (b).
Bending and drying were performed at 100° C. for 2 hours while maintaining the bent shape at a bending radius of 7 m along the line B-B.

得られた各配線基板について、その導電回路の2箇所の
ポイントで平均導通抵抗を測定した結果、上記実施例1
と同様にその変化は最大でも1%に満たず、導電回路に
破断点は認められず正常であった。
As a result of measuring the average conduction resistance at two points of the conductive circuit for each wiring board obtained, the results were as follows in Example 1 above.
Similarly, the change was less than 1% at most, and no break points were observed in the conductive circuit, which was normal.

[発明の効果] 本発明の配線基板は、軽量かつ絶縁信頼性に優れ、しか
も曲げ成形や絞り成形等の手段で種々の電子機器が要求
する基板収納空間の形状に合わせて塑性加工を行うこと
ができ、また、曲げ成形や絞り成形等の手段で塑性加工
されて彎曲部を有し、電子機器の基板収納空間の形状に
一致した形状とすることができ、電子機器の小型化、軽
ω化、薄型化等の要請に適応できるものである。また、
本発明の方法によれば、このような配線基板を容易に製
造することができる。
[Effects of the Invention] The wiring board of the present invention is lightweight and has excellent insulation reliability, and can be plastically worked by means such as bending or drawing to match the shape of the board storage space required by various electronic devices. In addition, it can be plastically worked by bending or drawing to have a curved part, which can be shaped to match the shape of the board storage space of electronic devices, making electronic devices smaller and lighter. This can be adapted to the demands for thinning and thinning. Also,
According to the method of the present invention, such a wiring board can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明に係る配線基板を製造す
る方法を示す断面説明図、第2図は第1図の方法によっ
て得られた配線基板の部分拡大断面説明図、第3図は本
発明に係る多層配線基板を製造する方法を示す断面説明
図、第4図は第3図の方法によって得られた多層配線基
板の部分拡大断面説明図、第5図は本発明に係る多層配
線基板を製造する他の方法を示す断面説明図、第6図は
曲げ成形の際の一例を示す断面説明図、第7図は実施例
1の配線基板で採用した導電回路のパターンを示す説明
図、第8図(a)(b)は実施例2の配線基板で採用し
た上下各層の導電回路のパターンをそれぞれ示す説明図
、第9図及び第10図は金属板を使用した従来の配線基
板を示す断面説明図でおる。 符号の説明 1 (11)・・・絶縁基材、 2 ・・・絶縁樹脂層、 3 (13)・・・導電金属層、 4 ・・・導電回路、 5 ・・・貫通孔、 6 ・・・水槽、 7 ・・・水、 8 (23)・・・彎曲部、 12a)(12b)(12c)−・・半硬化絶縁樹脂層
(絶縁樹脂層)、 (14aH14b)(14c) −・・導電回路、(1
5a)(15b)(15c)(16)(19)(20)
 ・・・積層体、(17a)(17b)(18a)(1
8b)(18c) −・・透孔、(21a) (21b
)−・・導通部、(22)・・・電子部品搭載用貫通孔
、(24)・・・接着剤層、 (25)・・・切込み。
1(a) to (e) are cross-sectional explanatory diagrams showing a method for manufacturing a wiring board according to the present invention, FIG. 2 is a partially enlarged cross-sectional explanatory diagram of a wiring board obtained by the method of FIG. 3 is an explanatory cross-sectional view showing a method for manufacturing a multilayer wiring board according to the present invention, FIG. 4 is an explanatory partially enlarged cross-sectional view of a multilayer wiring board obtained by the method shown in FIG. 3, and FIG. FIG. 6 is a cross-sectional explanatory diagram showing another method of manufacturing such a multilayer wiring board. FIG. 6 is a cross-sectional explanatory diagram showing an example of bending. FIG. FIGS. 8(a) and 8(b) are explanatory diagrams showing the conductive circuit patterns of the upper and lower layers adopted in the wiring board of Example 2, and FIGS. 9 and 10 are the conventional circuits using metal plates. FIG. 2 is an explanatory cross-sectional view showing the wiring board of FIG. Explanation of symbols 1 (11)... Insulating base material, 2... Insulating resin layer, 3 (13)... Conductive metal layer, 4... Conductive circuit, 5... Through hole, 6... - Water tank, 7...Water, 8 (23)...Curved portion, 12a) (12b) (12c)--Semi-cured insulating resin layer (insulating resin layer), (14aH14b) (14c)-- Conductive circuit, (1
5a) (15b) (15c) (16) (19) (20)
...Laminated body, (17a) (17b) (18a) (1
8b) (18c) -...Through hole, (21a) (21b
)--Conducting portion, (22)...Through hole for mounting electronic components, (24)...Adhesive layer, (25)...Notch.

Claims (10)

【特許請求の範囲】[Claims] (1)吸水して可塑化し乾燥して硬化する親水性高分子
で形成されたシート状絶縁基材と、この絶縁基材の表面
に積層された絶縁樹脂層と、この絶縁樹脂層を介して上
記絶縁基材に固着しかつ所定のパターンにエッチングさ
れた金属製導電回路とを有することを特徴とする塑性加
工可能な配線基板。
(1) A sheet-like insulating base material made of a hydrophilic polymer that absorbs water, plasticizes, dries and hardens; an insulating resin layer laminated on the surface of this insulating base material; A plastically processable wiring board, characterized in that it has a metal conductive circuit fixed to the insulating base material and etched in a predetermined pattern.
(2)塑性加工されて所定の彎曲部を有する請求項1記
載の配線基板。
(2) The wiring board according to claim 1, which is plastically worked and has a predetermined curved portion.
(3)絶縁樹脂層が、可撓性シートとこの可撓性シート
に半硬化状態で含浸され、圧着時に硬化した絶縁樹脂と
からなる請求項1又は2記載の配線基板。
(3) The wiring board according to claim 1 or 2, wherein the insulating resin layer comprises a flexible sheet and an insulating resin that is impregnated into the flexible sheet in a semi-cured state and is cured upon pressure bonding.
(4)吸水して可塑化し乾燥して硬化する親水性高分子
で形成されたシート状絶縁基材の表面に絶縁樹脂層を設
けると共にこの絶縁樹脂層の上に導電性金属層を設け、
得られた積層物を加熱加圧下に圧着して一体化し、上記
導電性金属層を所定のパターンにエッチングして導電回
路を形成し、次いで上記絶縁基材に含水させて可塑化し
、塑性加工により所定の形状に成形し乾燥することを特
徴とする配線基板の製造法。
(4) providing an insulating resin layer on the surface of a sheet-like insulating base material made of a hydrophilic polymer that absorbs water, plasticizes, dries and hardens; and providing a conductive metal layer on the insulating resin layer;
The obtained laminate is bonded and integrated under heat and pressure, the conductive metal layer is etched into a predetermined pattern to form a conductive circuit, and then the insulating base material is made to contain water and plasticized, and is then processed by plastic processing. A method of manufacturing a wiring board, which is characterized by forming it into a predetermined shape and drying it.
(5)可撓性シートに安定な半硬化状態を示す半硬化絶
縁樹脂を含浸させて半硬化絶縁樹脂層を形成し、加熱加
圧下の圧着時にこの半硬化絶縁樹脂層を硬化させて絶縁
樹脂層とする請求項4記載の配線基板の製造法。
(5) A semi-cured insulating resin layer is formed by impregnating a flexible sheet with a semi-cured insulating resin that exhibits a stable semi-cured state, and this semi-cured insulating resin layer is cured during crimping under heat and pressure. 5. The method of manufacturing a wiring board according to claim 4, wherein the wiring board is formed into a layer.
(6)吸水して可塑化し乾燥して硬化する親水性高分子
で形成されたシート状絶縁基材と、この絶縁基材の表面
に積層され加熱加圧下の圧着時に硬化した複数の絶縁樹
脂層と、これら各絶縁樹脂層の間及び上面に位置しかつ
所定のパターンにエッチングされた複数の金属製導電回
路と、各導電回路の間の所定の位置で上記絶縁樹脂層を
貫通しこれら各導電回路間を電気的に接続する導通部と
を有することを特徴とする塑性加工可能な多層配線基板
(6) A sheet-like insulating base material made of a hydrophilic polymer that absorbs water, plasticizes, dries and hardens, and multiple insulating resin layers that are laminated on the surface of this insulating base material and harden when crimped under heat and pressure. , a plurality of metal conductive circuits located between and on the top surface of each of these insulating resin layers and etched in a predetermined pattern, and a plurality of metal conductive circuits that penetrate the insulating resin layer at a predetermined position between each of the conductive circuits A plastically processable multilayer wiring board characterized by having a conductive part that electrically connects circuits.
(7)塑性加工されて所定の彎曲部を有する請求項6記
載の多層配線基板。
(7) The multilayer wiring board according to claim 6, which is plastically worked and has a predetermined curved portion.
(8)絶縁樹脂層が、可撓性シートとこの可撓性シート
に半硬化状態で含浸され、圧着時に硬化したジアリルフ
タレート系樹脂とからなる請求項6又は7記載の多層配
線基板。
(8) The multilayer wiring board according to claim 6 or 7, wherein the insulating resin layer comprises a flexible sheet and a diallyl phthalate resin that is impregnated into the flexible sheet in a semi-hardened state and hardened upon pressure bonding.
(9)安定な半硬化状態を示す半硬化絶縁樹脂層に導電
性金属層を積層し、得られた積層物の導電性金属層に所
定のパターンをエッチングし、上記半硬化絶縁樹脂層と
導電回路とを有する積層体を作製する工程と、このよう
にして作製された複数の積層体をシート状絶縁基材の表
面にそれぞれその導電回路を上にして順次積層し、加熱
加圧下に圧着しかつ一次積層体の半硬化絶縁樹脂層を硬
化させて多層の積層体を形成する工程と、この多層の積
層体を製造する過程でその上位の導電回路と下位の導電
回路との間を電気的に接続する導通部を形成する工程と
、絶縁基材に含水させて可塑化し、所定の形状に塑性加
工する工程とを含むことを特徴とする多層配線基板の製
造法。
(9) A conductive metal layer is laminated on the semi-cured insulating resin layer that exhibits a stable semi-cured state, and a predetermined pattern is etched on the conductive metal layer of the obtained laminate, so that it is conductive with the semi-cured insulating resin layer. A step of manufacturing a laminate having a circuit, and sequentially laminating a plurality of laminates thus manufactured on the surface of a sheet-like insulating base material with their conductive circuits facing upward, and pressing them together under heat and pressure. In addition, in the process of curing the semi-cured insulating resin layer of the primary laminate to form a multilayer laminate, and in the process of manufacturing this multilayer laminate, electrical connection between the upper conductive circuit and the lower conductive circuit is performed. 1. A method for manufacturing a multilayer wiring board, comprising the steps of: forming a conductive portion connected to the insulating base material; and plasticizing the insulating base material by impregnating it with water, and plasticizing it into a predetermined shape.
(10)半硬化絶縁樹脂層が、可撓性シートに安定な半
硬化状態を示すジアリルフタレート系樹脂を含浸させて
形成されている請求項9又は10記載の多層配線基板の
製造法。
(10) The method for manufacturing a multilayer wiring board according to claim 9 or 10, wherein the semi-cured insulating resin layer is formed by impregnating a flexible sheet with a diallyl phthalate resin that exhibits a stable semi-cured state.
JP1044975A 1989-02-23 1989-02-23 Wiring board and manufacture thereof Pending JPH02222593A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1044975A JPH02222593A (en) 1989-02-23 1989-02-23 Wiring board and manufacture thereof
KR1019900002270A KR920010176B1 (en) 1989-02-23 1990-02-23 Wiring board and manufacture thereof
US08/460,878 US5633069A (en) 1989-02-23 1995-06-05 Multilayer printed-circuit substrate, wiring substrate and process of producing the same
US08/460,885 US5573632A (en) 1989-02-23 1995-06-05 Multilayer printed-circuit substrate, wiring substrate and process of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044975A JPH02222593A (en) 1989-02-23 1989-02-23 Wiring board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02222593A true JPH02222593A (en) 1990-09-05

Family

ID=12706473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044975A Pending JPH02222593A (en) 1989-02-23 1989-02-23 Wiring board and manufacture thereof

Country Status (2)

Country Link
JP (1) JPH02222593A (en)
KR (1) KR920010176B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015594A1 (en) * 1992-01-30 1993-08-05 Motorola, Inc. Method of forming a printed circuit device and apparatus resulting therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030020464A (en) * 2001-08-29 2003-03-10 주식회사 팬택앤큐리텔 A PCB having stepped structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015594A1 (en) * 1992-01-30 1993-08-05 Motorola, Inc. Method of forming a printed circuit device and apparatus resulting therefrom

Also Published As

Publication number Publication date
KR920010176B1 (en) 1992-11-19
KR900013822A (en) 1990-09-06

Similar Documents

Publication Publication Date Title
US5144534A (en) Method for manufacturing rigid-flexible circuit boards and products thereof
JP5121942B2 (en) Flex-rigid wiring board and manufacturing method thereof
US20020004352A1 (en) Lasable bond-ply materials for high density printed wiring boards
JP3600317B2 (en) Multilayer printed wiring board and method of manufacturing the same
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
KR100728755B1 (en) Printed circuit board using bump and manufacturing method thereof
KR20180112977A (en) Printed circuit board and manufacturing method thereof
JP2006294666A (en) Flex rigid wiring board and manufacturing method thereof
JPH07106728A (en) Rigid-flexible printed wiring board and manufacture thereof
JP3744970B2 (en) Manufacturing method of flex rigid wiring board
JPH10200258A (en) Manufacture of mulitlayer printed wiring board
KR20060135983A (en) Printed circuit board using bump and manufacturing method thereof
JPH02222593A (en) Wiring board and manufacture thereof
KR100993318B1 (en) Method for manufacturi ng flying tail type rigid-flexible printed circuit board
JPH0648755B2 (en) Manufacturing method of multilayer printed circuit board
JP2009289789A (en) Printed wiring board with built-in component and its manufacturing method
JPS62277794A (en) Manufacture of inner layer circuit board
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
CN213602901U (en) Circuit board manufacturing protective film
JP2003031913A (en) Substrate for flexible wiring board
KR920010177B1 (en) Multi-layer printed circuit board and method of manufacture
JP2000124613A (en) Multilayer printed wiring board and its manufacture
JP2830820B2 (en) Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
JPS6311985B2 (en)
JP2000049457A (en) Manufacture of multilayer board