JPH0268151A - Medium stirring type pulverizer - Google Patents

Medium stirring type pulverizer

Info

Publication number
JPH0268151A
JPH0268151A JP21904488A JP21904488A JPH0268151A JP H0268151 A JPH0268151 A JP H0268151A JP 21904488 A JP21904488 A JP 21904488A JP 21904488 A JP21904488 A JP 21904488A JP H0268151 A JPH0268151 A JP H0268151A
Authority
JP
Japan
Prior art keywords
powder
pulverizing
ceramic powder
container
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21904488A
Other languages
Japanese (ja)
Inventor
Masamitsu Nishida
西田 正光
Hamae Ando
安藤 浜江
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21904488A priority Critical patent/JPH0268151A/en
Priority to US07/381,369 priority patent/US5065946A/en
Publication of JPH0268151A publication Critical patent/JPH0268151A/en
Priority to US07/944,731 priority patent/US5213702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To pulverize a ceramic powder into fine particles within an extremely short time by constituting the inner surface of a pulverizing container of composite material consisting of a powder of either one of ceramics and metal, and an org. polymer material. CONSTITUTION:In a medium stirring type crusher equipped with a pulverizing container, round balls and a stirrer, at least the inner surface of the pulverizing container is constituted of a composite material consisting of a powder of either one of ceramics (e.g., SiC) and a metal (e.g., Al), and an org. polymer material (e.g., polyurethane). That is, the intermixing of a metal component by abrasion is reduced and heat transfer can be well done because of high heat conductivity. As a result, a pulverizing speed can be markedly increased and a ceramic powder can be pulverized within an extremely short time and the abrasion of round balls can be also reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、粉砕、混合、分散、均質化及び同様な作用を
行う媒体攪拌型粉砕機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a media agitation type pulverizer for grinding, mixing, dispersing, homogenizing and similar operations.

従来の技術 尚、本発明で粉砕とは、粉砕と混合を同時に行なう粉砕
混合等も含む。
2. Prior Art In the present invention, pulverization includes pulverization and mixing in which pulverization and mixing are performed simultaneously.

近年、セラミック粉体の微粉砕機として玉石と粉体を攪
拌装置で高速に攪拌する粉砕機である媒体攪拌型粉砕機
が注目されている。従来、媒体攪拌型粉砕機は、少なく
とも粉砕容器、玉石と攪拌装置からなる構造であり、粉
砕容器の内面(玉石やセラミック粉体の接する部分)は
ステンレススチール等の金属製゛、セラミックス製及び
樹脂製のいずれかで構成されている。
In recent years, media agitation type pulverizers, which are pulverizers that agitate cobblestones and powder at high speed using a stirring device, have been attracting attention as fine pulverizers for ceramic powder. Conventionally, a media agitation type crusher has a structure consisting of at least a crushing container, cobblestones, and a stirring device, and the inner surface of the crushing container (the part that comes in contact with the cobblestones and ceramic powder) is made of metal such as stainless steel, ceramics, or resin. It consists of one of the following:

発明が解決しようとする課題 従来の媒体攪拌型粉砕機及びこれを用いたセラミック粉
体の粉砕方法ではセラミック粉体を微粒子の粉体、特に
サブミクロンの粒子径に混合或は粉砕するには長時間を
かかる。この時閉を短縮するには攪拌装置の回転数や周
速を高めたりして粉砕速度をあげることができる。しか
し、上記の従来の粉砕容器では種々の欠点がありあまり
粉砕速度を高めることはできなかった。即ち、粉砕容器
がステンレススチール、クロムメツキ等の金属製の場合
では、粉砕容器が著しく磨耗し、その成分がセラミック
粉体に混入し特性の低下やバラツキが生じる欠点があっ
た。また、粉砕容器がアルミナやジルコニア等のセラミ
ックス製では、摩耗は金属製に比べて比較的少ないがそ
れでもかなり摩耗しセラミック粉体に混入し特性の低下
やバラツキが生じる。又、比較的高価である欠点もあっ
た。
Problems to be Solved by the Invention Conventional media agitation type pulverizers and methods of pulverizing ceramic powder using the same take a long time to mix or pulverize ceramic powder into fine particles, especially submicron particle sizes. It takes time. In order to shorten the closing time at this time, the pulverization speed can be increased by increasing the rotational speed and circumferential speed of the stirring device. However, the above-mentioned conventional grinding vessels have various drawbacks, and it has not been possible to increase the grinding speed very much. That is, when the grinding container is made of metal such as stainless steel or chrome plating, there is a drawback that the grinding container is significantly worn, and its components are mixed into the ceramic powder, resulting in deterioration and variation in properties. Furthermore, if the crushing container is made of ceramic such as alumina or zirconia, the wear is relatively less than that of metal, but the grinding container is still considerably worn and mixed with the ceramic powder, resulting in deterioration and variation in properties. Another drawback was that it was relatively expensive.

ポリエチレンやポリウレタン等の樹脂製の場合では、熱
伝導率が小さいため粉砕速度を高めると発熱が著しくな
るため粉砕速度を十分大きくすることができなかった。
In the case of resins such as polyethylene and polyurethane, the heat conductivity is low, so increasing the crushing speed causes significant heat generation, so it has been impossible to increase the crushing speed sufficiently.

本発明は、このような従来技術の課題を解決した媒体攪
拌型粉砕機を提供することを目的とする。
An object of the present invention is to provide a media agitation type pulverizer that solves the problems of the prior art.

課題を解決するための手段 本発明は、少なくとも粉砕容器、玉石と攪拌装置からな
る媒体攪拌型粉砕機に於いて、少なくとも粉砕容器の内
面がセラミックスと金属のいずれか一種以上の粉体と有
機高分子材料との複合体からなることを特徴とする媒体
攪拌型粉砕機を提供するものである。
Means for Solving the Problems The present invention provides a medium agitation type pulverizer comprising at least a pulverizing container, cobblestones, and an agitating device, in which at least the inner surface of the pulverizing container contains powder of one or more of ceramics and metals and an organic polymer. The present invention provides a media agitation type pulverizer characterized by being made of a composite with a molecular material.

詳細には上記に於て、玉石がジルコニア、ジルコンとチ
タニアのいずれかを主成分とするセラミックスからなる
ことを特徴とする媒体攪拌型粉砕機である。
Specifically, in the above, the present invention is a media agitation type pulverizer characterized in that the boulders are made of ceramics whose main component is zirconia, zircon, or titania.

更に詳細には上記に於て、玉石の直径が1mm以下であ
ることを特徴とする媒体攪拌型粉砕機である。
More specifically, the present invention is a medium agitation type pulverizer characterized in that the diameter of the boulders is 1 mm or less.

又、少なくとも1種のセラミック粉体を媒体攪拌型粉砕
機で粉砕する方法に於て、少なくとも粉砕容器の内面が
セラミックスと金属のいずれか一種以上の粉体と有機高
分子材料との複合体からなる粉砕容器内で粉砕すること
を特徴とするセラミック粉体の粉砕方法である。
Further, in the method of pulverizing at least one type of ceramic powder using a media agitation type pulverizer, at least the inner surface of the pulverizing container is made of a composite of powder of one or more of ceramics and metals and an organic polymer material. This is a method for pulverizing ceramic powder, which is characterized by pulverizing ceramic powder in a pulverizing container.

また、詳細には少なくとも1種のセラミック粉体を媒体
攪拌型粉砕機で湿式粉砕する方法に於て、液体の体積を
セラミック粉体の真の体積の4倍以下とし、かつ分散剤
を添加し、更に直径が1mm以下の玉石を用いて、少な
くとも粉砕容器の内面がセラミックスと金属のいずれか
一種以上の粉体と有機高分子材料との複合体からなる粉
砕容器内で粉砕することを特徴とするセラミック粉体の
粉砕方法である。
In addition, in detail, in a method of wet-pulverizing at least one type of ceramic powder using a media agitation type pulverizer, the volume of the liquid is set to four times or less the true volume of the ceramic powder, and a dispersant is added. , further characterized in that the grinding is carried out using cobblestones with a diameter of 1 mm or less in a grinding container in which at least the inner surface of the grinding container is made of a composite of powder of one or more of ceramics and metals and an organic polymer material. This is a method of pulverizing ceramic powder.

より詳細には上記に於て液体の体積をセラミック粉体の
真の体積の0.75倍以上で2倍以下の範囲内の量とし
、かつ直径が0.6mm以下の玉石を用いて、粉砕する
ことを特徴とするセラミック粉体の粉砕方法である。
More specifically, in the above, the volume of the liquid is within the range of 0.75 times or more and no more than 2 times the true volume of the ceramic powder, and using a cobblestone with a diameter of 0.6 mm or less, pulverization is performed. A method for pulverizing ceramic powder is characterized in that:

作用 上記の粉砕機及びこれを用いるセラミック粉体の粉砕方
法によれば、媒体攪拌型粉砕機で少なくとも粉砕容器の
内面をセラミックスと金属のいずれか一種以上の粉体と
有機高分子材料との複合体で構成することにより、セラ
ミックスや金属と有機高分子材料の両者の特長が合わせ
もつことができる。即ち、摩耗による金属成分の混入が
少なくかつ熱伝導率が大きく放熱をよくすることができ
る。このため、本発明の粉砕機では著しく粉砕速度を大
きくすることができ、極めて短時間にセラミック粉体を
微粒子に粉砕することができる。上記に加えて、玉石の
直径を1mm以下とすることにより粉砕速度が大きく短
時間に微粒子に粉砕できるとともに、玉石の磨耗も著し
く少ない。
Function: According to the above-mentioned pulverizer and the method of pulverizing ceramic powder using the same, at least the inner surface of the pulverizing container in the media agitation type pulverizer is made of a composite of powder of one or more of ceramics and metals and an organic polymer material. By composing it with a solid body, it is possible to combine the features of ceramics, metals, and organic polymer materials. That is, there is little metal component contamination due to wear, and the thermal conductivity is high, allowing for good heat dissipation. Therefore, the pulverizer of the present invention can significantly increase the pulverization speed, and can pulverize ceramic powder into fine particles in an extremely short time. In addition to the above, by setting the diameter of the boulders to 1 mm or less, the grinding speed is high and the grinding into fine particles can be achieved in a short time, and the abrasion of the boulders is significantly reduced.

実施例 以下に、本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 セラミック粉体にPb3O4,ZnO5SnO2、Nb
2O5、TiO2及びZr02(これらの粉体の平均の
粒子径は2.3μmである)を用いて、これらを、Pb
 (Zn+z3Nb2z3)s、59(Sn+ )aN
b2/3)e、esTis、n2Zre、 m1Iss
で表される組成の成分比に秤量した後、これらセラミッ
ク粉体の真の体積の1.7倍の体積の純水、及びセラミ
ック粉体の重量の1wt%(固形分換算)のポリカルボ
ン酸型の分散剤(第一工業製薬(株)製セラモ旧34)
と共にミキサーで予備混合した後スラリーで40〜80
ccを内容積40〜50ccの媒体攪拌型粉砕機 (フ
イカ゛ エンシ゛二?リンク−リミテッド (EIGE
RENGINERING  LIMITED) )社製
M50型モーターミルーーーー粉砕容器の材質は内面が
硬質クロムメツキ、ポリウレタン、ポリエチレン、エポ
キシ樹脂、金属A1の粉体とエポキシ樹脂の複合体く比
率1:l、A1の粒子径は0 、2〜0 、5 m m
 )及びSiCセラミックスの粉体とポリウレタン樹脂
の複合体(比率1:1、SiCの粒子径は0.2〜0.
5 mm)、攪拌装置の周速10攬/see、玉石の充
填′1i80%)に入れ20分間粉砕混合した。尚、使
用した媒体攪拌型粉砕機の構造の概要は特公昭63−5
139号公報に示されている。攪拌装置はジルコニアセ
ラミックス(イツトリアを添加した部分安定化ジルコニ
ア)製を用いた。玉石にはジルコニアセラミックス(イ
ツトリアを添加した部分安定化ジルコニア)、チタニア
セラミックス及びジルコン製を用いた。  得られた粉
体の粒子径を沈降式粒度分布測定装置((株)島津製作
所製セデイグラフ5000)を用いて測定した。尚、粒
子径は粉砕混合中に一定時間毎にスラリーを採取し測定
した。
Example 1 Pb3O4, ZnO5SnO2, Nb in ceramic powder
2O5, TiO2 and Zr02 (the average particle size of these powders is 2.3 μm), these were
(Zn+z3Nb2z3)s, 59(Sn+)aN
b2/3) e, esTis, n2Zre, m1Iss
After weighing to the component ratio of the composition represented by Type dispersant (Ceramo Old 34 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
After pre-mixing with a mixer, the slurry is 40-80%
cc to medium agitation type crusher with an internal volume of 40 to 50 cc (Engineering Link Limited (EIGE)
M50 type motor mill made by RENGINERING LIMITED) - The material of the grinding container is hard chrome plating on the inside, polyurethane, polyethylene, epoxy resin, a composite of metal A1 powder and epoxy resin, ratio 1:1, A1 particles. Diameter is 0, 2~0, 5mm
) and a composite of SiC ceramic powder and polyurethane resin (ratio 1:1, SiC particle size 0.2-0.
5 mm), the circumferential speed of the stirrer was 10 m/see, and the mixture was pulverized and mixed for 20 minutes using a cobblestone filling of 80%. The outline of the structure of the media agitation type pulverizer used is given in Japanese Patent Publication No. 63-5.
This is shown in Publication No. 139. The stirring device was made of zirconia ceramics (partially stabilized zirconia containing yttria). The stones used were zirconia ceramics (partially stabilized zirconia containing ittria), titania ceramics, and zircon. The particle diameter of the obtained powder was measured using a sedimentation type particle size distribution analyzer (Sedaygraph 5000, manufactured by Shimadzu Corporation). The particle size was measured by sampling slurry at regular intervals during pulverization and mixing.

このデーターから0.2μmの粉体にするのに必要な時
間を求めた。表中の時間はスラリーの粉砕容器内の平均
滞留時間で示した。玉石の磨耗量は使用の前後でのその
重量の変化から求め、表には粉体の粒子径が0.2μm
になる時間での値で示した。
From this data, the time required to form a powder of 0.2 μm was determined. The times in the table are the average residence time of the slurry in the crushing container. The amount of wear of the cobblestone is determined from the change in its weight before and after use, and the table shows that the particle size of the powder is 0.2 μm.
It is shown as the value at the time when .

表1には、玉石の磨耗量をセラミック粉体の重量に対す
る割合で示した。
Table 1 shows the amount of wear of the boulders as a percentage of the weight of the ceramic powder.

以下余白 表  1 本印は比較例 表1に於いて玉石の直径の欄で#印はチタニア玉石、 
&印はジルコン玉石、無印にジルコニア玉石である。
Margin table below 1 This mark is in the column of the diameter of the cobblestone in Comparative Example Table 1, and the # mark is the titania cobblestone.
The & symbol is a zircon boulder, and the unmarked one is a zirconia boulder.

実施例2 実施例1のNo、6のスラリーを乾燥後アルミナ磁器製
のるつぼに入れ850℃で2時間仮焼しほぼペロブスカ
イト型構造の単一相のセラミック粉体とした。これを攪
拌播潰機で粗粉砕した。この粉体を、粉体の真の体積の
1.7倍の体積の純水及びセラミック粉体の重量の1w
t%(固形分換算)のポリカルボン酸型の分散剤(第一
工業製薬(株)製セラモ0134)と共にボールミルで
予備粉砕した(平均粒子径は1.1μm)後、このスラ
リー40〜80ccを実施例1の媒体攪拌型粉砕機に入
れ20分間粉砕した。その後、実施例1と同様の方法で
粉砕時間と玉石の磨耗量を測定した。その結果を表2に
示した。
Example 2 After drying the slurries No. 6 of Example 1, they were placed in an alumina porcelain crucible and calcined at 850° C. for 2 hours to obtain a single-phase ceramic powder having an approximately perovskite structure. This was coarsely ground using an agitator and crusher. This powder was mixed with pure water in a volume 1.7 times the true volume of the powder and 1w of the weight of the ceramic powder.
After pre-pulverizing in a ball mill (average particle size: 1.1 μm) with t% (solid content equivalent) of a polycarboxylic acid type dispersant (Ceramo 0134 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 40 to 80 cc of this slurry was It was placed in the media agitation type pulverizer of Example 1 and pulverized for 20 minutes. Thereafter, the grinding time and the amount of wear of the cobblestones were measured in the same manner as in Example 1. The results are shown in Table 2.

(以下余白) (以下余白) 表2 *印は比較例 (以下余白) 表2に於いて、玉石の直径の欄で#印はチタニア玉石、
 &印はジルコン玉石、無印にジルコニア玉石である。
(The following is a margin) (The following is a margin) Table 2 The * mark is a comparative example (The following is a margin) In Table 2, in the column of the diameter of the cobblestone, the # mark is a titania boulder,
The & symbol is a zircon boulder, and the unmarked one is a zirconia boulder.

上記の実施例から明らかなように、本発明の粉砕機及び
粉砕方法、即ち媒体攪拌型粉砕機で粉砕容器の内面をA
I金金属SiCセラミックの粉体をポリウレタンやエポ
キシ樹脂の有機高分子材料中に分散させた複合体で構成
することにより玉石の摩耗量が著しく少なくなるととも
に粉砕容器の放熱が優れてるためスラリーが異常発熱す
ることなく長時間粉砕できた。同時に玉石の直径を1m
m以下とした粉砕機は粉砕速度が大きく短時間に微粒子
に粉砕できるとともに、玉石の磨耗も著しく少ない。尚
、粉砕容器が硬質クロムメツキの場合では粉砕中の放熱
は良く20分の連続使用ができるが玉石の摩耗が著しか
った。又、粉砕容器もかなり摩耗した。一方、粉砕容器
の内面をポリウレタン、ポリエチレン、及びエポキシ樹
脂の有機高分子材料のみで構成したものでは粉砕中の放
熱が著しく悪くスラリーが異常発熱し約5分間の運転で
スラリーの温度が80℃を越えたため連続使用は不可能
であった。水量をセラミック粉体の4倍以下とし、かつ
分散剤を用い、更に直径が1mm以下の玉石を用いて媒
体攪拌型粉砕機で粉砕或は粉砕混合したセラミック粉体
は著しく沈降容積が小さく、かつ平均粒子径が小さい。
As is clear from the above examples, the inner surface of the grinding container was A
Composed of a composite of gold metal SiC ceramic powder dispersed in an organic polymer material such as polyurethane or epoxy resin, the amount of wear on the cobblestones is significantly reduced, and the heat dissipation of the crushing container is excellent, making the slurry abnormal. It was possible to grind for a long time without generating heat. At the same time, the diameter of the boulder is 1m.
A pulverizer with a diameter of less than m has a high pulverizing speed and can be pulverized into fine particles in a short period of time, and the wear of the boulders is extremely low. In addition, when the grinding container was made of hard chrome plating, heat dissipation during grinding was good and continuous use for 20 minutes was possible, but the abrasion of the stones was significant. The grinding container was also considerably worn. On the other hand, when the inner surface of the grinding container is made of only organic polymer materials such as polyurethane, polyethylene, and epoxy resin, heat dissipation during grinding is extremely poor and the slurry generates abnormal heat, with the temperature of the slurry reaching 80°C in about 5 minutes of operation. Continuous use was impossible because it exceeded the limit. Ceramic powder, which is pulverized or mixed by a media agitation type pulverizer using a dispersant with a water volume of 4 times or less than that of ceramic powder, and using cobblestones with a diameter of 1 mm or less, has a significantly small sedimentation volume, and Average particle size is small.

尚、分散剤なしで単に直径の小さい玉石を用いたもので
も平均粒子径が小さくな、ったが、この場合には、粉体
の沈降容積が大きく粉体の分散性が悪かった。単に水量
を減らすだけではスラリーの流動性がなくなり全く粉砕
されない。  玉石の磨耗量は直径が1.2mmの玉石
では大きいが1mrn以下では激減する。玉石の直径は
1mm以下で小さいほど微粉砕に適している。玉石の直
径が0 、6 m m以下では微粉砕の効果はいフそう
大きくなり玉石の摩耗量も小さい。尚、玉石の大きさは
平均の直径であり前後に分布しているものであり平均の
値である。
Note that the average particle size was also reduced by simply using cobblestones with a small diameter without a dispersant, but in this case, the sedimentation volume of the powder was large and the dispersibility of the powder was poor. Simply reducing the amount of water will cause the slurry to lose its fluidity and will not be pulverized at all. The amount of wear on the cobblestones is large for cobblestones with a diameter of 1.2 mm, but decreases dramatically when the diameter is less than 1 mrn. The diameter of the boulder is 1 mm or less, and the smaller the diameter, the more suitable it is for fine pulverization. When the diameter of the cobblestones is 0.6 mm or less, the effect of fine pulverization becomes very large and the amount of wear of the cobblestones is small. Note that the size of the boulders is the average diameter, which is distributed from front to back, and is an average value.

又、粉砕を効果的にするためには、セラミック粉体を予
め玉石の大きさより十分に小さくしておくのがよい。水
量の必要最低量はスラリーに流動性がある量であればよ
い。尚、水量が0.75倍より少なくなるとスラリーの
流動性が低下するものが増加する。また、玉石ではジル
コニア、チタニア及びジルコン製の場合に磨耗微少なく
、アルミナの玉石は著しく磨耗し、チタニアやジルコン
の10倍以上であった。また、分散剤の量はセラミック
粉体の重量の 0.5〜2wt%(固形分換算)の場合
に効果的であった。尚、分散剤は粉体の粒子径等で適量
を選ぶ必要がある。
Further, in order to make the pulverization effective, it is preferable to make the ceramic powder in advance sufficiently smaller than the size of the cobblestone. The minimum required amount of water may be such that the slurry has fluidity. Note that when the amount of water is less than 0.75 times, the fluidity of the slurry tends to decrease. In addition, cobblestones made of zirconia, titania, and zircon had very little wear, while alumina cobbles wore significantly, more than 10 times as much as titania and zircon. Further, it was effective when the amount of the dispersant was 0.5 to 2 wt% (in terms of solid content) based on the weight of the ceramic powder. Incidentally, it is necessary to select an appropriate amount of the dispersant depending on the particle size of the powder, etc.

尚、本発明の範囲は上記の実施例に限定されるものでは
なく、複合体を構成する金属粉体、セラミックスの粉体
及び有機高分子材料は粉砕する原料に上り実施例以外の
ものでもよい。また、粉体の形状は粒状、平板、針状、
m雄状等でもよい。
Note that the scope of the present invention is not limited to the above-mentioned examples, and the metal powder, ceramic powder, and organic polymer material constituting the composite may be raw materials to be crushed and may be other than those in the examples. . In addition, the shape of the powder is granular, flat, acicular,
It may be m-male or the like.

さらに、液体は水量外のエタノール、トリクロルエタン
等の他の液体でもよい。分散剤も液体の種類やセラミッ
ク粉体に応じた各種の分散剤を用いることができる。上
記実施例では粉砕に流通管型の媒体攪拌型粉砕機を用い
たが、他の形式、基或、攪拌槽型、アニユラ−型等の媒
体攪拌型粉砕機でもよい。玉石の材質も実施例の範囲に
限定されるものではなく他の材質でもよく、炭化珪素、
窒化珪素、原料粉体自身を主成分とするもの等でもよい
Furthermore, the liquid may be other liquids than water, such as ethanol and trichloroethane. Various dispersants can be used depending on the type of liquid and ceramic powder. In the above embodiments, a flow tube type media agitating type pulverizer was used for the pulverization, but other types of media agitating type pulverizers such as a base type, a stirring tank type, an annular type, etc. may be used. The material of the boulders is not limited to the scope of the examples and may be other materials such as silicon carbide,
It may also be silicon nitride, a material whose main component is the raw material powder itself, or the like.

以上説明したように、本発明においては、玉石の直径を
1mm以下とすることにより粉砕速度が大きく極めて短
時間に微粒子に粉砕できるとともに、玉石の磨耗も著し
く少ない。
As explained above, in the present invention, by setting the diameter of the boulders to 1 mm or less, the grinding speed is high and the grinding into fine particles can be achieved in an extremely short period of time, and the wear of the boulders is extremely low.

又、玉石をジルコニア、ジルコンとチタニアのいずれか
を主成分とするセラミックスの場合には、玉石の磨耗が
少なくセラミック原料粉体への不純物の混入を少なくで
きる。
In addition, in the case of ceramics whose main component is zirconia, or one of zircon and titania, the cobblestones are less likely to wear, and contamination of the ceramic raw material powder with impurities can be reduced.

液体の体積を従来の数分の−即ち液体の体積粉体の真の
体積の4倍以下とし、かつ分散剤を用い、更に11以下
のジルコニア、ジルコン又はチタニアを主成分とする玉
石を用いて粉砕することにより、極めて短時間にサブミ
クロンの粒子に微粉砕できる。
The volume of the liquid is reduced to a fraction of the conventional volume, that is, the volume of the liquid is less than four times the true volume of the powder, and a dispersant is used, and a cobblestone containing 11 or less zirconia, zircon, or titania as a main component is used. By pulverizing, it can be pulverized into submicron particles in an extremely short time.

又、スラリーは分散性にも優れているため混合の効果も
大きい。即ち、二種以上のセラミック粉体の粉砕混合で
は微粉砕の効果とともに、均質な混合の効果も得られる
Furthermore, since the slurry has excellent dispersibility, the mixing effect is also large. That is, in pulverizing and mixing two or more types of ceramic powder, not only the effect of fine pulverization but also the effect of homogeneous mixing can be obtained.

また、本発明の粉砕方法では液体の使用量が著しく少な
いため二種以上のセラミック粉体の粉砕混合に於いては
スラリー乾燥中のセラミック粉体の分離がおきにくいと
いう効果もある。更に本発明の方法では液体の使用量が
著しく少ないため、同じ粉体の量に対してスラリーの容
積は従来の方法に比へてl/2〜l/4以下になる。こ
のため、同じ容量の粉砕機で従来の粉砕方法に比べて数
倍の処理能力が得られる。また、液体の使用量が少ない
ため、粉体の乾燥が短時間でできるとともに乾燥に要す
るエネルギーを著しく少なくできる。
Furthermore, since the amount of liquid used in the pulverization method of the present invention is extremely small, there is also the effect that when two or more types of ceramic powders are pulverized and mixed, separation of the ceramic powders during slurry drying is difficult. Furthermore, since the amount of liquid used in the method of the present invention is significantly smaller, the volume of slurry is less than 1/2 to 1/4 for the same amount of powder compared to conventional methods. For this reason, a mill with the same capacity can provide several times the throughput compared to conventional milling methods. Furthermore, since the amount of liquid used is small, the powder can be dried in a short time and the energy required for drying can be significantly reduced.

本発明で、玉石にジルコニア、チタニアやジルコン製を
、攪拌器にジルコニア製を用いるのでその磨耗による混
入が少ないとともに、その磨耗による混入成分はジルコ
ニアやチタニアが主でありチタニウムやジルコニウム元
素を含むセラミック粉体の混合や粉砕等の場合には、磨
耗成分の混入による組成変動の影響は他の材質の玉石や
攪拌器を用いる場合に比べて無視できる。
In the present invention, since the boulder is made of zirconia, titania, or zircon, and the stirrer is made of zirconia, there is little contamination due to abrasion. In the case of mixing or pulverizing powder, the influence of compositional fluctuations due to the mixing of abrasive components can be ignored compared to the case of using cobblestones or stirrers made of other materials.

発明の詳細 な説明したところから明らかなように、本発明にかかる
媒体攪拌型粉砕機は、少なくとも粉砕容器の内面をセラ
ミックスと金属のいずれか一種以上の粉体と有機高分子
材料との複合体で構成することにより、摩耗による金属
成分の混入が少なくかつ熱伝導率が大きく放熱をよくす
ることができる。その結果、著しく粉砕速度を大きくす
ることができ、極めて短時間にセラミック粉体を微粒子
に粉砕することができるとともに玉石の摩耗も減少する
As is clear from the detailed description of the invention, the media agitation type pulverizer according to the present invention has at least the inner surface of the pulverizing container made of a composite of powder of one or more of ceramics and metals and an organic polymer material. By configuring it, there is less mixing of metal components due to wear, and the thermal conductivity is high, so that heat dissipation can be improved. As a result, the pulverization speed can be significantly increased, ceramic powder can be pulverized into fine particles in an extremely short period of time, and wear of the boulders is also reduced.

Claims (4)

【特許請求の範囲】[Claims] (1)粉砕容器と、玉石と、攪拌装置とを備えた媒体攪
拌型粉砕機に於いて、少なくとも前記粉砕容器の内面が
セラミックスと金属のいずれか一種以上の粉体と有機高
分子材料との複合体からなることを特徴とする媒体攪拌
型粉砕機。
(1) In a media agitation type pulverizer equipped with a pulverizing container, boulders, and an agitating device, at least the inner surface of the pulverizing container is composed of powder of one or more of ceramics and metals and an organic polymer material. A media agitation type crusher characterized by consisting of a composite body.
(2)粉砕容器と、玉石と、攪拌装置とを備えた媒体攪
拌型粉砕機に於いて、少なくとも前記粉砕容器の内面が
セラミックスの粉体と有機高分子材料との複合体からな
ることを特徴とする媒体攪拌型粉砕機。
(2) A media agitation type pulverizer equipped with a pulverizing container, boulders, and an agitating device, characterized in that at least the inner surface of the pulverizing container is made of a composite of ceramic powder and an organic polymer material. A media agitation type crusher.
(3)粉砕容器と、玉石と、攪拌装置とを備えた媒体攪
拌型粉砕機に於いて、少なくとも前記粉砕容器の内面が
金属の粉体と有機高分子材料との複合体からなることを
特徴とする媒体攪拌型粉砕機。
(3) A media stirring type pulverizer equipped with a pulverizing container, boulders, and an agitating device, characterized in that at least the inner surface of the pulverizing container is made of a composite of metal powder and an organic polymer material. A media agitation type crusher.
(4)玉石がジルコニア、ジルコンとチタニアのいずれ
かを主成分とするセラミックスからなることを特徴とす
る請求項1記載の媒体攪拌型粉砕機。
(4) The media agitation type pulverizer according to claim 1, wherein the boulders are made of ceramics containing either zirconia, zircon, or titania as a main component.
JP21904488A 1988-07-21 1988-09-01 Medium stirring type pulverizer Pending JPH0268151A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21904488A JPH0268151A (en) 1988-09-01 1988-09-01 Medium stirring type pulverizer
US07/381,369 US5065946A (en) 1988-07-21 1989-07-18 Media agitating mill and method for milling ceramic powder
US07/944,731 US5213702A (en) 1988-07-21 1992-09-14 Media agitating mill and method for milling ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21904488A JPH0268151A (en) 1988-09-01 1988-09-01 Medium stirring type pulverizer

Publications (1)

Publication Number Publication Date
JPH0268151A true JPH0268151A (en) 1990-03-07

Family

ID=16729382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21904488A Pending JPH0268151A (en) 1988-07-21 1988-09-01 Medium stirring type pulverizer

Country Status (1)

Country Link
JP (1) JPH0268151A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100817A (en) * 1990-07-31 1992-03-31 International Business Machines Corporation Method of forming stacked self-aligned polysilicon PFET devices and structures resulting therefrom
JPH0724287A (en) * 1993-07-15 1995-01-27 Inoue Seisakusho:Kk Medium dispersing device
JP2001276594A (en) * 2000-04-04 2001-10-09 Kunio Kato Method for mixing fine particles with fluidized bed
WO2011089617A1 (en) * 2010-01-19 2011-07-28 Tega Industries Limited Mixing drum for a blast furnace
CN103894267A (en) * 2014-03-28 2014-07-02 Tdk大连电子有限公司 Process for improving ball milling dispersion of ceramic slurry
CN105750024A (en) * 2015-12-27 2016-07-13 襄阳高铭矿业有限公司 Potassium feldspar powder processing method using pebbles as a ball milling medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100817A (en) * 1990-07-31 1992-03-31 International Business Machines Corporation Method of forming stacked self-aligned polysilicon PFET devices and structures resulting therefrom
JPH0724287A (en) * 1993-07-15 1995-01-27 Inoue Seisakusho:Kk Medium dispersing device
JP2001276594A (en) * 2000-04-04 2001-10-09 Kunio Kato Method for mixing fine particles with fluidized bed
WO2011089617A1 (en) * 2010-01-19 2011-07-28 Tega Industries Limited Mixing drum for a blast furnace
EA024254B1 (en) * 2010-01-19 2016-08-31 Тега Индастриз Лимитед Mixing drum for a blast furnace
CN103894267A (en) * 2014-03-28 2014-07-02 Tdk大连电子有限公司 Process for improving ball milling dispersion of ceramic slurry
CN105750024A (en) * 2015-12-27 2016-07-13 襄阳高铭矿业有限公司 Potassium feldspar powder processing method using pebbles as a ball milling medium

Similar Documents

Publication Publication Date Title
US5065946A (en) Media agitating mill and method for milling ceramic powder
EP1713743B9 (en) Grinding balls and production method thereof
JP4969813B2 (en) Ultrafine calcium hydroxide slurry
KR950000772B1 (en) Ultrafine grinding mill of which fed naterial flows down through an agitated bed composed of small grinding midium
JPH04166246A (en) Medium agitating mill and grinding method
CN101171208B (en) Slip containing zirconium dioxide and aluminium oxide and shaped body obtainable therefrom
JPH0268151A (en) Medium stirring type pulverizer
JPH0788391A (en) Production of superfine powder
WO2021049530A1 (en) Wear-resistant alumina sintered body
JP3154313B2 (en) Method and apparatus for manufacturing ceramic sintered body
US5213702A (en) Media agitating mill and method for milling ceramic powder
JPH0231844A (en) Grinding machine and method for grinding ceramic powder
JPH0299151A (en) Crusher and method for crushing ceramic powder
JPH0347544A (en) Medium stirring mill and method for grinding ceramic powder
JP2587767B2 (en) Crusher components
JPH07257925A (en) Zirconia minute particle
JPH0333046A (en) Pulverized body and its production and production of sintered compact using the same
JPH077740U (en) Wear-resistant structure of sand mill
WO2021187415A1 (en) Inorganic filler powder, thermally conductive polymer composition, and method for manufacturing inorganic filler powder
JPS6168146A (en) Manufacture of powdered body raw material for porcelain electronic part
JPS61263627A (en) Dispersant for ceramic material powdery substance
Becker Attrition Mill Grinding of Refractories
RU1208672C (en) Method of obtaining bronze powder
JPH02217347A (en) Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof
JPS63251202A (en) Method of pulverizing ceramic powder