JPH02217347A - Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof - Google Patents
Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereofInfo
- Publication number
- JPH02217347A JPH02217347A JP1037222A JP3722289A JPH02217347A JP H02217347 A JPH02217347 A JP H02217347A JP 1037222 A JP1037222 A JP 1037222A JP 3722289 A JP3722289 A JP 3722289A JP H02217347 A JPH02217347 A JP H02217347A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- casing
- ceramic
- grinding
- pieces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 81
- 239000000919 ceramic Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000227 grinding Methods 0.000 claims abstract description 31
- 238000010298 pulverizing process Methods 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000007790 scraping Methods 0.000 claims description 25
- 239000000843 powder Substances 0.000 claims description 24
- 238000001354 calcination Methods 0.000 claims description 7
- 238000010304 firing Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 238000010008 shearing Methods 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 238000005469 granulation Methods 0.000 abstract description 6
- 230000003179 granulation Effects 0.000 abstract description 6
- 239000011230 binding agent Substances 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 239000002245 particle Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002887 superconductor Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000009837 dry grinding Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010016275 Fear Diseases 0.000 description 1
- 244000126211 Hericium coralloides Species 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- -1 that is Substances 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
Landscapes
- Disintegrating Or Milling (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、セラミックスの原料を仮焼処理した後、粉砕
して微粉状のセラミックス原料を得るための製法、及び
、それにより得られたセラミックス原料、並びにこのセ
ラミックス原料を使用して製造されたセラミックス成形
体に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for calcining a ceramic raw material and then pulverizing it to obtain a finely powdered ceramic raw material, and a ceramic raw material obtained thereby. The present invention relates to a raw material and a ceramic molded body manufactured using this ceramic raw material.
(従来技術)
従来、仮焼処理したセラミックスの原料を微粉状に粉砕
するには、例えば第4図に示すようなボールミルを使用
し、ケーシング(30)内で原料と共に入れられたセラ
ミックス製の粉砕用ボール(31)によって微粉砕させ
ていた。(Prior art) Conventionally, in order to grind calcined ceramic raw materials into fine powder, a ball mill as shown in FIG. The powder was pulverized using a grinding ball (31).
また、別の方法としては微粉砕可能な他の微粉砕機によ
り十分に微粉砕した後、これを適当な大きさに造粒して
いた。Another method is to sufficiently pulverize the material using another pulverizer capable of pulverizing it, and then granulate it into an appropriate size.
(発明が解決しようとする課B)
しかし、ボールミルによって得られた微粉状原料は粒度
分布の幅が広く、これを成型時の充填において均等に分
散させることは困難であり、均一で緻密な構造を有する
セラミックス成形体を造るには不十分であった。(Problem B to be solved by the invention) However, the fine powder raw material obtained by ball milling has a wide particle size distribution, and it is difficult to uniformly disperse it during filling during molding. It was insufficient to produce a ceramic molded body having the following properties.
また、他の微粉砕機により十分に微粉砕してから造粒し
た粉末を使用する場合、別に造粒のためノプロセスが必
要になること、又、微粉砕工程においては、従来の高性
能な微粉砕機のほとんどがセラミックス以外の材料、す
なわち鉄やステンレス等金属製であり、したがってこれ
ら微粉砕機を使用した粉砕処理においては粉砕部材の一
部が原料粒子との衝突や摩擦によって削り取られ、これ
がセラミックス製品中に混入して別の新たな問題ともな
る。また、これら微粉砕機の多くは粉砕機構のほかに分
級機構が具備されており、これを含め全体をセラミック
ス材にすることは非常に高価なものとなる。更に、造粒
のため添加されるバインダーについても焼成時に完全に
蒸発させるのに時間を要し、場合によっては、焼成後も
セラミックス中に残存することになるため、単に原料中
の不純物としてだけではなく用途によっては有害物質と
して不都合な場合も生じる。In addition, when using powder that has been sufficiently pulverized with another pulverizer and then granulated, a separate process for granulation is required, and the pulverization process cannot be carried out using conventional high-performance methods. Most of the pulverizers are made of materials other than ceramics, that is, metals such as iron and stainless steel. Therefore, in the pulverization process using these pulverizers, part of the pulverizing member is scraped off by collision with raw material particles or friction. This may become mixed into ceramic products, creating another new problem. In addition, many of these pulverizers are equipped with a classification mechanism in addition to the pulverizing mechanism, and it would be very expensive to make the entire device including this from a ceramic material. Furthermore, the binder added for granulation takes time to completely evaporate during firing, and in some cases it may remain in the ceramic even after firing, so it cannot be treated simply as an impurity in the raw materials. However, depending on the use, it may be inconvenient as a harmful substance.
本発明の目的は、こうした問題やおそれがなく、成分が
均一に分散し、緻密で強度的にも優れたセラミックス成
形体、及びそれを実現するためのセラミックス原料を製
造することにある。An object of the present invention is to produce a ceramic molded body that is free from these problems and fears, has components uniformly dispersed, is dense, and has excellent strength, and a ceramic raw material for realizing it.
(課題を解決するための手段)
本発明の特徴手段は、仮焼処理したセラミックスの原料
を粉砕処理するのに際し、ケーシングを高速駆動回転さ
せ、原料をそのケーシングの内周面に遠心力で押し付け
、その押し付けで形成した原料層に前記ケーシングに対
して相対回転する摩砕片と掻取り片とを作用させ、摩砕
片による圧縮力と剪断力で粉粒状原料を微粉砕し、掻取
り片による撹拌混合で均一分散させ、さらに、これら摩
砕片と掻取り片との相乗作用により、微粉状原料中の各
粒子相互間に粒子同士の融着を引き起こさせて複合化さ
れた微粉末を得ることにあり、その作用効果は次の通り
である。(Means for Solving the Problems) The characteristic means of the present invention is that when pulverizing the calcined ceramic raw material, the casing is driven to rotate at high speed and the raw material is pressed against the inner peripheral surface of the casing by centrifugal force. , A grinding piece and a scraping piece that rotate relative to the casing are applied to the raw material layer formed by the pressing, and the granular raw material is finely pulverized by the compressive force and shear force of the grinding piece, and is stirred by the scraping piece. Uniform dispersion is achieved by mixing, and the synergistic action of these grinding pieces and scraping pieces causes the particles in the fine powder raw material to fuse with each other to obtain a composite fine powder. The functions and effects are as follows.
(作用)
つまり、高速駆動回転するケーシングの内周面に遠心力
によって粉粒状原料を押し付け、原料の動きが遠心力で
制限されている原料層に対して、摩砕片を相対回転させ
て摩砕作用を付与させることにより、摩砕片による原料
の擦りつぶしを強力かっ確実に、効率よく実現できる。(Operation) In other words, the granular raw material is pressed by centrifugal force against the inner peripheral surface of the casing that rotates at high speed, and the grinding pieces are rotated relative to the raw material layer where the movement of the raw material is restricted by centrifugal force. By applying this action, it is possible to grind the raw material with the grinding pieces powerfully, reliably, and efficiently.
また、原料層をそれに対して相対回転する掻取り片で撹
拌混合させて、微粉状原料の混合および分散を確実に、
かつ十分効率よく実現できる。そして、全体として原料
の微粉砕化と均一撹拌混合とを短時間に確実に、かつ十
分均等に実行できるようになった。In addition, the raw material layer is stirred and mixed with a scraping piece that rotates relative to it, ensuring the mixing and dispersion of fine powder raw materials.
And it can be realized with sufficient efficiency. As a whole, it has become possible to pulverize the raw materials and uniformly stir and mix them in a short time, reliably, and sufficiently uniformly.
しかも、このようにして製造された微粉末は、摩砕片に
よる圧縮と剪断、及び掻取り片による撹拌混合とにより
、各粉末粒子の表面に粒子同士、あるいはより微小な粒
子の融着を引き起こさせ、微小粒子がほぼ均等に結合し
て複合化された粉末が得られる。この複合粉末は粒径の
揃った均一なもので、成形型への充填を均一良好に行う
ことができ、それによって成分が均一に分散した緻密な
構造の成形体が造れる。Moreover, the fine powder produced in this way causes fusion of particles or smaller particles on the surface of each powder particle by compression and shearing by the grinding pieces and stirring and mixing by the scraping pieces. , a composite powder is obtained in which fine particles are almost uniformly combined. This composite powder has a uniform particle size and can be filled into a mold evenly and well, thereby making it possible to produce a molded body with a dense structure in which the components are uniformly dispersed.
また、各粒子は摩砕混合時にその角が削り取られ、ある
いは微小粒子の結合によって角のないものになるため、
圧縮成形時や焼成時の収縮に伴い発生する内部応力が一
部に集中することが少なく、強度的にも優れたセラミッ
クス成形体を製造できる。In addition, the corners of each particle are shaved off during grinding and mixing, or the particles become roundless due to the bonding of microparticles.
Internal stress generated due to shrinkage during compression molding or firing is less likely to be concentrated in one part, and a ceramic molded body with excellent strength can be manufactured.
(発明の効果)
その結果、セラミックスとして高品質で強度的にも非常
に安定性に優れた成形体が造れるようになった。ま−た
、異なった成分のセラミックス材との調合も同一装置内
で行うことができ、新規の組成を有するセラミックス原
料、及びセラミックス成形体を造ることができる。しか
も、同装置内においては混合造粒の操作が行われるため
、別途に造粒プロセスを必要としないで、安価に成形体
用のセラミックス原料を製造できる。更に、ケーシング
内面や摩砕片、掻取り片などの粉接部をセラミックスで
構成させることにより、不純物の混入を無くし、造粒の
ためのバインダーも不要で、品質面と安全性の両面で良
好な特性を有するセラミックス原料を提供できるように
なった。(Effects of the Invention) As a result, it has become possible to produce molded bodies of high quality as ceramics and extremely stable in terms of strength. Furthermore, it is possible to mix ceramic materials with different components in the same apparatus, and it is possible to produce ceramic raw materials and ceramic molded bodies having new compositions. Moreover, since the mixing and granulation operation is performed in the same apparatus, a ceramic raw material for molded bodies can be produced at low cost without requiring a separate granulation process. Furthermore, by composing the powder contact parts such as the inner surface of the casing, the crushed pieces, and the scraped pieces with ceramics, the contamination of impurities is eliminated, and there is no need for a binder for granulation, which is good in terms of both quality and safety. It is now possible to provide ceramic raw materials with specific characteristics.
(実施例) 次に実施例を示す。(Example) Next, examples will be shown.
第1図に示すように、仮焼処理したセラミックスの原料
を秤量し、秤量した原料を乾式の摩砕混合装置で粉砕混
合処理して微粉状のセラミックス原料を造る。そして、
この微粉状原料を成形用の型に充填し、圧縮した後、焼
成してセラミックス成形体を製造する。As shown in FIG. 1, the calcined ceramic raw material is weighed, and the weighed raw material is pulverized and mixed in a dry grinding mixer to produce a finely powdered ceramic raw material. and,
This fine powder raw material is filled into a mold, compressed, and fired to produce a ceramic molded body.
前述の摩砕混合装置について、第2図および第3図によ
り次に詳述する。The above-described grinding and mixing apparatus will now be described in detail with reference to FIGS. 2 and 3.
機台(1)に取付られた縦向き回転軸(2)の上端に処
理室(3)を形成する有底筒状ケーシング(4)を同芯
状に取り付け、電動モータ(5a)および変速機(5b
)等からなる駆動装置(5)を回転軸(2)の下端に連
動させ、ケーシング(4)をその内部の粉粒状原料が遠
心力によりケーシング(4)の内周面(4a)に押付け
られるように高速駆動回転すべく構成し、かつ、原料の
性状に応じて適切な遠心力が得られるようにケーシング
(4)の回転速度を調整可能に構成しである。A bottomed cylindrical casing (4) forming a processing chamber (3) is attached concentrically to the upper end of a vertical rotating shaft (2) attached to a machine base (1), and an electric motor (5a) and a transmission (5b
) etc. is interlocked with the lower end of the rotating shaft (2), and the granular raw material inside the casing (4) is pressed against the inner circumferential surface (4a) of the casing (4) by centrifugal force. The casing (4) is configured to rotate at high speed, and the rotational speed of the casing (4) can be adjusted to obtain an appropriate centrifugal force depending on the properties of the raw material.
ケーシング(4)はカバー(7)で包囲され、ケーシン
グ(4)の下部にファン(12)を連設し、カバー(7
)に形成した吸気口から外気を吸引し、吸引外気により
ケーシング(4)を冷却するように構成しである。また
、吸引外気をカバー(7)に接続した搬送用流路(lO
)に微粉状原料の搬送用空気として用いるよう構成しで
ある。また、微粉状原料を処理室(3)からカバー(7
)側に移すため、ケーシング(4)の上端中心部を開口
させて原料のオーバーフロー式排出口(11)を形成し
である。The casing (4) is surrounded by a cover (7), a fan (12) is connected to the bottom of the casing (4), and the cover (7) is surrounded by a fan (12).
) is configured to suck outside air through an intake port formed in the casing (4) and cool the casing (4) with the sucked outside air. In addition, a conveyance channel (lO
) is configured to be used as air for conveying fine powder raw materials. In addition, the fine powder raw material is transferred from the processing chamber (3) to the cover (7).
), the upper center of the casing (4) is opened to form an overflow outlet (11) for the raw material.
回転軸(2)と同君の回転軸(8a)の上端部に固定し
た状態で、中心上部に円錐状部分(8c)を形成した支
持体(8b)をケーシング(4)に設けである。A support (8b) having a conical portion (8c) formed at the upper center thereof is provided on the casing (4), and is fixed to the upper end of the rotation shaft (8a), which is the same as the rotation shaft (2).
ケーシング(4)の内周面(4a)との協働で原料を圧
縮し剪断する摩砕片(9a)、および原料を撹拌混合し
分散する掻取り片(9b)をケーシング(4)の回転方
向に適当な間隔で並べた状態で支持体(8a)の先端に
取付は処理室(3)内に配置しである。摩砕片(9a)
にケーシング(4)との隙間がケーシング(4)の回転
方向側はど狭くなるように形成した傾斜面を持たせ、他
方、掻取り片(9b)をケーシング(4)との隙間がケ
ーシング(4)の回転方向側はど広くなり、かつ、その
作用面が次第に幅広となるようなくさび状、又は櫛歯状
に形成しである。なお、本装置の摩砕片(9a)および
擾取り片(9b)は、少なくとも表面部をセラミックス
で構成させて異物混入の問題を無くしているが、ケーシ
ング(4)についても同様にその全部を、又は一部とし
て内周面(4a)をセラミックスで構成させるほか、セ
ラミックス以外の材料、例えば鉄やステンレス等の金属
で構成してもよい。つまり、内周面(4a)については
、該内周面(4a)に沿って原料層が形成されるため、
原料が内周面(4a)に対して直接衝突したり、原料と
摩砕片(9a)の間に生じるような摩擦は内周面(4a
)には起こらないため、該内周面(4a)が削り取られ
たり摩耗することはほとんどない。従って、異物混入が
厳しく制限される場合を除いては内周面(4a)を含む
ケーシング(4)全体をセラミックス以外の材料で構成
させてもよいわけである。A grinding piece (9a) that compresses and shears the raw material in cooperation with the inner circumferential surface (4a) of the casing (4), and a scraping piece (9b) that stirs, mixes, and disperses the raw material are rotated in the rotation direction of the casing (4). They are arranged in the processing chamber (3) and attached to the tip of the support (8a) in a state where they are lined up at appropriate intervals. Crushed piece (9a)
has an inclined surface formed so that the gap with the casing (4) becomes narrower on the rotational direction side of the casing (4), and on the other hand, the scraping piece (9b) has an inclined surface formed so that the gap with the casing (4) becomes narrower on the side in the direction of rotation of the casing (4). 4) The rotation direction side is wide, and the working surface is formed into a wedge shape or a comb tooth shape so that the width gradually becomes wider. Note that the grinding piece (9a) and the scraping piece (9b) of this device have at least the surface portion made of ceramics to eliminate the problem of foreign matter contamination, but the casing (4) is also completely covered in the same way. Alternatively, the inner circumferential surface (4a) may be partially made of ceramics, or may be made of a material other than ceramics, for example, a metal such as iron or stainless steel. In other words, regarding the inner circumferential surface (4a), since the raw material layer is formed along the inner circumferential surface (4a),
Friction that occurs when the raw material directly collides with the inner circumferential surface (4a) or between the raw material and the crushed pieces (9a) is caused by the inner circumferential surface (4a).
), the inner circumferential surface (4a) is rarely scraped or worn. Therefore, the entire casing (4) including the inner circumferential surface (4a) may be made of a material other than ceramics, unless there is a severe restriction on the ingress of foreign matter.
回転軸(8a)を駆動装置(5)に連動させ、ケーシン
グ(4)に対して一定の速度差で摩砕片(9a)及び掻
取り片(9b)を相対回転させ、摩砕片(9a)による
微粉砕と掻取り片(9b)による撹拌混合が行われるよ
うに構成しである。The rotating shaft (8a) is interlocked with the drive device (5), and the grinding piece (9a) and the scraping piece (9b) are rotated relative to the casing (4) at a constant speed difference, and the grinding piece (9a) The structure is such that fine pulverization and stirring and mixing by the scraping piece (9b) are performed.
回転軸(8a)、支持体(8b)、摩砕片(9a)、掻
取り片(9b)内に加熱あるいは冷却用媒体を流入させ
る通路(27)を形成し、ロータリージヨイント(24
)により通路(27)を媒体貯蔵用タンク(26)に接
続しである。A passage (27) is formed through which a heating or cooling medium flows into the rotating shaft (8a), the support (8b), the grinding piece (9a), and the scraping piece (9b), and the rotary joint (24
) connects the channel (27) to the medium storage tank (26).
カバー(7)の中心部に支持体(8b)の円錐状部分(
8c)に向けてフィーダ(19)からの原料を流下供給
させるための経路(6)をパイプ(14)の付設によっ
て形成し、必要により加熱あるいは冷却させた適量の空
気や不活性ガス等の搬送用気体を供給する送風機(18
)を経路(6)に接続し、また、カバー(7)の周囲に
ジャケラ) (25)を具備させ、タンク(26)から
の加熱または冷却用の媒体を通すように構成しである。At the center of the cover (7) there is a conical part (
A path (6) for supplying the raw material from the feeder (19) downward toward the feeder (19) is formed by attaching a pipe (14) to convey an appropriate amount of heated or cooled air, inert gas, etc. as necessary. Air blower (18
) is connected to the path (6), and a jacket (25) is provided around the cover (7) to allow heating or cooling medium from the tank (26) to pass therethrough.
捕集器(15)、排風i (16)をその順に流路(1
0)に接続し、捕集器(15)の排出口に微粉状原料を
回収するロータリーフィーダ(17)を設けである。The collector (15) and the exhaust air i (16) are connected to the flow path (1) in that order.
0), and a rotary feeder (17) is provided at the outlet of the collector (15) to collect the fine powder raw material.
要するに、ケーシング(4)を高速駆動回転させてフィ
ーダ(19)からの粉粒状原料をケーシング(4)の内
周面(4a)に遠心力で押付け、その押付けで形成した
原料層に、ケーシング(4)に対して相対回転する摩砕
片(9a)と掻取り片(9b)を作用させ、摩砕片(9
a)で原料を微粉砕させると共に、掻取り片(9b)で
原料を十分に微細かつ均一混合させ、微細になった微粒
子をこれよりも大きい微粒子の表面に融着させて結合さ
せ、新たな複合粒子を造る。In short, the casing (4) is rotated at high speed to press the powdery raw material from the feeder (19) against the inner circumferential surface (4a) of the casing (4) by centrifugal force, and the raw material layer formed by the pressing is coated with the casing ( 4), the grinding piece (9a) and the scraping piece (9b) that rotate relative to each other act on the grinding piece (9a).
In addition to finely pulverizing the raw material in step a), the scraping piece (9b) mixes the raw material sufficiently finely and uniformly, and the fine particles are fused and bonded to the surface of larger particles to form a new material. Create composite particles.
できた微粉状粒子は排出口(11)より気流搬送して捕
集器(15)で回収させる。The resulting fine powder particles are conveyed by airflow from the discharge port (11) and collected by the collector (15).
[実験例] 次に実験例を示す。[Experiment example] Next, an experimental example will be shown.
原料として、粒径1mm以下に粗粉砕したシリカアルミ
ナを前述の摩砕混合装置に入れ、機内温度を100〜1
50℃で約1時間運転し、平均粒径約5μmの粉末を得
た。この粉末を調べたところ、各粒子は角が取れて略球
形状をし、粒径も均一に揃っており、重力流動性も非常
に良好であった。As a raw material, silica alumina coarsely pulverized to a particle size of 1 mm or less is placed in the above-mentioned grinding mixer, and the temperature inside the machine is set to 100-1 mm.
It was operated at 50° C. for about 1 hour to obtain powder with an average particle size of about 5 μm. When this powder was examined, it was found that each particle had a roughly spherical shape with rounded corners, the particle size was uniform, and the gravity fluidity was also very good.
また、この粉末を使用して成形体を造ったところ、成型
時の充填をきわめて良好に行え、均一な組成を有し、か
つ強度的にも十分に優れた品質のよい成形体が得られた
。In addition, when a molded body was made using this powder, it was found that the filling during molding was very good, the composition was uniform, and the molded body was of good quality with sufficient strength. .
(別の実施例) 次に、別の実施例を説明する。(Another example) Next, another example will be described.
原料は種類、混合割合、粒度、その他において適当に選
択できる。例えば、超電導体用のセラミックスの製造も
可能であり、十分微細、かつ均一分散により緻密な組成
構造のものが得られ、高い強度性を有するほか、成形密
度が高くなることにより電流密度が大きくマイスナー効
果も強いなど優れた超電導特性を備えた高品質の超電導
体が得られる。Raw materials can be appropriately selected in terms of type, mixing ratio, particle size, etc. For example, it is possible to manufacture ceramics for superconductors, which are sufficiently fine and have a dense composition structure due to uniform dispersion, have high strength, and have a high current density due to high molding density. A high-quality superconductor with excellent superconducting properties such as strong effects can be obtained.
その場合、仮焼処理と粉砕処理を繰り返し行うことによ
り、超電導体の成分物質の純度が上がり、かつ結晶化が
進むため、−段と高品質なものが製造できることは知ら
れているが、本実施例の摩砕混合装置の使用することに
より、従来と同等の効果を繰り返しの回数を大幅に減ら
して実行できる。In that case, it is known that repeating the calcination and pulverization processes increases the purity of the superconductor's constituent substances and promotes crystallization, making it possible to produce products of significantly higher quality. By using the grinding and mixing device of the embodiment, the same effect as the conventional method can be achieved with a significantly reduced number of repetitions.
また、超電導体以外のセラミックスの場合では、従来の
数回の仮焼処理と粉砕処理の繰り返しを一回で可能にし
たり、更に場合によっては仮焼処理を省いて粉砕処理の
みで行うこともでき、大幅な時間短縮と製造コスト軽減
の効果が得られる。In addition, in the case of ceramics other than superconductors, it is possible to repeat the conventional calcination treatment and pulverization process several times in one time, and in some cases, it is also possible to omit the calcination process and perform only the pulverization process. This results in significant time savings and manufacturing cost reductions.
乾式の摩砕混合装置の具体構成は適当に変更でき、例え
ばケーシング(4)の回転軸芯を傾斜させたり、横向き
にしたり、摩砕片(9a)や掻取り片(9b)をケーシ
ング(4)側へ接触しない範囲で流体圧やスプリングで
付勢したり、摩砕片(9a)と掻取り片(9b)の回転
を停止させたり、あるいは摩砕片(9a)及び掻取り片
(9b)を固定させた構成にしてもよい。また、摩砕片
(9a)および掻取り片(9b)の形状、材質、設置数
などを適当に変更したり、パッチ処理するように捕集器
(15)からケーシング(4)に微粉を還元供給するよ
うに構成する等が可能である。The specific configuration of the dry grinding and mixing device can be changed as appropriate, for example, the rotation axis of the casing (4) may be tilted or turned sideways, or the grinding pieces (9a) and scraping pieces (9b) may be placed in the casing (4). Apply pressure with fluid pressure or a spring within a range that does not contact the sides, stop the rotation of the grinding piece (9a) and scraping piece (9b), or fix the grinding piece (9a) and scraping piece (9b). It is also possible to have a configuration in which the In addition, the shape, material, number of installed pieces, etc. of the grinding pieces (9a) and scraping pieces (9b) can be changed appropriately, and fine powder can be reduced and supplied from the collector (15) to the casing (4) for patch processing. It is possible to configure it so that
熱処理において温度条件をいかに設定するかは、原料に
見合って適当に選択でき、また、製造されたセラミック
ス原料を成形や焼成用の装置に供給する方式、設備、形
状等は適宜選択自在である。How to set the temperature conditions in the heat treatment can be appropriately selected depending on the raw material, and the method, equipment, shape, etc. for supplying the manufactured ceramic raw material to the molding and firing equipment can be selected as appropriate.
また、セラミックス原料及びそれによって製造される成
形体の用途は不問である。Further, the use of the ceramic raw material and the molded body manufactured using the ceramic raw material is not limited.
なお、特許請求の範囲の項に図面との対照を便利にする
ために符号を記すが、該記入により本発明は添付図面の
構造に限定されるもの7はない。Note that although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure 7 shown in the attached drawings by the reference numerals.
第1図ないし第3図は本発明の実施例を示し、第1図は
フローシート、第2図は摩砕混合装置の概念図、第3図
は第2図のA−A線断面図、第4図は従来例である。
図において、(2)・・・・・・回転軸、(3)・・・
・・・処理室、(4)・・・・・・ケーシング、(4a
)・・・・・・内周面、(9a)・・・・・・摩砕片、
(9b)・・・・・・掻取り片である。
以上
出願人 ホソカワミクロン株式会社
第4図1 to 3 show embodiments of the present invention, FIG. 1 is a flow sheet, FIG. 2 is a conceptual diagram of a grinding and mixing device, and FIG. 3 is a sectional view taken along line A-A in FIG. 2. FIG. 4 shows a conventional example. In the figure, (2)...rotation axis, (3)...
...Processing chamber, (4) ...Casing, (4a
)...Inner peripheral surface, (9a)...Friction piece,
(9b) It is a scraping piece. Applicant: Hosokawa Micron Co., Ltd. Figure 4
Claims (3)
得たセラミックス原料の製法であって、前記粉砕処理に
おいて、ケーシング(4)を高速駆動回転させて原料を
そのケーシング(4)の内周面(4a)に遠心力で押し
付け、その押し付けで形成した原料層に前記ケーシング
(4)に対して相対回転する摩砕片(9a)と掻取り片
(9b)を作用させ、前記摩砕片(9a)による圧縮力
と剪断力で原料を微粉砕すると共に、前記掻取り片(9
b)の作用で微粉状原料を撹拌混合するセラミックス原
料の製法。(1) A method for producing a ceramic raw material obtained by calcining and pulverizing a ceramic raw material, wherein in the pulverizing process, a casing (4) is rotated at high speed to transport the raw material into the casing (4). The grinding pieces (9a) and scraping pieces (9b), which rotate relative to the casing (4), are pressed against the peripheral surface (4a) by centrifugal force, and the grinding pieces (9a) and scraping pieces (9b), which rotate relative to the casing (4), are applied to the raw material layer formed by the pressing. The raw material is finely pulverized by the compression force and shearing force of 9a), and the scraping piece (9a) is
A method for producing ceramic raw materials in which fine powder raw materials are stirred and mixed by the action of b).
得たセラミックス原料であって、前記粉砕処理において
、ケーシング(4)を高速駆動回転させて原料をそのケ
ーシング(4)の内周面(4a)に遠心力で押し付け、
その押し付けで形成した原料層に前記ケーシング(4)
に対して相対回転する摩砕片(9a)と掻取り片(9b
)を作用させ、前記摩砕片(9a)による圧縮力と剪断
力で原料を微粉砕すると共に、前記掻取り片(9b)の
作用で微粉状原料を撹拌混合して製造したセラミックス
原料。(2) A ceramic raw material obtained by calcining and pulverizing a ceramic raw material, wherein in the pulverizing process, the casing (4) is rotated at high speed and the raw material is transferred to the inner peripheral surface of the casing (4). (4a) by centrifugal force,
The casing (4) is attached to the raw material layer formed by the pressing.
The grinding piece (9a) and the scraping piece (9b) rotate relative to each other.
), the raw material is finely pulverized by the compressive force and shearing force of the grinding piece (9a), and the finely powdered raw material is stirred and mixed by the action of the scraping piece (9b).
得た微粉状原料を成型して焼成したセラミックス成形体
であって、前記粉砕処理において、ケーシング(4)を
高速駆動回転させて原料をそのケーシング(4)の内周
面(4a)に遠心力で押し付け、その押し付けで形成し
た原料層に前記ケーシング(4)に対して相対回転する
摩砕片(9a)と掻取り片(9b)を作用させ、前記摩
砕片(9a)による圧縮力と剪断力で原料を微粉砕する
と共に、前記掻取り片(9b)の作用で微粉状原料を撹
拌混合して製造したセラミックス成形体。(3) A ceramic molded body obtained by calcining a ceramic raw material and molding and firing a fine powder raw material obtained by pulverizing the raw material, in which the casing (4) is rotated at high speed during the pulverizing treatment. is pressed against the inner circumferential surface (4a) of the casing (4) by centrifugal force, and the raw material layer formed by the pressing is coated with grinding pieces (9a) and scraping pieces (9b) that rotate relative to the casing (4). A ceramic molded body produced by pulverizing the raw material with the compressive force and shearing force of the grinding piece (9a), and stirring and mixing the fine powder raw material with the action of the scraping piece (9b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1037222A JPH02217347A (en) | 1989-02-15 | 1989-02-15 | Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1037222A JPH02217347A (en) | 1989-02-15 | 1989-02-15 | Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02217347A true JPH02217347A (en) | 1990-08-30 |
Family
ID=12491566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1037222A Pending JPH02217347A (en) | 1989-02-15 | 1989-02-15 | Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02217347A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005028356A (en) * | 2003-06-17 | 2005-02-03 | Hosokawa Funtai Gijutsu Kenkyusho:Kk | Method for producing composite particle and composite particle produced by the same |
CN1307003C (en) * | 2002-05-23 | 2007-03-28 | 邝超华 | Conical material bed vertical grinder |
CN114522786A (en) * | 2022-04-22 | 2022-05-24 | 陶瓷工业设计研究院(福建)有限公司 | Crushing equipment for manufacturing ceramic clay |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342728A (en) * | 1986-08-07 | 1988-02-23 | Hosokawa Micron Kk | Method and apparatus for treating particulate matter |
-
1989
- 1989-02-15 JP JP1037222A patent/JPH02217347A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342728A (en) * | 1986-08-07 | 1988-02-23 | Hosokawa Micron Kk | Method and apparatus for treating particulate matter |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307003C (en) * | 2002-05-23 | 2007-03-28 | 邝超华 | Conical material bed vertical grinder |
JP2005028356A (en) * | 2003-06-17 | 2005-02-03 | Hosokawa Funtai Gijutsu Kenkyusho:Kk | Method for producing composite particle and composite particle produced by the same |
CN114522786A (en) * | 2022-04-22 | 2022-05-24 | 陶瓷工业设计研究院(福建)有限公司 | Crushing equipment for manufacturing ceramic clay |
CN114522786B (en) * | 2022-04-22 | 2022-07-26 | 陶瓷工业设计研究院(福建)有限公司 | Crushing equipment for manufacturing ceramic clay |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900005175B1 (en) | Particulate material treating apparatus | |
EP1990094A1 (en) | Particulate crushing sizing apparatus | |
JPH02217347A (en) | Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof | |
EP0636596B1 (en) | Process and device for producing ceramic sintered body | |
JPH06226130A (en) | Crushing mixing device | |
JPH0816795B2 (en) | Toner manufacturing method and apparatus | |
JP2000042438A (en) | Pulverizer | |
JPS6342728A (en) | Method and apparatus for treating particulate matter | |
JP2672671B2 (en) | Manufacturing method of composite particles | |
CA2378479A1 (en) | Fine glass particle containing embedded oxide and process for producing the same | |
JPH01201010A (en) | Production of raw materials for superconductor and superconductor, and raw materials and superconductor obtained therefrom | |
JPH0268151A (en) | Medium stirring type pulverizer | |
JPH0759299B2 (en) | Raw material manufacturing method for functionally graded materials | |
JPH07185375A (en) | Method for pulverizing low melting resin | |
JPH01298606A (en) | Raw material and manufacturing method of superconductive wire rod, and superconductive wire rod raw material and superconductive wire rod obtained by the manufacturing method | |
JPS5969500A (en) | Whisker composition and its manufacture | |
JPH01208462A (en) | Production of target material and target for forming thin film of superconducting material by vapor-phase method and target material and target obtained therefrom | |
JPH0222163A (en) | Production of diamagnetic material and diamagnetic material | |
KR200238075Y1 (en) | Functional pelletizer for increased pellet quality and recovery | |
RU2625845C1 (en) | Method for silicon carbide ceramic material production | |
CN220780059U (en) | Dry powder cement grinding aid blending device | |
CN219550981U (en) | Crushing and drying equipment | |
JPH0218306A (en) | Starting material for superconductor | |
JP3129585B2 (en) | Manufacturing method of beta-alumina ceramics | |
CN110142401A (en) | Precoated metal/ceramics/molding sand powder preparation method |