JPH0218306A - Starting material for superconductor - Google Patents

Starting material for superconductor

Info

Publication number
JPH0218306A
JPH0218306A JP63169475A JP16947588A JPH0218306A JP H0218306 A JPH0218306 A JP H0218306A JP 63169475 A JP63169475 A JP 63169475A JP 16947588 A JP16947588 A JP 16947588A JP H0218306 A JPH0218306 A JP H0218306A
Authority
JP
Japan
Prior art keywords
particulate matter
casing
superconductor
superconducting
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63169475A
Other languages
Japanese (ja)
Inventor
Masuo Hosokawa
益男 細川
Makio Naito
牧男 内藤
Masahiro Yoshikawa
雅浩 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP63169475A priority Critical patent/JPH0218306A/en
Priority to KR1019890005450A priority patent/KR920007800B1/en
Priority to EP89108267A priority patent/EP0349728B1/en
Priority to DE68925076T priority patent/DE68925076T2/en
Publication of JPH0218306A publication Critical patent/JPH0218306A/en
Priority to US07/582,811 priority patent/US5081072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To store particulate matter of starting materials for a superconductor for over a long time while inhibiting deterioration of the quality due to atmospheric oxygen or moisture by covering the particulate matter with a covering material. CONSTITUTION:After calcining a primarily pulverized mixture of particulate starting materials for a superconductor, the product is sintered after secondary pulverization and mixing, to obtain thus a particulate matter of the superconducting material contg. Y or Bi. Then, the particulate matter is fed together with a covering material (e.g. fluoroplastic) to a treating chamber 3 of a bottomed cylindrical casing 4 revolved at high speed from a feeder 19 through a passage 6 with a transporting gas supplied by a fan 18. Thus, the particulate matter is covered by the covering material and pressed by a centrifugal force to an internal peripheral surface of the casing. Then, the particulate matter is pulverized by grinding pieces 9a by rotating the grinding pieces and scraping pieces 9b relatively with a fixed relative velocity difference against the casing 4 around a rotary shaft 8a interlocked to a driving device 5. The pulverized product is mixed simultaneously by stirring with the scraping pieces 9b, then conveyed pneumatically to a collector 15 from an overflow type discharging port 11 through a passage 10, and recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉粒状の超電導体原料に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a powdery superconductor raw material.

〔従来の技術〕[Conventional technology]

従来、粉粒状の超電導体原料に被覆を施したものは無か
った。
Conventionally, there has been no coating applied to powdery superconductor raw materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、粉粒状の超電導体原料を長時間にわたって貯蔵
すると、大気中の酸素や水分などによって品質が劣化す
る欠点があった。
However, if powdered superconductor raw materials are stored for a long period of time, they suffer from deterioration in quality due to atmospheric oxygen and moisture.

本発明の目的は、粉粒状の超電導体原料を、大気中の酸
素や水分などによる品質劣化を十分に抑制した状態で良
好に長期貯蔵できるようにし、さらには、そのための手
段を、超電導体製品の製造面で有利なものにする点にあ
る。
It is an object of the present invention to enable powder-like superconductor raw materials to be stored for a long period of time in a state where quality deterioration due to oxygen and moisture in the atmosphere is sufficiently suppressed, and furthermore, to provide a means for this purpose for use in superconductor products. The point is to make it advantageous in terms of manufacturing.

〔課題を解決するための手段〕[Means to solve the problem]

本第1発明の特徴構成は、超電導材の粉粒体を被覆材で
覆っであることにあり、その作用は次の通りである。
The characteristic configuration of the first invention is that the granular material of the superconducting material is covered with a coating material, and the effect thereof is as follows.

〔作 用〕[For production]

つまり、被覆材により超電導材の粉粒体と大気との接触
を無くすか十分に抑制することによって、大気中の酸素
や水分などによる超電導材の粉粒体の品質劣化を十分に
抑制でき、超電導体原料の良好な長期貯蔵が可能になる
In other words, by eliminating or sufficiently suppressing the contact between the superconducting material powder and the atmosphere using the coating material, it is possible to sufficiently suppress the quality deterioration of the superconducting material powder and granules due to oxygen and moisture in the atmosphere. Good long-term storage of raw materials becomes possible.

〔課題を解決するための手段〕[Means to solve the problem]

本第2発明の特徴構成は、Yを含む超電導材の粉粒体を
、融点が450℃以下の被覆材で覆っであることにあり
、その作用は次の通りである。
The characteristic configuration of the second invention is that the granular material of the superconducting material containing Y is covered with a coating material having a melting point of 450° C. or lower, and its action is as follows.

〔作 用〕[For production]

つまり、第1発明と同様に被覆材の作用で、大気中の酸
素や水分などによる超電導材の粉粒体の品質劣化を十分
に抑制でき、超電導体原料の良好な長期貯蔵が可能にな
る。
That is, as in the first invention, the action of the coating material can sufficiently suppress the deterioration of the quality of the superconducting material powder due to oxygen, moisture, etc. in the atmosphere, and the superconducting raw material can be stored for a good long term.

しかも、被覆材の融点が450℃以下であるため、超電
導体製品を送る際の被覆材の加熱溶融処理に伴って超電
導材の超電導性が損われることが無い。
Furthermore, since the melting point of the coating material is 450° C. or lower, the superconductivity of the superconducting material is not impaired due to heating and melting treatment of the coating material when sending the superconducting product.

つまり、Yを含む超電導材は、結晶構造が斜方晶で超電
導性を発揮するが正方品になると超電導性が無くなり、
かつ、550℃程度以上に加熱されると結晶構造が斜方
晶から正方品に変化する性質があり、もし被覆材の融点
が450℃を越えると、被覆材の加熱溶融処理を能率良
く実行するために550℃程度以上の高温熱源を用いた
場合、超電導材が550℃程度以上に加熱されて結晶構
造変化で超電導性を失う危険性が大きい。
In other words, superconducting materials containing Y have an orthorhombic crystal structure and exhibit superconductivity, but when they become tetragonal, they lose superconductivity.
In addition, when heated above about 550°C, the crystal structure changes from orthorhombic to tetragonal, and if the melting point of the coating material exceeds 450°C, the heating and melting process of the coating material will be carried out efficiently. Therefore, when a high-temperature heat source of about 550° C. or higher is used, there is a large risk that the superconducting material will be heated to about 550° C. or higher and lose superconductivity due to a change in crystal structure.

しかし、本第2発明のように融点が450℃以下の被覆
材を利用すると、550℃程度未満の割合に低温の熱源
によって被覆材を能率良く加熱溶融処理でき、したがっ
て、超電導材の加熱による結晶構造変化を確実に防止で
き、良好な超電導性を確実に維持できる。
However, if a coating material with a melting point of 450°C or less is used as in the second invention, the coating material can be efficiently heated and melted using a low-temperature heat source at a rate of less than about 550°C. Structural changes can be reliably prevented and good superconductivity can be reliably maintained.

〔課題を解決するための手段] 本第3発明の特徴構成は、Biを含む超電導材の粉粒体
を、融点が800℃以下の被覆材で覆っであることにあ
り、その作用は次の通りである。
[Means for Solving the Problems] The characteristic configuration of the third invention is that the granular material of the superconducting material containing Bi is covered with a coating material having a melting point of 800°C or less, and its effect is as follows. That's right.

〔作 用〕[For production]

つまり、本第1発明と同様に被覆材の作用で、大気中の
酸素や水分などによる超電導材の粉粒体の品質劣化を抑
制して、超電導体原料の良好な長期貯蔵が可能になる。
That is, as in the first invention, the action of the coating material suppresses deterioration of the quality of the superconducting material powder due to atmospheric oxygen, moisture, etc., and enables good long-term storage of the superconducting raw material.

また、Biを含む超電導材は890℃程度以上で溶解し
ないかぎり、良好な超電導性を発揮するから、融点が8
00℃以下の被覆材を利用すると、本第2発明における
同様の理由で、被覆材を能率良く加熱溶融処理できると
共に、良好な超電導性を確実に維持できる。
In addition, superconducting materials containing Bi exhibit good superconductivity as long as they do not melt at temperatures above about 890°C, so their melting point is 890°C or higher.
If a coating material having a temperature of 00° C. or lower is used, the coating material can be efficiently heated and melted, and good superconductivity can be reliably maintained for the same reason as in the second invention.

〔発明の効果〕〔Effect of the invention〕

その結果、貯蔵性において優れ、超電導体製品の製造面
において有利な、−段と優秀な超電導体原料を提供でき
るようになった。
As a result, it has become possible to provide a much superior superconductor raw material that has excellent storage stability and is advantageous in the production of superconductor products.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第1図に示すように、超電導体の粉粒状原料夫々を秤量
し、秤量した粉粒状原料を乾式の摩砕混合装置で一次粉
砕混合処理し、−次粉砕混合処理で得た微粉状原料を仮
焼処理し、仮焼処理で得た粉粒状原料を乾式の摩砕混合
装置で二次粉砕混合処理し、二次粉砕混合処理で得た微
粉状原料を焼結処理し、Y又はBiを含む超電導材の粉
粒体を造る。
As shown in Figure 1, each powdery raw material for the superconductor is weighed, the weighed powdery raw materials are subjected to primary pulverization and mixing treatment using a dry grinding mixer, and the fine powdery raw materials obtained through the secondary pulverization and mixing treatment are The granular raw material obtained through the calcination treatment is subjected to secondary pulverization and mixing treatment using a dry grinding and mixing device, and the fine powdered raw material obtained through the secondary pulverization and mixing treatment is subjected to a sintering treatment to add Y or Bi. Make powder and granules of superconducting material containing

仮焼処理は、一般に400℃程度で約2時間加熱した後
、Yを含む超電導材では900℃程度で約4時間加熱し
、Biを含む超電導材では800℃程度で約16時間加
熱して行う。
Calcination treatment is generally performed by heating at about 400°C for about 2 hours, then heating at about 900°C for about 4 hours for superconducting materials containing Y, and heating at about 800°C for about 16 hours for superconducting materials containing Bi. .

焼結処理は、Yを含む超電導材では、一般に900〜9
30℃程度で約12時間加熱した後、lOO℃/hr程
度で除冷し、その後520°C程度で約5時間加熱した
後、100℃/hr程度で除冷する。また、Biを含む
超電導材では、800〜890℃で70〜200時間加
熱した後除冷する。
For superconducting materials containing Y, the sintering process is generally performed at a temperature of 900 to 9
After heating at about 30° C. for about 12 hours, it is slowly cooled at about 100° C./hr, then heated at about 520° C. for about 5 hours, and then slowly cooled at about 100° C./hr. Moreover, in the case of a superconducting material containing Bi, the material is heated at 800 to 890° C. for 70 to 200 hours and then slowly cooled.

超電導材の粉粒体に被覆材を適量添加し、その混合物を
乾式の摩砕混合装置で被覆処理し、超電導材の粉粒体を
被覆材で覆った超電導体原料を造る。
A suitable amount of the coating material is added to the granular material of the superconducting material, and the mixture is coated using a dry grinding and mixing device to produce a superconducting raw material in which the granular material of the superconducting material is covered with the coating material.

被覆材としては、フッ素樹脂などの適当な樹脂の粉粒体
、Au、Ag、Cuの微粉や薄片、その他適当なものか
ら選択する。但し、超電導体を使用する低温において脆
化せず超電導材と直接反応せず、水を含まないものを選
択する。被覆材の混合割合は数%〜数十%である。
The coating material is selected from powders of suitable resins such as fluororesin, fine powders and flakes of Au, Ag, and Cu, and other suitable materials. However, select one that does not become brittle at the low temperatures at which the superconductor is used, does not react directly with the superconducting material, and does not contain water. The mixing ratio of the coating material is several percent to several tens of percent.

そして、Yを含む超電導材に対しては、融点が450℃
以下、望ましくは300℃以下の被覆材を使用する。
For superconducting materials containing Y, the melting point is 450°C.
Hereinafter, a coating material having a temperature of 300°C or less is preferably used.

また、Biを含む超電導材に対しては、融点が800℃
以下、望ましくは400℃以下の被覆材を使用する。
Furthermore, for superconducting materials containing Bi, the melting point is 800°C.
Hereinafter, a coating material having a temperature of 400° C. or lower is preferably used.

尚、Au、Ag、Cuは、微粉又は薄片になるほど融点
が低下し、101μmのオーダになると200〜400
℃で焼結が行われるようになる。したがって、所定の融
点に見合った径の微粉又は厚みの薄片にして使用する。
In addition, the melting point of Au, Ag, and Cu decreases as it becomes fine powder or flake, and when it becomes on the order of 101 μm, the melting point decreases to 200 to 400 μm.
Sintering will take place at ℃. Therefore, it is used in the form of fine powder or thin slices of a thickness suitable for a predetermined melting point.

超電導体原料は、第2図(イ)に示すように超電導材の
粉粒体(A)に多数の微粉状や薄片状の被覆材(B)が
摩砕により熱融着したものでも、第2図(ロ)に示すよ
うに超電導材の粉粒体(八)の全面に被覆材(B)の薄
層が摩砕による熱融着で形成されたものでもよい。
As shown in Figure 2 (a), the superconductor raw material may be one in which a large number of fine powder or flaky coating materials (B) are thermally fused to a granular material (A) of superconducting material by grinding. As shown in Figure 2 (b), a thin layer of the coating material (B) may be formed on the entire surface of the superconducting material powder (8) by thermal fusion through grinding.

前述の摩砕混合装置について、第3図及び第4図により
次に詳述する。
The above-described grinding and mixing device will now be described in detail with reference to FIGS. 3 and 4.

基台(1)に取付けられた縦向き回転軸(2)の上端に
、処理室(3)を形成する有底筒状ケーシング(4)を
同芯状に取付け、電動モータ(5a)及び変速機(5b
)等から成る駆動装置(5)を回転軸(2)の下端に連
動させ、ケーシング(4)をその内部の粉粒状原料が遠
心力によりケーシング内周面(4a)に押付けられるよ
うに高速駆動回転すべく構成し、かつ、原料の性状に応
じて適切な遠心力が得られるようにケーシング(4)の
回転速度を調節可能に構成しである。
A bottomed cylindrical casing (4) forming a processing chamber (3) is concentrically attached to the upper end of a vertical rotating shaft (2) attached to a base (1), and an electric motor (5a) and a variable speed Machine (5b
), etc., is interlocked with the lower end of the rotating shaft (2), and the casing (4) is driven at high speed so that the powdery raw materials inside the casing (4) are pressed against the inner circumferential surface (4a) of the casing by centrifugal force. The casing (4) is configured to rotate, and the rotational speed of the casing (4) can be adjusted so as to obtain an appropriate centrifugal force depending on the properties of the raw material.

ケーシング(4)はカバー(7)で包囲され、ケーシン
グ(4)の下部にファン(12)を連設し、カバー(7
)に形成した吸気口(13)から外気を吸引して、吸引
外気によりケーシング(4)を冷却するように構成し、
また、吸引外気をカバー(7)に接続した搬送用流路(
lO)に微粉状原料搬送用ガスとして導くように構成し
である。又、微粉状原料を処理室(3)からカバー(7
)側に移すために、ケーシング(4)の上端中心部を開
口させて、原料のオーバーフロー式排出口(11)を形
成しである。
The casing (4) is surrounded by a cover (7), a fan (12) is connected to the bottom of the casing (4), and the cover (7) is surrounded by a fan (12).
) is configured to suck outside air through an intake port (13) formed in the casing (4) and cool the casing (4) with the sucked outside air;
In addition, a conveyance channel (
1O) as a gas for transporting fine powder raw materials. In addition, the fine powder raw material is transferred from the processing chamber (3) to the cover (7).
) side, the upper center of the casing (4) is opened to form an overflow outlet (11) for the raw material.

回転軸(2)と回忌の回転軸(8a)の上端部に固定し
た状態で、中心上部に円錐状部分(8c)を形成した支
持体(8b)をケーシング(4)内に設けである。
A support (8b) having a conical portion (8c) formed at the upper center thereof is provided in the casing (4) while being fixed to the upper ends of the rotation shaft (2) and the rotation shaft (8a) of the reciprocal shaft.

ケーシング内周面(4a)との協働で原料を圧縮し剪断
する摩砕片(9a)、及び、原料を攪拌混合し分散する
掻取り片(9b)を、ケーシング(4)回転方向に適当
な間隔で並べた状態で支持体(8a)の先端に取付けて
処一連室(3)内に配置しである。
A grinding piece (9a) that compresses and shears the raw material in cooperation with the inner circumferential surface (4a) of the casing, and a scraping piece (9b) that stirs, mixes and disperses the raw material are placed in an appropriate direction in the rotational direction of the casing (4). They are arranged at intervals and attached to the tip of the support (8a) and placed in the treatment chamber (3).

摩砕片(9a)に、ケーシング(4)との隙間がケーシ
ング(4)の回転方向側はど狭くなるように形成した傾
斜面を持たせ、そして、掻取り片(9b)を、ケーシン
グ(4)との隙間がケーシング(4)の回転方向側はど
広くなり、かつ、その作用面が次第に幅広となるような
くさび状又は櫛菌状に形成しである。
The grinding piece (9a) has an inclined surface formed so that the gap with the casing (4) becomes narrower in the direction of rotation of the casing (4), and the scraping piece (9b) is attached to the casing (4). ) is formed in a wedge-like or comb-like shape such that the gap between the casing (4) becomes wider in the direction of rotation of the casing (4), and its working surface gradually becomes wider.

回転軸(8a)を駆動装置(5)に連動させ、ケーシン
グ(4)に対して一定の速度差で摩砕片(9a)及び掻
取り片(9b)を相対回転させて、摩砕片(9a)によ
る微粉砕と掻取り片(9b)による攪拌混合が行われる
ように構成しである。
The rotating shaft (8a) is interlocked with the drive device (5), and the grinding pieces (9a) and the scraping pieces (9b) are rotated relative to the casing (4) at a constant speed difference, thereby removing the grinding pieces (9a). The structure is such that fine pulverization by the scraper and stirring and mixing by the scraping piece (9b) are performed.

回転軸(8a)内に、支持体(8b)、摩砕片(9a)
、掻取り片(9b)に加熱あるいは冷却用媒体を流入さ
せる通路(27)を形成し、ロータリージヨイント(2
4)により通路(27)を媒体貯蔵用タンク(26)に
接続しである。
In the rotating shaft (8a), a support (8b), a grinding piece (9a)
, a passage (27) is formed through which a heating or cooling medium flows into the scraping piece (9b), and a rotary joint (2
4) connects the passageway (27) to the medium storage tank (26).

カバー(7)の中心部に、支持体(8b)の円錐状部分
(8c)に向けてフィーダ(■9)からの原料を流下供
給させるための経路(6)をパイプ(14)の付設によ
って形成し、必要により加熱あるいは冷却させた適量の
空気や不活性ガス等の搬送用ガスを供給する送風機(1
8)を経路(6)に接続し、又、カバー(7)の周囲に
ジャケラ) (25)を具備させ、タンク(26)から
の加熱又は冷却用の媒体を通すように構成しである。
A pipe (14) is provided in the center of the cover (7) to provide a path (6) for feeding the raw material from the feeder (■9) downward toward the conical portion (8c) of the support (8b). A blower (1 unit) that supplies a suitable amount of conveying gas such as air or inert gas that is heated or cooled as necessary.
8) is connected to the path (6), and a jacket (25) is provided around the cover (7) to allow heating or cooling medium from the tank (26) to pass therethrough.

捕集器(15)及び排風機(16)をその1頓に流路(
10)に接続し、捕集器(15)の排出口に微粉状原料
を回収するロータリーフィーダ(17)を設けである。
The collector (15) and the exhaust fan (16) are connected to the flow path (
10), and a rotary feeder (17) is provided at the outlet of the collector (15) to collect the fine powder raw material.

要するに、ケーシング(4)を高速駆動回転させて、フ
ィーダ(19)からの粉粒状原料をケーシング内周面(
4a)に遠心力で押付け、その押付けで形成した原料層
に、ケーシング(4)に対して相対回転する摩砕片(9
a)と掻取り片(9b)を作用させ、摩砕片(9a)で
原料を微粉砕すると共に、掻取り片(9b)で原料を攪
拌混合し、十分に微細になると共に均一に混合された微
粉状原料を気流搬送して捕集器(15)で回収するので
ある。
In short, the casing (4) is rotated at high speed, and the powdery raw material from the feeder (19) is delivered to the inner peripheral surface of the casing (
4a) by centrifugal force, and the raw material layer formed by the pressing is filled with crushed pieces (9
a) and the scraping piece (9b), the grinding piece (9a) finely pulverizes the raw material, and the scraping piece (9b) stirs and mixes the raw material, making it sufficiently fine and uniformly mixed. The fine powder raw material is transported by air current and collected by the collector (15).

〔別実施例〕[Another example]

次に、別実施例を説明する。 Next, another embodiment will be described.

原料は種類、混合割合、粒度、その他において適当に選
択できる。原料によっては仮焼処理と二次粉砕混合処理
を複数回づつ実施してもよい。また、原料によっては仮
焼処理及び二次粉砕混合処理を省き、−次粉砕混合処理
後焼結処理を行ってもよい。
Raw materials can be appropriately selected in terms of type, mixing ratio, particle size, etc. Depending on the raw material, the calcination treatment and the secondary pulverization and mixing treatment may be performed multiple times. Further, depending on the raw materials, the calcination treatment and the secondary pulverization mixing treatment may be omitted, and the sintering treatment may be performed after the secondary pulverization mixing treatment.

乾式の摩砕混合装置の具体構成は適当に変更でき、例え
ば、ケーシング(4)の回転軸芯を傾斜させたり横向き
にしたり、摩砕片(9a)や掻取り片(9b)をケーシ
ング(4)側へ接触しない範囲で流体圧やスプリングで
付勢したり、摩砕片(9a)と掻取り片(9b)の回転
を停止させたり、摩砕片(9a)、掻取り片(9b)の
形状、材質、設置数などを適当に変更したり、バッチ処
理するように捕集器(15)からケーシング(4)に微
粉を還元供給するように構成する等が可能である。
The specific configuration of the dry grinding and mixing device can be changed as appropriate. For example, the rotational axis of the casing (4) may be tilted or turned sideways, or the grinding pieces (9a) and the scraping pieces (9b) may be attached to the casing (4). The shape of the grinding piece (9a) and the scraping piece (9b) may be changed by applying pressure with fluid pressure or a spring within a range that does not contact the sides, stopping the rotation of the grinding piece (9a) and the scraping piece (9b), or changing the shape of the grinding piece (9a) and the scraping piece (9b). It is possible to appropriately change the material, the number of installations, etc., or to configure the collector (15) to return and supply the fine powder to the casing (4) so as to perform batch processing.

仮焼処理や焼結処理において温度条件をいかに設定する
かは、原料の種類に見合って適当に選択できる。
How to set the temperature conditions in the calcination treatment and sintering treatment can be appropriately selected depending on the type of raw material.

被覆材は種類、融点、混合割合において適当に選定でき
る。
The coating material can be appropriately selected in terms of type, melting point, and mixing ratio.

被覆処理において使用する装置は、公知のコーティング
用のものから適当に選択でき、例えば噴霧乾燥方式、流
動乾式方式、混合造粒方式などでもよい。
The apparatus used in the coating process can be appropriately selected from known coating apparatuses, such as a spray drying system, a fluidized drying system, a mixed granulation system, and the like.

超電導体原料の用途は不問である。The use of the superconductor raw material does not matter.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はフローシート、
第2図<4”) 、 (II)は原料の概念図、第3図
は摩砕混合装置の概念図、第4図は第3図のrV−mV
線断面図である。 (^)・・・・・・超電導材の粉粒体、(B)・・・・
・・被覆材。
The drawings show an embodiment of the present invention, and FIG. 1 is a flow sheet;
Figure 2<4''), (II) is a conceptual diagram of the raw material, Figure 3 is a conceptual diagram of the grinding and mixing device, and Figure 4 is the rV-mV of Figure 3.
FIG. (^)・・・Powder of superconducting material, (B)・・・
...Covering material.

Claims (1)

【特許請求の範囲】 1、超電導材の粉粒体(A)を被覆材(B)で覆ってあ
る超電導体原料。 2、Yを含む超電導材の粉粒体(A)を、融点が450
℃以下の被覆材(B)で覆ってある超電導体原料。 3、Biを含む超電導材の粉粒体(A)を、融点が80
0℃以下の被覆材(B)で覆ってある超電導体原料。
[Claims] 1. A superconductor raw material in which powder (A) of a superconductor material is covered with a coating material (B). 2. Powder (A) of superconducting material containing Y has a melting point of 450
A superconductor raw material covered with a coating material (B) whose temperature is below ℃. 3. Powder (A) of superconducting material containing Bi has a melting point of 80
A superconductor raw material covered with a coating material (B) at a temperature of 0°C or less.
JP63169475A 1988-07-07 1988-07-07 Starting material for superconductor Pending JPH0218306A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63169475A JPH0218306A (en) 1988-07-07 1988-07-07 Starting material for superconductor
KR1019890005450A KR920007800B1 (en) 1988-07-07 1989-04-25 Super conducting material and its manufacturing method and superconducting material
EP89108267A EP0349728B1 (en) 1988-07-07 1989-05-08 Manufacturing method of a fine particle superconducting oxide powder and manufacturing method of a superconducting product
DE68925076T DE68925076T2 (en) 1988-07-07 1989-05-08 Manufacturing method of fine-grained superconducting oxide powder and manufacturing method of a superconducting article
US07/582,811 US5081072A (en) 1988-07-07 1990-09-12 Manufacturing method of superconducting material and product and superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169475A JPH0218306A (en) 1988-07-07 1988-07-07 Starting material for superconductor

Publications (1)

Publication Number Publication Date
JPH0218306A true JPH0218306A (en) 1990-01-22

Family

ID=15887243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169475A Pending JPH0218306A (en) 1988-07-07 1988-07-07 Starting material for superconductor

Country Status (1)

Country Link
JP (1) JPH0218306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619376A (en) * 2022-05-10 2022-06-14 江苏启航研磨科技有限公司 Sand paper production is with having splashproof structure sand planting device of density adjustment of being convenient for

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619376A (en) * 2022-05-10 2022-06-14 江苏启航研磨科技有限公司 Sand paper production is with having splashproof structure sand planting device of density adjustment of being convenient for

Similar Documents

Publication Publication Date Title
KR870000861B1 (en) Granulating and coating machine
US6136288A (en) Firing fines
US5100592A (en) Method and apparatus for granulation and granulated product
US3295838A (en) Conditioner for premoistening dry powders
JP3033861B2 (en) Powder supply device
JPH0218306A (en) Starting material for superconductor
US5081072A (en) Manufacturing method of superconducting material and product and superconducting material
JPS60228598A (en) Method and device for manufacturing homogeneous mixture by use of air stream mill from coal powder and lime powder or dolomite powder
US4860928A (en) Powder constant-volume feeder
US4521399A (en) Method and apparatus for the production of lead oxide
US4592723A (en) Process for reusing scrap glass
US3454263A (en) Process and apparatus for agglomerating particulate materials and high speed mixer therefor
JPH0222163A (en) Production of diamagnetic material and diamagnetic material
JPH0256813A (en) Manufacture of superconductive wire rod and superconductive wire rod
JPH01208462A (en) Production of target material and target for forming thin film of superconducting material by vapor-phase method and target material and target obtained therefrom
JPH01201010A (en) Production of raw materials for superconductor and superconductor, and raw materials and superconductor obtained therefrom
CN207071678U (en) A kind of dust feeder being used for during catalytic behavior of materials spheroidizing of powder
FR2553501A1 (en) ROTARY OVEN FOR GRILLING POWDERY RAW MATERIALS FOR THE MANUFACTURE OF CEMENT AND A PROCESS FOR THE OPERATION THEREOF
US5160710A (en) Apparatus for continuous production of intumesced particles
JP2672671B2 (en) Manufacturing method of composite particles
JPH05239627A (en) Powder feeder
JP3032254B2 (en) Manufacturing method of composite spray material
JPH0759299B2 (en) Raw material manufacturing method for functionally graded materials
JPH02167805A (en) Powdery target material for superconductive thin film and the powdery target material and their production
JPH01298606A (en) Raw material and manufacturing method of superconductive wire rod, and superconductive wire rod raw material and superconductive wire rod obtained by the manufacturing method