JPH0222163A - Production of diamagnetic material and diamagnetic material - Google Patents

Production of diamagnetic material and diamagnetic material

Info

Publication number
JPH0222163A
JPH0222163A JP63171500A JP17150088A JPH0222163A JP H0222163 A JPH0222163 A JP H0222163A JP 63171500 A JP63171500 A JP 63171500A JP 17150088 A JP17150088 A JP 17150088A JP H0222163 A JPH0222163 A JP H0222163A
Authority
JP
Japan
Prior art keywords
powder
superconducting
diamagnetic
coating material
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63171500A
Other languages
Japanese (ja)
Inventor
Masuo Hosokawa
益男 細川
Makio Naito
牧男 内藤
Masahiro Yoshikawa
雅浩 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP63171500A priority Critical patent/JPH0222163A/en
Priority to KR1019890005450A priority patent/KR920007800B1/en
Priority to EP89108267A priority patent/EP0349728B1/en
Priority to DE68925076T priority patent/DE68925076T2/en
Publication of JPH0222163A publication Critical patent/JPH0222163A/en
Priority to US07/582,811 priority patent/US5081072A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/641

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a diamagnetic material having excellent strength and dimensional accuracy by coating powder or granule of superconducting material with a covering material, packing the coated material into a mold, melting the covering material, cooling and solidifying. CONSTITUTION:A powder or granular raw material is primarily ground, mixed, calcined, secondarily ground, mixed and sintered to give powder or granule (A) of superconducting material containing Y or Bi. Then the component A and (B) a covering material (e.g., fluororesin) are fed from a feeder 19 to a treating chamber 3 of a bottomed cylindrical casing 4, the casing 4 is rotated by a driving gear 5 through a revolving shaft 2, the component A is coated with the component B, the raw material is pressed against the inner peripheral face 4a of the casing, pulverized by grinding pieces 9a relatively rotating based on the casing 4, simultaneously blended by raking pieces 9b while stirring, sent by air flow and recovered by a collector 15 to give a diamagnetic raw material. Then the raw material is packed into a mold, heated to melt the component B and cooled to solidify the component B.

Description

【発明の詳細な説明】 :産業上の利用分野〕 不発明は、微粉状原料で成形製品を造る反磁性体の製法
、並びに、その製法により得られる反磁性体に関する。
DETAILED DESCRIPTION OF THE INVENTION: Industrial Application Field The invention relates to a method for producing a diamagnetic material to form a molded product from a finely powdered raw material, and a diamagnetic material obtained by the method.

〔従来の技術〕 従来、二次粉砕混合処理で得た微粉状原料に、P V 
Aなどのバインダを混合し、その混合物を成型し、その
成形品を焼結処理し、用途に見合った適当な形状の反磁
性体、例えばマイスナー効果を利用する軸受用のものな
どを製造していjこ。
[Prior art] Conventionally, P V
By mixing binders such as A, molding the mixture, and sintering the molded product, we manufacture diamagnetic materials in appropriate shapes suitable for the purpose, such as those for bearings that utilize the Meissner effect. jko.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、仮焼しただけの微粉状原料をバインダで成型し
た後で焼結するから、焼結に伴う熱収縮や熱歪みが大き
く、反磁性体の形状や寸法の精度維持が困難であり、複
雑な形状の反磁性体を工業的に製造することができない
欠点かあっ Iこ。
However, since the calcined fine powder raw material is molded with a binder and then sintered, the heat shrinkage and thermal distortion associated with sintering are large, and it is difficult to maintain the precision of the shape and dimensions of the diamagnetic material, making it complicated. The drawback is that it is not possible to industrially manufacture diamagnetic material with a specific shape.

本発明の目的:;、反磁性体の形状や寸法の精度を容易
確実:二苅上できると共に、複雑な形状の反磁性体であ
っても容易に大量生産できるようにし、さろに:;、そ
のための手段を反磁性体の性能や強度及び製造能率にお
いても有利なものにする点にある。
The purpose of the present invention is to easily ensure the accuracy of the shape and dimensions of diamagnetic materials, and to easily mass-produce even diamagnetic materials with complex shapes. The object of this invention is to make the means for achieving this advantageous in terms of the performance, strength, and production efficiency of the diamagnetic material.

〔課題を解決するための手段〕[Means to solve the problem]

本第1発明の特徴手段は、超電導体の微粉状原料を焼結
処理して、超電導材の粉粒体を造り、その超電導材の粉
粒体を被覆材で被覆処理し、その被覆材で覆われた超電
導材の粉粒体を、型に充填して加熱して、前記被覆材を
熱溶融させ、その後、前記型内の超電導材の粉粒体と被
覆材を冷却して、その被覆材の冷却硬化により成形製品
を造ることにあり、その作用は次の通りである。
The characteristic means of the first invention is to sinter a fine powder raw material of a superconductor to produce a granular material of a superconducting material, and to coat the granular material of a superconducting material with a coating material. The covered granules of superconducting material are filled into a mold and heated to melt the coating material, and then the granules of superconducting material in the mold and the coating material are cooled to remove the coating. The purpose is to make molded products by cooling and hardening materials, and its functions are as follows.

〔作 用〕[For production]

つまり、微粉状原料を成形前に焼結処理して、十分に熱
収縮した超電導材の粉粒体を造ること、並びに、被覆材
の加熱溶融と冷却硬化で成形製品を造ることにより、熱
収縮や熱歪みを十分に抑制して、反磁性体の形状や寸法
を容易確実に所定通りにできると共に、複雑な形状の反
磁性体を容易に大量生産できる。
In other words, by sintering the fine powder raw material before molding to create sufficiently heat-shrinked superconducting material powder, and by creating a molded product by heat-melting and cooling hardening the coating material, heat-shrinkable The shape and dimensions of the diamagnetic material can be easily and reliably adjusted to a predetermined value by sufficiently suppressing heat distortion and thermal distortion, and diamagnetic materials with complex shapes can be easily mass-produced.

〔課題を解決するための手段〕[Means to solve the problem]

本第2発明の特徴手段は、超電導体の微粉状原料を焼結
処理して、Y含有の超電導けの粉粒体を造り、その超電
導材の粉粒体を、融点が450℃以下の被覆材で被覆処
理し、その被覆材で覆われた超電導材の粉粒体を、型に
充填して550℃以下で加熱して、前記被覆材を熱溶融
させ、その後、前記型内の超電導材の粉粒体と被覆材を
冷却して、その被覆材の冷却硬化により成形製品を造る
ことにあり、その作用は次の通りである。
The characteristic means of the second invention is to sinter a fine powder raw material of a superconductor to produce a Y-containing superconducting powder, and coat the superconducting powder with a melting point of 450°C or less. The powder of the superconducting material covered with the coating material is filled into a mold and heated at 550°C or less to thermally melt the coating material, and then the superconducting material in the mold is The purpose of this method is to cool the powder and granular material and the coating material, and to cool and harden the coating material to produce a molded product, and its function is as follows.

〔作 用〕[For production]

つまり、微粉状原料を成形前に焼結処理して、Y含有の
超電導材の粉粒体を造ること、並びに、融点が450℃
以下の被覆材で覆った超電導材の粉粒体を550℃以下
で加熱して、被覆材の加熱溶融と冷却硬化で成形製品を
造ることにより、熱収縮や熱歪みを十分に抑制して、反
磁性体の形状や寸法を容易確実に所定通りにできると共
に、複雑な形状の反磁性体を容易に大量生産できる。
In other words, it is necessary to sinter the fine powder raw material before molding to create a powdered material of Y-containing superconducting material, and to have a melting point of 450°C.
By heating the superconducting material powder covered with the following coating material at 550 degrees Celsius or less, and creating a molded product by heating and melting the coating material and cooling and hardening, thermal shrinkage and thermal distortion can be sufficiently suppressed. The shape and dimensions of the diamagnetic material can be easily and reliably made into a predetermined shape, and diamagnetic materials with complex shapes can be easily mass-produced.

さらに説明すると、超電導材の粉粒体は成形前の焼結処
理で十分に熱収縮しており、また、成形のための加熱温
度は低融点の被覆材を加熱溶融処理するに足る550℃
以下であって、その加熱温度ではY含有の超電導材の結
晶構造が、超電導性が失われる正方晶に変化しないで、
超電導性が発揮される斜方晶のままに維持され、したが
って、成形に際する熱収縮や熱歪みを十分に抑制でき、
かつ、Y含有の超電導材の超電導性を良好に維持できる
To explain further, the powder of the superconducting material is sufficiently heat-shrinked during the sintering process before molding, and the heating temperature for molding is 550°C, which is sufficient for heating and melting the low-melting point coating material.
or less, and at that heating temperature, the crystal structure of the Y-containing superconducting material does not change to a tetragonal crystal structure that loses superconductivity,
It is maintained as an orthorhombic crystal that exhibits superconductivity, and therefore thermal shrinkage and thermal distortion during molding can be sufficiently suppressed.
Moreover, the superconductivity of the Y-containing superconducting material can be maintained well.

ちなみに、そのような作用を得るためj二、被覆材と同
様の低融点物質を超電導材の粉粒体に単純に攪拌混合し
た後で、上述のように加熱冷却して成形することが考え
られるが、混合が不均一になり、低融点物質を超電導材
の粉粒体ドうじの量大々に万遍なくかつ適量づつ分散さ
せることが実際上不可能であるために、成形製品におけ
る超電導材の粉粒体の分布が不均一にljっで、マイス
ナー効果が成形製品のBシjによ−。
Incidentally, in order to obtain such an effect, it is conceivable to simply stir and mix a low melting point substance similar to that of the coating material into the superconducting material powder and then heat and cool it to form it as described above. However, since the mixing becomes non-uniform and it is practically impossible to disperse the low melting point substance evenly and in appropriate amounts over a large amount of the superconducting material powder, the superconducting material in the molded product is The distribution of the powder and granules is uneven, and the Meissner effect is due to the B-sha of the molded product.

て相違する欠点があり、超電導体の粉粒体どうしが低融
点物質で十分に結合されない部分を生じやすくて強度欠
陥が出やすい欠点が漣、す、さらには、低融点物質が過
剰な部分のため:こ加熱溶融処理時間が長くなりやすい
欠点がある。
There are different drawbacks, and the disadvantage is that parts of the superconductor powder and granules tend to be insufficiently bonded with low melting point substances, resulting in strength defects. Therefore, there is a drawback that the heating and melting treatment time tends to be long.

しかし、本第2発明のように、超電導材の粉粒体夫々を
被覆材で覆うと、成形に際して超電導材と被覆材の分布
状態を確実に均一化できると共に、被覆材を確実に万遍
なくかつ適量づつ分散させることができ、マイスナー効
果が全体にわたり安定して発揮されると共に、強度面で
優れた成形製品を、容易確実にかつ被覆材の加熱溶融処
理の迅速化で能率良く製造できる。
However, as in the second invention, if each powder or granule of the superconducting material is covered with a coating material, the distribution of the superconducting material and the coating material can be reliably uniformized during molding, and the coating material can be applied evenly. Moreover, it can be dispersed in appropriate amounts, the Meissner effect is stably exhibited throughout the product, and molded products with excellent strength can be manufactured easily and reliably and efficiently by speeding up the heating and melting process of the coating material.

〔課題を解決するための手段〕[Means to solve the problem]

本第3発明の特徴手段は、超電導体の微粉状原料を焼結
処理して、B1含有の超電導材の粉粒体を造り、その超
電導材の粉粒体を、融点が800℃以下の被覆材で被覆
処理し、その被覆材で覆われた超電導財○粉粒体を、型
に充填して800℃以下で加熱して、前記被覆材を熱溶
融させ、その後、前記型内の超電導材の粉粒体と被覆材
を冷却して、その被覆材の冷却硬化により成形製品を造
ることにあり、その作用は次の通りである。
The characteristic means of the third invention is to sinter a fine powder raw material of a superconductor to produce powder of a B1-containing superconducting material, and coat the powder of the superconducting material with a melting point of 800°C or less. The superconducting material covered with the coating material is filled into a mold and heated at 800°C or less to melt the coating material, and then the superconducting material in the mold is The purpose of this method is to cool the powder and granular material and the coating material, and to cool and harden the coating material to produce a molded product, and its function is as follows.

〔作 用〕[For production]

つまり、本第2発明と同様に、成形前の焼結処理で十分
に熱収縮したBi金含有超電導材の粉粒体を造ること、
並びに、融点が800℃の以下の被覆材で覆った超電導
材の粉粒体を、良好な超電導性が発揮される800℃以
下で加熱して、被覆材の加熱溶融と冷却硬化で成形製品
を造ることにより、熱収縮や熱歪を十分に抑制して、反
磁性体の形状や寸法を容易確実に所定通りにできると共
に、複雑な形状の反磁性体を容易に大量生産できる。
In other words, similarly to the second invention, producing a powder of a Bi-gold-containing superconducting material that has been sufficiently heat-shrinked by sintering before forming;
In addition, powdered superconducting material covered with a coating material with a melting point of 800°C or less is heated at a temperature below 800°C where good superconductivity is exhibited, and the coating material is heated to melt and cooled to harden to form a molded product. By manufacturing the diamagnetic material, heat shrinkage and thermal distortion can be sufficiently suppressed, the shape and dimensions of the diamagnetic material can be easily and reliably made into a predetermined shape, and diamagnetic materials with complex shapes can be easily mass-produced.

さらには、本第2発明におけると同様の理由で、マイス
ナー効果が全体にわたり安定して発揮されると共に強度
面で優れた成形製品を、容易確実にかつ強度材の加熱溶
融処理の迅速化で能率良く製造できる。
Furthermore, for the same reason as in the second invention, the Meissner effect can be stably exhibited throughout the entire body, and molded products with excellent strength can be produced easily and reliably and efficiently by speeding up the heating and melting process of the strength material. Can be manufactured well.

〔発明の効果〕 その結果、反磁性体の形状や寸法の精度を容易確実に向
上でき、複雑な形状の反磁性体を容易に大量生産でき、
マイスナー効果及び強度の面で優れた反磁性体を容易確
実かつ能率良く製造できる、全体として極めて優れた反
磁性体の製法が得られた。
[Effects of the invention] As a result, the accuracy of the shape and dimensions of the diamagnetic material can be easily and reliably improved, and diamagnetic materials with complex shapes can be easily mass-produced.
A method for producing a diamagnetic material which is excellent in terms of Meissner effect and strength can be produced easily, reliably and efficiently, and which is extremely excellent overall has been obtained.

そして、その製法によって、用途に応じた最適な形状と
寸法を備え、優れたマイスナー効果を発揮し、強度にお
いて信頼性が高い、全体として極めて高性能な反磁性体
を、十分にコストダウンして提供できるようになった。
By using this manufacturing method, we can produce a diamagnetic material that has the optimal shape and dimensions depending on the application, exhibits an excellent Meissner effect, is highly reliable in terms of strength, and has an extremely high overall performance at a sufficiently low cost. now available.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第1図に示すように、超電導体の粉粒状原料1ミンを秤
量し、秤量した粉粒状原料を乾式の摩砕混合装置で一次
粉砕混合処理し、−次粉砕混合処理で得た微粉状原料を
仮焼処理し、仮焼処理で得た粉粒状原料を乾式の摩砕混
合装置で二次粉砕混合処理し、二次粉砕混合処理で得た
微粉状原料を焼結処理し、Y又はBiを含む超電導材の
粉粒体を造る。
As shown in Figure 1, 1 min of powdery raw material for superconductor is weighed, the weighed powdery raw material is subjected to primary pulverization and mixing treatment in a dry grinding mixer, and the fine powdery raw material obtained through the second pulverization and mixing treatment. The powdery raw material obtained by the calcining process is subjected to secondary pulverization and mixing treatment using a dry grinding and mixing device, and the fine powdery raw material obtained by the secondary pulverization and mixing process is sintered to produce Y or Bi. Create powder and granular material of superconducting material containing

仮焼処理は、一般に400℃程度で約2時間加熱した後
、Yを含む超電導材では900℃程度で約4時間加熱し
、B1を含む超電導材では800℃程度で約16時間加
熱して行う。
Calcination treatment is generally performed by heating at about 400°C for about 2 hours, then heating at about 900°C for about 4 hours for superconducting materials containing Y, and heating at about 800°C for about 16 hours for superconducting materials containing B1. .

焼結処理は、Yを含む超電導材では、一般に900〜9
30℃程度で約12時間加熱した後、100℃/hr程
度で徐冷し、その後、520℃程度で約5時間加熱した
後、100℃/hr程度で徐冷する。また、B1を含む
超電導材では、800〜890℃で70〜200時間加
熱した後徐冷する。
For superconducting materials containing Y, the sintering process is generally performed at a temperature of 900 to 9
After heating at about 30°C for about 12 hours, it is slowly cooled at about 100°C/hr, then heated at about 520°C for about 5 hours, and then slowly cooled at about 100°C/hr. In addition, a superconducting material containing B1 is heated at 800 to 890°C for 70 to 200 hours and then slowly cooled.

超電導材の粉粒体に被覆材を適量添加し、その混合物を
乾式の摩砕混合装置で被覆処理し、超電導材の粉粒体を
被覆材で覆った反磁性体原料を造る。
An appropriate amount of the coating material is added to the granular material of the superconducting material, and the mixture is coated using a dry grinding and mixing device to produce a diamagnetic material material in which the granular material of the superconducting material is covered with the coating material.

被覆材としては、フッ素樹脂などの適過1;樹脂の粉粒
体、Cu(7)微粉や、薄片、その池適当なものから選
択する。但し、反磁性体を使用する低温において脆化せ
ず、超電導材と宣接1”′、i応せず、水を含まないも
のを選択するっ 被覆材の混合割合は数%〜数十%である。
The coating material is selected from suitable materials such as fluororesin, resin powder, Cu(7) fine powder, flakes, and the like. However, when using a diamagnetic material, choose one that does not become brittle at low temperatures, does not come into contact with the superconducting material, and does not contain water.The mixing ratio of the coating material should be from a few percent to several tens of percent. It is.

そして、Yを含む超電導材に対して:よ、融点が450
℃以下、望ましくは300℃以下の被覆材を使用する。
And for superconducting materials containing Y: the melting point is 450
A coating material with a temperature below 300°C is used.

また、Biを含む超電導材に対しては、融点が800℃
以下、望ましくは400℃以下の被覆材を使用する。
Furthermore, for superconducting materials containing Bi, the melting point is 800°C.
Hereinafter, a coating material having a temperature of 400° C. or lower is preferably used.

尚、Cuは、微粉又は薄片になるほど融点が低下し、1
0−2μmのオーダになると200〜400℃で焼結が
行われるようになる。したがって、所定の融点に見合っ
た径の微粉又は厚みの薄片にして使用する。
Note that the melting point of Cu decreases as it becomes finer powder or flakes.
When the thickness is on the order of 0-2 μm, sintering is performed at 200-400°C. Therefore, it is used in the form of fine powder or thin slices of a thickness suitable for a predetermined melting point.

反磁性体原料は、第2図(イ)に示すように超電導材の
粉粒体(八)に多数の微粉状や薄片状の被覆材(B)が
摩砕により熱融着したものでも、第2図(ロ)に示すよ
うに超電導材の粉粒体(A)の全面に被覆材(B)の薄
層が摩砕による熱融着で形成されたものでもよい。
The diamagnetic raw material may be obtained by heat-sealing a large number of fine powder or flaky coating materials (B) to a superconducting material powder (8) by grinding, as shown in Figure 2 (A). As shown in FIG. 2(b), a thin layer of the coating material (B) may be formed on the entire surface of the superconducting material powder (A) by thermal fusion through grinding.

次に、反磁性体原料を型に充填して加熱し、被覆材(B
)を熱溶融させ、その後、型内の超電導材の粉粒体(A
)  と被覆材(B)を冷却し、被覆材(B)の冷却硬
化により反磁性体の成形製品を造る。
Next, the diamagnetic raw material is filled into a mold and heated, and the coating material (B
) is thermally melted, and then the superconducting material powder (A
) and the coating material (B), and the coating material (B) is cooled and hardened to produce a diamagnetic molded product.

型に充填した反磁性体原料の加熱温度は、Yを含む超電
導材に対しては、超電導材の粉粒体(A)の結晶構造が
正方晶に変化しないで超電導性を発揮する斜方晶に維持
されると共に、被覆材(B)が成形に十分な程度に熱溶
融されるように、超電導体の粉粒体(八)及び被覆材(
B)の種類に見合って適当に選定し、Yを含む超電導体
に対しては550℃以下で設定する。また、Biを含む
超電導材に対しては゛、溶融温度850℃より低い80
0℃以下で設定する。
For superconducting materials containing Y, the heating temperature of the diamagnetic raw material filled in the mold is such that the crystal structure of the powder (A) of the superconducting material does not change to a tetragonal crystal structure and exhibits superconductivity. The superconductor powder (8) and the coating material (B) are melted to a sufficient degree for molding.
The temperature should be selected appropriately depending on the type of B), and set at 550° C. or lower for superconductors containing Y. In addition, for superconducting materials containing Bi, the melting temperature is 80℃ lower than 850℃.
Set below 0℃.

前述の摩砕混合装置について、第3図及び第4図により
次に詳述する。
The above-described grinding and mixing device will now be described in detail with reference to FIGS. 3 and 4.

基台(1)に取付けられた縦向き回転軸(2)の上端に
、処理室(3)を形成する有底筒状ケーシング(4)を
同芯状に取付け、電動モータ(5a)及び変速機(5b
)等から成る駆動装置(5)を回転軸(2)の下端に連
動させ、ケーシング(4)をその内部の粉粒状原料が遠
心力によりケーシング内周面(4a)に押付けられるよ
うに高速駆動回転すべく構成し、かつ、原料の性状に応
じて適切な遠心力が得られるようjこケーシング(4)
の回転速度を調節可能に構成しである。
A bottomed cylindrical casing (4) forming a processing chamber (3) is concentrically attached to the upper end of a vertical rotating shaft (2) attached to a base (1), and an electric motor (5a) and a variable speed Machine (5b
), etc., is interlocked with the lower end of the rotating shaft (2), and the casing (4) is driven at high speed so that the powdery raw materials inside the casing (4) are pressed against the inner circumferential surface (4a) of the casing by centrifugal force. The casing (4) is designed to rotate and to obtain an appropriate centrifugal force depending on the properties of the raw material.
The rotation speed of the rotor is adjustable.

ケーシング(4)はカバー(7)で包囲され、ケーシン
グ(4)の下部にファン(12)を連設し、カバー(7
)に形成した吸気口(13)から外気を吸引して、吸引
外気によりケーシング(4)を冷却するように構成し、
また、吸引外気をカバー(7)に接続した搬送用流路(
10)に微粉状原料搬送用ガスとして導くように構成し
である。又、微粉状原料を処理室(3)からカバー(7
)側に移すために、ケーシング(4)の上端中心部を開
口させて、原料のオーバーフロー式排出口(11)を形
成しである。
The casing (4) is surrounded by a cover (7), a fan (12) is connected to the bottom of the casing (4), and the cover (7) is surrounded by a fan (12).
) is configured to suck outside air through an intake port (13) formed in the casing (4) and cool the casing (4) with the sucked outside air;
In addition, a conveyance channel (
10) is configured to be introduced as a gas for transporting fine powder raw material. In addition, the fine powder raw material is transferred from the processing chamber (3) to the cover (7).
) side, the upper center of the casing (4) is opened to form an overflow outlet (11) for the raw material.

回転軸(2)と同志の回転軸(Ba)の上端部に固定し
た状態で、中心上部に円錐状部分く8C)を形、狡した
支持体(Bb)をケーシング(4)内に設けである。
While fixed to the upper end of the rotating shaft (2) and the fellow rotating shaft (Ba), a conical part (8C) is formed at the upper center and a clever support (Bb) is provided inside the casing (4). be.

ケーシング内周面(4a)との協働で原料を圧縮し剪断
する摩砕片(9a)、及び、原料を撹拌混合し分散する
掻取り片(9b)を、ケーシング(4)回転方向に適当
な間隔で並べた状態で支持体(Ba)の先端に取付けて
処理室(3)内に配置しである。
A grinding piece (9a) that compresses and shears the raw material in cooperation with the inner circumferential surface (4a) of the casing, and a scraping piece (9b) that stirs, mixes and disperses the raw material are placed in an appropriate direction in the rotational direction of the casing (4). They are arranged at intervals and attached to the tip of the support (Ba) and placed in the processing chamber (3).

摩砕片(9a)に、ケーシング(4)との隙間がケーシ
ング(4)の回転方向側はど狭くなるように形成した傾
斜面を持たせ、そして、掻取り片(9b)を、ケーシン
グ(4)との隙間がケーシング(4)の回転方向側はど
広くなり、かつ、その作用面が次第に幅広となるような
くさび状又は櫛菌状に形成しである。
The grinding piece (9a) has an inclined surface formed so that the gap with the casing (4) becomes narrower in the direction of rotation of the casing (4), and the scraping piece (9b) is attached to the casing (4). ) is formed in a wedge-like or comb-like shape such that the gap between the casing (4) becomes wider in the direction of rotation of the casing (4), and its working surface gradually becomes wider.

回転軸(Ba)を駆動装置(5)に連動させ、ケーシン
グ(4)に対して一定の速度差で摩砕片(9a)及び掻
取り臣rob)を相対回転させて、摩砕片(9a)によ
る微崎砕と掻取り片(9b)による撹拌混合が行われろ
ように構成しである。
The rotating shaft (Ba) is interlocked with the drive device (5), and the grinding pieces (9a) and the scraping member rob) are rotated relative to the casing (4) at a constant speed difference, and the grinding pieces (9a) are rotated. The structure is such that agitation and mixing can be performed using the fine grains and scraping pieces (9b).

回転軸(3a)内:二、支持体(Bb)、摩砕片(9a
)、掻取り片(9E])に加熱あるいは冷却用媒体を流
入させる通路(27)を形成し、ロータリージョイン)
 (24)により通路(27)を媒体貯蔵用タンク(2
6)に接続しである。
Inside the rotating shaft (3a): 2. Support (Bb), grinding piece (9a)
), a passage (27) is formed through which a heating or cooling medium flows into the scraping piece (9E]), and a rotary joint) is formed.
(24) connects the passage (27) to the medium storage tank (2).
6).

カバー(7)の中心部に、支持体(Bb)の円錐状部分
(Bc)に向けてフィーダ(19)からの原料を流下供
給させるための経路(6)をパイプ(14)の付設によ
って形成し、必要により加熱あるいは冷却させた適量の
空気や不活性ガス等の搬送用ガスを供給する送風機(1
8)を経路(6)に接続し、又、カバー(7)の周囲に
ジャケラ) (25)を具備させ、タンク(26)から
の加熱又は冷却用の媒体を通すように構成しである。
A pipe (14) is provided in the center of the cover (7) to form a path (6) for supplying the raw material from the feeder (19) toward the conical portion (Bc) of the support (Bb). An air blower (1
8) is connected to the path (6), and a jacket (25) is provided around the cover (7) to allow heating or cooling medium from the tank (26) to pass therethrough.

捕集器(15)及び排風機(16)をその順に流路(1
0)に接続し、捕集器(15)の排出口に微粉状原料を
回収するロータリーフィーダ(17)を設けである。
The collector (15) and the exhaust fan (16) are connected to the flow path (1) in that order.
0), and a rotary feeder (17) is provided at the outlet of the collector (15) to collect the fine powder raw material.

要するに、ケーシング(4)を高速駆動回転させて、フ
ィーダ(19)からの粉粒状原料をケーシング内周面(
4a)に遠心力で押付け、その押付けで形成した原料層
に、ケーシング(4)に対して相対回転する摩砕片(9
a)と掻取り片(9b)を作用させ、摩砕片(9a)で
原料を微粉砕すると共に、掻取り片(9b)で原料を撹
拌混合し、十分に微細になると共に均一に混合された微
粉状原料を気流搬送して捕集器(15)で回収するので
ある。
In short, the casing (4) is rotated at high speed, and the powdery raw material from the feeder (19) is delivered to the inner peripheral surface of the casing (
4a) by centrifugal force, and the crushed pieces (9) rotating relative to the casing (4) are added to the raw material layer formed by the pressing
a) and the scraping piece (9b), the grinding piece (9a) finely pulverizes the raw material, and the scraping piece (9b) stirs and mixes the raw material, making it sufficiently fine and uniformly mixed. The fine powder raw material is transported by air current and collected by the collector (15).

〔別実施例〕[Another example]

次に、別実施例を説明する。 Next, another embodiment will be described.

原料は種類、混合割合、粒度、その他において適当に選
択できる。原料によっては仮焼処理と二次粉砕混合処理
を複数回づつ実施してもよい。また、原料によっては仮
焼処理及び二次粉砕混合処理を省き、−次粉砕混合処理
後焼結処理を行ってもよい。
The raw materials can be appropriately selected in terms of type, mixing ratio, particle size, etc. Depending on the raw materials, the calcination treatment and the secondary pulverization and mixing treatment may be performed multiple times. Further, depending on the raw materials, the calcination treatment and the secondary pulverization and mixing treatment may be omitted, and the sintering treatment may be performed after the secondary pulverization and mixing treatment.

乾式の摩砕混合装置の具体構成は適当に変更でき、例え
ば、ケーシング(4) の回転軸芯を傾斜させたり横向
きにしたり、摩砕片(9a)や掻取り片(9b)をケー
シング(4)側へ接触しない範囲で流体圧やスプリング
で付勢したり、摩砕片(9a)と掻取り片(9b)の回
転を停止させたり、摩砕片(9a)、掻取り片〈9b)
の形状、材質、設置数などを適当に変更したり、バッチ
処理するように捕集器(15)からケーシング(4)に
微粉を還元供給するように構成する等が可能である。
The specific configuration of the dry grinding and mixing device can be changed as appropriate. For example, the rotational axis of the casing (4) may be tilted or turned sideways, or the grinding pieces (9a) and scraping pieces (9b) may be placed in the casing (4). The grinding piece (9a) and the scraping piece (9b) can be biased by fluid pressure or a spring within a range where they do not come into contact with each other, or the rotation of the grinding piece (9a) and the scraping piece (9b) can be stopped.
It is possible to appropriately change the shape, material, number of installations, etc., or to configure the collector (15) to return and supply the fine powder to the casing (4) so as to perform batch processing.

仮焼処理や焼結処理において温度条件をいかに設定する
かは、原料の種類に見合って適当に選択できる。
How to set the temperature conditions in the calcination treatment and sintering treatment can be appropriately selected depending on the type of raw material.

被覆材は種類、融点、混合割合において適当に選定でき
る。
The coating material can be appropriately selected in terms of type, melting point, and mixing ratio.

被覆処理において使用する装置は、公知のコーティング
用のものから適当に選択でき、例えば噴霧乾燥方式、流
動乾燥方式、混合造粒方式などでもよい。
The apparatus used in the coating process can be appropriately selected from known coating apparatuses, and may be, for example, a spray drying system, a fluidized drying system, a mixed granulation system, or the like.

反磁性体の用途や形状は不問である。The purpose and shape of the diamagnetic material are not limited.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はフローシート、
第2図(1) (’J”)は原料の概念図、第3図は摩
砕混合装置の概念図、第4図は第3図の■−■線断面図
である。 (A)・・・・・・超電導はの粉粒体、(B)・・・・
・・被覆材。
The drawings show an embodiment of the present invention, and FIG. 1 is a flow sheet;
Figure 2 (1) ('J') is a conceptual diagram of the raw material, Figure 3 is a conceptual diagram of the grinding and mixing device, and Figure 4 is a sectional view taken along the line ■-■ in Figure 3. (A) ...Superconducting powder, (B)...
...Covering material.

Claims (6)

【特許請求の範囲】[Claims] 1.超電導体の微粉状原料を焼結処理して、超電導材の
粉粒体(A)を造り、 その超電導材の粉粒体(A)を被覆材(B)で被覆処理
し、 その被覆材(B)で覆われた超電導材の粉粒体(A)を
、型に充填して加熱して、前記被覆材(B)を熱溶融さ
せ、 その後、前記型内の超電動材の粉粒体(A)と被覆材(
B)を冷却して、その被覆材(B)の冷却硬化により成
形製品を造る反磁性体の製法。
1. The fine powder raw material of the superconductor is sintered to produce a superconducting material powder (A), the superconducting material powder (A) is coated with a coating material (B), and the coating material ( The superconducting material powder (A) covered with B) is filled into a mold and heated to melt the coating material (B), and then the superconducting material powder (A) covered with the superconducting material in the mold is heated. (A) and coating material (
A method for manufacturing a diamagnetic material in which a molded product is produced by cooling B) and cooling and hardening the coating material (B).
2.Yを含む超電導体の微粉状原料を焼結処理して、Y
含有の超電導材の粉粒体(A)を造り、その超電導材の
粉粒体(A)を、融点が450℃以下の被覆材(B)で
被覆処理し、 その被覆材(B)で覆われた超電導材の粉粒体(A)を
、型に充填して550℃以下で加熱して、前記被覆材(
B)を熱溶融させ、 その後、前記型内の超電導材の粉粒体(A)と被覆材(
B)を冷却して、その被覆材(B)の冷却硬化により成
形製品を造る反磁性体の製法。
2. By sintering fine powder raw material of superconductor containing Y, Y
The superconducting material powder (A) is coated with a coating material (B) having a melting point of 450°C or less, and the superconducting material powder (A) is coated with the coating material (B). The superconducting material powder (A) is filled into a mold and heated at 550°C or lower to form the coating material (A).
B) is thermally melted, and then the superconducting material powder (A) in the mold and the coating material (
A method for manufacturing a diamagnetic material in which a molded product is produced by cooling B) and cooling and hardening the coating material (B).
3.Biを含む超電導体の微粉状原料を焼結処理して、
Bi含有の超電導材の粉粒体(A)を造り、 その超電導材の粉粒体(A)を、融点が800℃以下の
被覆材(B)で被覆処理し、 その被覆材(B)で覆われた超電導材の粉粒体(A)を
、型に充填して800℃以下で加熱して、前記被覆材(
B)を熱溶融させ、 その後、前記型内の超電導材の粉粒体(A)と被覆材(
B)を冷却して、その被覆材(B)の冷却硬化により成
形製品を造る反磁性体の製法。
3. By sintering the fine powder raw material of superconductor containing Bi,
A granular material (A) of a superconducting material containing Bi is produced, and the granular material (A) of the superconducting material is coated with a coating material (B) having a melting point of 800°C or less. The covered superconducting material powder (A) is filled into a mold and heated at 800°C or less to form the covering material (A).
B) is thermally melted, and then the superconducting material powder (A) in the mold and the coating material (
A method for manufacturing a diamagnetic material in which a molded product is produced by cooling B) and cooling and hardening the coating material (B).
4.超電導材の粉粒体(A)を被覆材(B)で覆った反
磁性体原料を、型内において加熱により前記被覆材(B
)を熱溶融した後で冷却硬化することにより成形した反
磁性体。
4. A diamagnetic raw material obtained by covering powder (A) of a superconducting material with a coating material (B) is heated in a mold to coat the coating material (B).
) A diamagnetic material formed by hot-melting and then cooling and hardening.
5.Y含有の超電導材の粉粒体(A)を、融点が450
℃以下の被覆材(B)で覆った反磁性体原料を、型内に
おいて550℃以下の加熱により前記被覆材(B)を熱
溶融した後で冷却硬化することにより成形した反磁性体
5. Powder (A) of Y-containing superconducting material has a melting point of 450
A diamagnetic material formed by molding a diamagnetic material material covered with a coating material (B) at a temperature of 550.degree.
6.Bi含有の超電導材の粉粒体(A)を、融点が80
0℃以下の被覆材(B)で覆った反磁性体原料を、型内
において800℃以下の加熱により前記被覆材(B)を
熱溶融した後で冷却硬化することにより成形した反磁性
体。
6. Powder (A) of Bi-containing superconducting material has a melting point of 80
A diamagnetic material formed by molding a diamagnetic raw material covered with a coating material (B) at a temperature of 0° C. or lower, heating the coating material (B) in a mold to a temperature of 800° C. or lower to melt the coating material, and then cooling and hardening the material.
JP63171500A 1988-07-07 1988-07-08 Production of diamagnetic material and diamagnetic material Pending JPH0222163A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63171500A JPH0222163A (en) 1988-07-08 1988-07-08 Production of diamagnetic material and diamagnetic material
KR1019890005450A KR920007800B1 (en) 1988-07-07 1989-04-25 Super conducting material and its manufacturing method and superconducting material
EP89108267A EP0349728B1 (en) 1988-07-07 1989-05-08 Manufacturing method of a fine particle superconducting oxide powder and manufacturing method of a superconducting product
DE68925076T DE68925076T2 (en) 1988-07-07 1989-05-08 Manufacturing method of fine-grained superconducting oxide powder and manufacturing method of a superconducting article
US07/582,811 US5081072A (en) 1988-07-07 1990-09-12 Manufacturing method of superconducting material and product and superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171500A JPH0222163A (en) 1988-07-08 1988-07-08 Production of diamagnetic material and diamagnetic material

Publications (1)

Publication Number Publication Date
JPH0222163A true JPH0222163A (en) 1990-01-25

Family

ID=15924253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171500A Pending JPH0222163A (en) 1988-07-07 1988-07-08 Production of diamagnetic material and diamagnetic material

Country Status (1)

Country Link
JP (1) JPH0222163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340953A (en) * 1989-07-06 1991-02-21 Tomoegawa Paper Co Ltd Production of formed superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340953A (en) * 1989-07-06 1991-02-21 Tomoegawa Paper Co Ltd Production of formed superconductor

Similar Documents

Publication Publication Date Title
KR900005175B1 (en) Particulate material treating apparatus
CN87101837A (en) The method and apparatus of granulating and one-tenth granule product thereof
KR920007800B1 (en) Super conducting material and its manufacturing method and superconducting material
JPH0222163A (en) Production of diamagnetic material and diamagnetic material
WO1998006484A1 (en) Method and apparatus for particulate mixing
JPH06226130A (en) Crushing mixing device
JPH0816795B2 (en) Toner manufacturing method and apparatus
US3454263A (en) Process and apparatus for agglomerating particulate materials and high speed mixer therefor
JPS6270036A (en) Composite material
JPH0218306A (en) Starting material for superconductor
CA2378479A1 (en) Fine glass particle containing embedded oxide and process for producing the same
JPH0478341B2 (en)
JPH02217347A (en) Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof
JPH01201010A (en) Production of raw materials for superconductor and superconductor, and raw materials and superconductor obtained therefrom
JPH01208462A (en) Production of target material and target for forming thin film of superconducting material by vapor-phase method and target material and target obtained therefrom
JPH0759299B2 (en) Raw material manufacturing method for functionally graded materials
JPH0256813A (en) Manufacture of superconductive wire rod and superconductive wire rod
JPS60159578A (en) Vacuum drier and method of operating said drier
JPS6030248B2 (en) Granulation method of ceramic raw material powder
JPH01298606A (en) Raw material and manufacturing method of superconductive wire rod, and superconductive wire rod raw material and superconductive wire rod obtained by the manufacturing method
JPH07185375A (en) Method for pulverizing low melting resin
JP2004202305A (en) Method and machine for crushing resin
JPH01215339A (en) Production of composition for radiating far infrared rays
WO1989010194A1 (en) Processing method and apparatus
JPS6270537A (en) Manufacture of composite material