JPH0478341B2 - - Google Patents

Info

Publication number
JPH0478341B2
JPH0478341B2 JP18664286A JP18664286A JPH0478341B2 JP H0478341 B2 JPH0478341 B2 JP H0478341B2 JP 18664286 A JP18664286 A JP 18664286A JP 18664286 A JP18664286 A JP 18664286A JP H0478341 B2 JPH0478341 B2 JP H0478341B2
Authority
JP
Japan
Prior art keywords
casing
powder
inner circumferential
circumferential surface
scraping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18664286A
Other languages
Japanese (ja)
Other versions
JPS6342728A (en
Inventor
Masuo Hosokawa
Keiichiro Yukimitsu
Fujihira Yokoyama
Kyoshi Urayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP61186642A priority Critical patent/JPS6342728A/en
Priority to DE91100425T priority patent/DE3787175T2/en
Priority to DE8787105640T priority patent/DE3775597D1/en
Priority to EP87105640A priority patent/EP0241930B1/en
Priority to US07/039,140 priority patent/US4789105A/en
Priority to CA000535019A priority patent/CA1279304C/en
Priority to EP91100425A priority patent/EP0421980B1/en
Priority to KR1019870003720A priority patent/KR900005175B1/en
Publication of JPS6342728A publication Critical patent/JPS6342728A/en
Publication of JPH0478341B2 publication Critical patent/JPH0478341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ケーシングを高速回転させて、被処
理材を前記ケーシングの内周面に押付け、その押
付けにより前記ケーシング内周面に形成した粉体
層に摩擦片により圧縮力と剪断力を付与する粉粒
体処理方法、並びに、それに使用する装置に関す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention involves rotating a casing at high speed to press a material to be treated against the inner circumferential surface of the casing, and powder formed on the inner circumferential surface of the casing by the pressing. The present invention relates to a powder processing method for applying compressive force and shear force to a body layer using friction pieces, and an apparatus used therein.

〔従来の技術〕[Conventional technology]

従来、上記粉粒体処理方法では、摩擦片による
圧縮及び剪断作用のみで粉粒体を処理し、粉粒体
を超微粉砕していた。
Conventionally, in the above-mentioned powder and granule processing method, the powder and granule were processed only by compression and shearing action by friction pieces, and the powder and granule were ultra-finely pulverized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、粉粒体は新素材として各方面で有効利
用され、そのために粉粒体の混合、造粒、球形
化、コーテイング、カプセル化を良好に実現でき
る手段が要望されているが、上記粉粒体処理方法
ではその要望に対処できなかつた。
However, powder and granules are effectively used in various fields as new materials, and for this reason, there is a need for means that can effectively achieve mixing, granulation, spheroidization, coating, and encapsulation of powder and granules. The body processing method could not meet this demand.

他方、従来から実行されている粉粒体の混合、
造粒、球形化、コーテイング、カプセル化の手段
は、いずれも下記欠点があつた。
On the other hand, mixing of powder and granular materials, which has been conventionally carried out,
All methods of granulation, spheroidization, coating, and encapsulation have the following drawbacks.

(イ) スクリーンミルやボールミル等により予備混
合された粉粒体を微細混合する手段では、粉砕
が進む割にミクロ的には分散が悪く、精度の高
い均一混合を実現することが困難であり、ひい
ては、一旦混合しても比重差による分離が生じ
やすい。
(b) With methods of finely mixing premixed powder and granules using screen mills, ball mills, etc., although pulverization progresses, microscopic dispersion is poor, making it difficult to achieve highly accurate and uniform mixing; Furthermore, even once mixed, separation is likely to occur due to the difference in specific gravity.

(ロ) 回転ケーシング内での転動に伴つて粉粒体を
造粒する手段では、50μm以下の微小造粒物を
得ることが困難であり、また、結合力の弱い造
粒物になる。
(b) With the method of granulating powder and granules as they roll in a rotating casing, it is difficult to obtain fine granules of 50 μm or less, and the granules have weak binding strength.

(ハ) 加熱溶融して球形にする手段では、低融点で
球形に近い形状のペレツトに処理対象が限定さ
れ、ヒゲ状や異径状などの粉粒体には適用でき
ない。
(c) The method of heating and melting pellets to form a sphere is limited to pellets with a low melting point and a shape close to a sphere, and cannot be applied to powder particles with a whisker-like shape or a different diameter shape.

(ホ) 粒体の表面に粉体を付着させるコーテイング
やカプセル化の手段では、1〜50μm程度の微
粉の表面を0.001〜5μm程度の超微粉で覆うこ
と、微粉どうしが複合化した微細物を得るこ
と、微粉の表面をコロイド状物質で覆うこと、
低温気化物質をカプセル材に封入することが等
ができない。
(e) Coating and encapsulation methods that attach powder to the surface of granules include covering the surface of fine powder of about 1 to 50 μm with ultrafine powder of about 0.001 to 5 μm, and obtaining, covering the surface of the fine powder with a colloidal substance,
It is not possible to encapsulate a low-temperature vaporized substance in an encapsulant.

本発明の目的は、冒頭に述べた粉粒体処理方法
に改良を加えて、混合、造粒、球形化、コーテイ
ング、カプセル化を可能にし、しかも、上述の従
来手段の欠点を解消できるようにする点にある。
The object of the present invention is to improve the powder and granule processing method described at the beginning, to enable mixing, granulation, spheroidization, coating, and encapsulation, and to eliminate the drawbacks of the conventional means described above. It is in the point of doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による粉粒体処理方法の特徴手段は、ケ
ーシングを高速回転させて、被処理材を前記ケー
シングの内周面に押付け、その押付けにより前記
ケーシング内周面に形成した粉体層に摩擦片によ
り圧縮力と剪断力を付与する粒粒体処理方法にお
いて、 前記ケーシング内周面の粉体層に掻取り片によ
り掻取り作用、分散作用及び撹拌作用を付与し、 前記摩擦片と前記掻取り片の協動作用により混
合、造粒、球形化、コーテイング、カプセル化の
いずれかの処理を被処理材に施すことにあり、そ
の作用効果は次の通りである。
The characteristic means of the powder and granular material processing method according to the present invention is to rotate the casing at high speed to press the material to be treated against the inner circumferential surface of the casing, and as a result of the pressing, friction pieces are formed on the powder layer formed on the inner circumferential surface of the casing. A granular material processing method in which compressive force and shear force are applied by means of a scraping piece, wherein a scraping action, a dispersion action, and an agitation action are applied to the powder layer on the inner circumferential surface of the casing, and the scraping action and the dispersion action are applied to the powder layer on the inner circumferential surface of the casing, The purpose is to perform any one of mixing, granulation, spheroidization, coating, and encapsulation on the material to be treated by the cooperative action of the pieces, and the effects are as follows.

〔作用〕[Effect]

実験により確認したところ、ケーシングの高速
回転による遠心力で被処理材をケーシング内周面
に強く押付けて形成した粉体層に対し、摩擦片に
より強力な圧縮力と剪断力を付与することと、摩
擦片で処理された粉体層に対し、掻取り片により
掻取り作用と分散作用と撹拌作用を付与すること
を、組合わせると共に繰返し実行すると、粉粒体
の混合、造粒、球形化、コーテイング、カプセル
化が可能であり、しかも、それらの処理を従来技
術よりも優れた状態で実現できる事実を確認でき
たのである。
It was confirmed through experiments that the material to be treated is strongly pressed against the inner peripheral surface of the casing using the centrifugal force generated by the high-speed rotation of the casing, and strong compressive force and shearing force are applied to the powder layer formed by the friction pieces. By combining and repeatedly applying the scraping action, dispersion action, and stirring action using the scraping pieces to the powder layer treated with the friction pieces, mixing, granulation, spheroidization, and We were able to confirm that coating and encapsulation are possible, and that these processes can be achieved in a manner superior to conventional techniques.

さらに個々の処理はついて詳述すると次の通り
である。
Further details of each process are as follows.

(イ) 混合 マクロ的のみならずミクロ的にも十分に均一
混合された精度の極めて高い混合を確実に実現
できた。
(b) Mixing We were able to reliably achieve highly accurate mixing that was sufficiently uniform not only macroscopically but also microscopically.

その原因は、摩擦片による強力な圧縮力と剪
断力により被処理材が十分に微粉砕されるこ
と、及び、掻取り片により全体的に十分な分散
と撹拌が付与されることの相乗作用にあると推
測される。
This is due to the synergistic effect of the strong compressive force and shearing force of the friction pieces to sufficiently pulverize the material to be treated, and the scraping pieces to provide sufficient overall dispersion and agitation. It is assumed that there is.

(ロ) 造粒 必要に応じて水や油脂(液剤)あるいは低融
点物質を少量添加し、あるいは、必要に応じて
加熱を加えて処理すると、各種の被処理材を対
象にして、50μm以下の微小造粒物を容易に得
られ、また、粒径にかかわらず結合力が十分に
強力な造粒物を確実に得られた。
(b) Granulation By adding a small amount of water, oil (liquid), or a low-melting point substance, or by applying heat as necessary, various materials to be treated can be made into particles of 50 μm or less. Microgranules could be easily obtained, and granules with sufficiently strong bonding force could be reliably obtained regardless of the particle size.

尚、造粒物の粒形はケーシングの回転が遅い
ほど大になり、また、処理時間が長いほど大形
化しかつ球形化することが判明した。
It has been found that the slower the rotation of the casing, the larger the shape of the granules becomes, and the longer the processing time, the larger and more spherical the granules become.

(ハ) 球形化 ヒゲ状や海綿状の高分子有機物、異径状の合
成樹脂等、各種形状の被処理材を十分に球形化
でき、適用範囲を十分に拡大できた。
(c) Spheronization It was possible to sufficiently spheroidize various shapes of treated materials, such as whisker-like or spongy organic polymers, and synthetic resins with different diameters, and the range of application was sufficiently expanded.

(ニ) コーテイング又はカプセル化 高分子有機物、シリカなどの無機物から成る
1〜50μm程度の微粉の表面を、酸化チタン、
酸化鉄、顔料、その他の無機物や有機物から成
る0.001〜5μm程度の微粉で覆つたり、あるい
は、微粉どうしが複合化した微細物を容易に得
られた。
(d) Coating or encapsulation The surface of fine powder of about 1 to 50 μm made of organic polymers and inorganic substances such as silica is coated with titanium oxide,
It was possible to easily obtain fine particles covered with fine powder of about 0.001 to 5 μm consisting of iron oxide, pigments, and other inorganic or organic substances, or a composite of fine powders.

その原因は、上記(イ)項の混合で述べたように高
精度の混合が実現される上に、微粉や超微粉の表
面が摩擦片による強力な剪断力で活性化され、そ
の表面が活性化した微粉や超微粉が互いに摩擦片
で強力に圧縮、摩擦されることによりメカノケミ
カル的に強力に結合し、複合化粒子が生成するこ
とにあると推測される。また、互いに混合する被
処理材の一方が高分子有機物である場合、摩擦片
の作用により高分子有機物が軟化されると共に他
方の被処理材が軟化高分子有機物の内部に押込ま
れるため、コーテイングやカプセル化が実現でき
ると推測される。
The reason for this is that high-precision mixing is achieved as described in the mixing section (a) above, and the surface of the fine powder or ultra-fine powder is activated by the strong shearing force caused by the friction pieces. It is presumed that the resulting fine powders and ultrafine powders are strongly compressed and rubbed against each other by friction pieces, resulting in strong mechanochemical bonding and the formation of composite particles. Furthermore, when one of the treated materials to be mixed with each other is a high-molecular organic substance, the high-molecular organic substance is softened by the action of the friction piece, and the other treated material is pushed into the softened high-molecular organic substance, so that the coating It is assumed that encapsulation can be realized.

微粉にコロイド状物質(液剤)を添加すると、
微粉をコロイド状物質で覆うことができ、必要に
応じて加熱を加えて処理すると、良好なコーテイ
ングを実現でき、また、必要に応じて乾燥を加え
て又は加熱溶融と冷却を加えて処理すると、良好
なカプセル化を実現できた。
When a colloidal substance (liquid) is added to fine powder,
A fine powder can be coated with a colloidal substance, and if necessary, it can be heated to achieve a good coating, and if necessary, it can be dried or heated and melted and cooled to achieve a good coating. Good encapsulation was achieved.

香料をサイクロデキストリン中に封入する等、
低温気化物質をカプセル材に封入することができ
た。
Encapsulating fragrances in cyclodextrin, etc.
The low-temperature vaporized substance could be encapsulated in the capsule material.

〔発明の効果〕〔Effect of the invention〕

その結果、極めて高精度な混合、微小なあるい
は強固に結合した造粒、粉粒体の形状に制限を受
けない球形化化、微粉どうしの混合によるコーテ
イングやカプセル化、微粉とコロイド状物質の混
合によるコーテイングやカプセル化、低温気化物
質をカプセル材に封入するカプセル化、などの各
種粉粒体処理を良好に実行できる、便利な粉粒体
処理方法を確立できた。
As a result, extremely high-precision mixing, fine or strongly bonded granulation, spheroidization that is not limited by the shape of powder or granules, coating or encapsulation by mixing fine powders, and mixing fine powders and colloidal substances. We have established a convenient powder processing method that can successfully carry out various powder processing methods such as coating and encapsulation, and encapsulation in which a low-temperature vaporized substance is enclosed in an encapsulating material.

請求項5に記載の粉粒体処理装置を提供するこ
とによつて、上述の優れた粉粒体処理を容易確実
に実行できるようになつた。
By providing the granular material processing apparatus according to claim 5, the above-mentioned excellent granular material processing can be carried out easily and reliably.

〔実施例〕〔Example〕

次に、第1図及び第2図により実施例を示す。 Next, an example will be shown with reference to FIGS. 1 and 2.

基台1に取付けられた縦向き回転軸2の上端
に、処理室3を形成する有低筒状ケーシング4を
同芯状に取付け、電動モータ5a及び変速機5b
等から成る駆動装置5を回転軸2の下端に連動さ
せて、ケーシング4をその内部の被処理材が遠心
力によりケーシング内周面4aに押付けられるよ
うに駆動回転すべく構成し、かつ、被処理材の性
状に応じて適切な遠心力が得られるようにケーシ
ング4の回転速度を調整可能に構成してある。
A low cylindrical casing 4 forming a processing chamber 3 is attached concentrically to the upper end of a vertical rotating shaft 2 attached to a base 1, and an electric motor 5a and a transmission 5b are attached.
A drive device 5 consisting of the like is connected to the lower end of the rotating shaft 2 to drive and rotate the casing 4 so that the material to be treated inside the casing 4 is pressed against the inner circumferential surface 4a of the casing by centrifugal force. The rotation speed of the casing 4 is configured to be adjustable so that an appropriate centrifugal force can be obtained depending on the properties of the material to be treated.

ケーシング4はカバー7で包囲され、ケーシン
グ4の下部にはフアン12を連設して、カバー7
に形成した吸気口13から外気を吸引して、吸引
外気によりケーシング4を冷却するように構成
し、また、吸引外気をカバー7に接続した搬送用
流路10に処理物搬送用ガスとして導くように構
成してある。
The casing 4 is surrounded by a cover 7, and a fan 12 is connected to the lower part of the casing 4 to close the cover 7.
The structure is such that outside air is sucked in through an intake port 13 formed in the casing 4 and the casing 4 is cooled by the sucked outside air, and the sucked outside air is guided to a conveyance channel 10 connected to the cover 7 as a gas for conveying the processed material. It is structured as follows.

処理物を処理室3からカバー7側に移すため
に、ケーシング4の上端中心部を開口させて処理
物に対するオーバーフロー式排出口11を形成し
てある。
In order to transfer the processed material from the processing chamber 3 to the cover 7 side, the upper center of the casing 4 is opened to form an overflow type discharge port 11 for the processed material.

排出口11からの処理物の送出しを規制する堰
21を設け、堰21を下げることにより排出口1
1を閉じられるように構成してある。つまり、堰
21により排出口11を閉じ、搬送用流路10を
閉じ、フアン12を除去し、そのかわり後述のジ
ヤケツト等により冷却や加熱を行うことにより、
本装置のバツチ運転を可能にしてある。この場合
の処理物の取り出しは運転停止後の処理室3内に
外部吸引装置に接続させた管を挿入し、吸引力に
よつて行う。
A weir 21 is provided to regulate the delivery of the processed material from the discharge port 11, and by lowering the weir 21, the discharge port 1
1 can be closed. That is, by closing the discharge port 11 with the weir 21, closing the conveyance channel 10, removing the fan 12, and performing cooling or heating with a jacket or the like, which will be described later,
Batch operation of this device is possible. In this case, the material to be treated is taken out by inserting a pipe connected to an external suction device into the processing chamber 3 after the operation is stopped, and using suction force.

回転軸2と同芯2の回転軸8aの上端部に固定
した円錐状部分8cをケーシング4内に設け、円
錐状部分8cに取付けた支持体8bの先端部に、
ケーシング内周面4aとの協動で被処理材に圧縮
力と摩擦力を付与する摩擦片9a、及び、被処理
材に掻取り作用、分散作用及び撹拌作用を付与す
る掻取り片9bを取付け、ケーシング4回転方向
において適当な間隔で摩擦片9aと掻取り片9b
を処理室3内に配置してある。摩擦片9aにはケ
ーシング4との〓間がケーシング4回転方向側ほ
ど狭くなるように形成した傾斜面を形成し、掻取
り片9bにはケーシング4との〓間がケーシング
4回転方向側ほど広くなる作用面を形成し、その
作用面をケーシング4回転方向側ほど幅広となる
くさび状又は櫛歯状に形成してある。
A conical portion 8c fixed to the upper end of the rotating shaft 8a concentric with the rotating shaft 2 is provided in the casing 4, and a support body 8b attached to the conical portion 8c has a distal end thereof.
A friction piece 9a that applies compressive force and frictional force to the material to be treated in cooperation with the inner circumferential surface 4a of the casing, and a scraping piece 9b that imparts a scraping action, a dispersion action, and a stirring action to the material to be processed are attached. , a friction piece 9a and a scraping piece 9b are arranged at appropriate intervals in the direction of rotation of the casing 4.
are arranged in the processing chamber 3. The friction piece 9a is formed with an inclined surface such that the distance between the friction piece 9a and the casing 4 becomes narrower toward the rotation direction of the casing 4, and the scraping piece 9b has an inclined surface formed such that the distance between the scraping piece 9b and the casing 4 becomes wider toward the rotation direction of the casing 4. The working surface is formed into a wedge shape or a comb-like shape that becomes wider toward the casing four rotation direction side.

回転軸8a内には、支持体8b、摩擦片9a、
掻取り片9bに加熱、冷却用媒体を流入させるた
めの通路27を形成し、ロータリージヨイント2
4を介して通路27に熱媒体の貯蔵タンク26を
接続してある。
Inside the rotating shaft 8a, there are a support 8b, a friction piece 9a,
A passage 27 for allowing heating and cooling medium to flow into the scraping piece 9b is formed, and the rotary joint 2
A storage tank 26 for a heating medium is connected to the channel 27 via a line 4 .

回転軸8aは駆動装置5に対して、ケーシング
4と一定の回転差、又は一定の速度差をもつて摩
擦片9a及び掻取り片9bが相対回転するように
連動されている。つまり摩擦片9aと掻取り片9
bをケーシング4に対して同軸芯周りで同方向
に、かつ、やや遅い速度で駆動回転させて、ケー
シング内周面4aに形成した粉対層に摩擦片9a
と掻取り片9bを作用させるように構成してあ
る。
The rotating shaft 8a is interlocked with the drive device 5 so that the friction pieces 9a and the scraping pieces 9b rotate relative to each other with a constant rotational difference or a constant speed difference with the casing 4. In other words, the friction piece 9a and the scraping piece 9
b is driven and rotated in the same direction around the coaxial core of the casing 4 at a slightly slower speed, and the friction piece 9a is applied to the powder layer formed on the inner circumferential surface 4a of the casing.
The structure is such that the scraping piece 9b is activated.

なお、摩擦片9aと掻取り片9bは必要により
回転を停止させ、相対速度を大きくして撹拌力を
増すこともできる。摩擦片9a、掻取り片9bは
形状、材質、設置数、その他において適当に変更
できる。
Note that the rotation of the friction pieces 9a and the scraping pieces 9b can be stopped if necessary, and the relative speed can be increased to increase the stirring force. The friction piece 9a and the scraping piece 9b can be appropriately changed in shape, material, number of installed pieces, etc.

カバー7の中心部に、円錐状部分8cに向けて
被処理材を流下供給させるための経路6をパイプ
14の付設によつて形成し、カバー7の上部に、
ケーシング内周面4aに向けて水、油等を供給す
るためのノズル22と、ケーシング4内に滞留し
た被処理材を吸引排出するための吸込管23が付
設され、又、カバー7の周囲に、加熱又は冷却用
のガス、液体等の媒体を通すためのジヤケツト2
5を形成してある。
At the center of the cover 7, a path 6 for supplying the material to be treated downward toward the conical portion 8c is formed by attaching a pipe 14, and at the top of the cover 7,
A nozzle 22 for supplying water, oil, etc. toward the inner peripheral surface 4a of the casing, and a suction pipe 23 for suctioning and discharging the material to be treated that has accumulated inside the casing 4 are attached. , jacket 2 for passing medium such as heating or cooling gas, liquid, etc.
5 is formed.

本装置を連続的に運転する場合の付帯設備とし
て、捕集器15と排風機16をその順に流路10
に接続し、捕集器15の排出口をロータリフイー
ダ17により供給経路6に接続して、一部処理不
十分なものを再度処理するように構成してある。
As ancillary equipment when this device is operated continuously, a collector 15 and an exhaust fan 16 are installed in the flow path 10 in that order.
The discharge port of the collector 15 is connected to the supply path 6 by a rotary feeder 17, so that partially untreated materials can be reprocessed.

必要により加熱及び冷却させた適量の空気や不
活性ガス等を供給する送風機18、被処理材供給
用フイーダ19、及び、別の工程で処理された被
処理材を供給するフイーダ20を供給経路6に接
続し、被処理材の状態に応じた供給形態を採用で
きるよう構成してある。
A blower 18 that supplies an appropriate amount of heated and cooled air or inert gas as necessary, a feeder 19 for supplying the material to be processed, and a feeder 20 that supplies the material to be processed processed in another process are connected to the supply route 6. It is configured so that a supply form can be adopted depending on the condition of the material to be processed.

なお、カバー7に送るガスは被処理材の材質に
応じて適当に選定でき、また、そのガスの種類に
応じた適当な給気手段、例えば電動ブロワーや加
圧ガスボンベ等を利用でき、それら各種手段を給
気装置12と総称する。
The gas to be sent to the cover 7 can be appropriately selected depending on the material of the material to be treated, and an appropriate air supply means can be used depending on the type of gas, such as an electric blower or a pressurized gas cylinder. The means are collectively referred to as an air supply device 12.

処理室3への被処理材供給設備や処理物回収設
備等、処理装置としての付帯設備は自由に変更、
追加、省略が可能である。
You can freely change the incidental equipment as a processing device, such as the equipment for supplying processed materials to the processing chamber 3 and the equipment for recovering processed materials.
Can be added or omitted.

〔別実施例〕[Another example]

処理装置は、水平又は傾斜した回転軸を有する
横型の配置であつてもよい。
The processing device may be of horizontal arrangement with a horizontal or inclined axis of rotation.

摩擦片はローラーであつてもよく、その場合、
ケーシング内周面4aにあわせてローラーを相対
回転されることで前記摩擦片9aと同様の作用効
果が得られる。
The friction piece may be a roller, in which case
By rotating the roller relative to the inner circumferential surface 4a of the casing, the same effect as that of the friction piece 9a can be obtained.

処理室3内に加熱又は冷却させた空気や不活性
ガスを供給するほか、処理室3内を冷却する目的
で液体窒素など冷媒を直接ケーシング4内に導入
させてもよい。
In addition to supplying heated or cooled air or inert gas into the processing chamber 3, a refrigerant such as liquid nitrogen may be directly introduced into the casing 4 for the purpose of cooling the processing chamber 3.

本発明の実施用途しては、多方面の分野で利用
でき、例えば塗料、粉体塗料、顔料釉薬、トナ
ー、印刷・転写材料、食料、飼料、肥料、医薬
品、工業薬品、紫外線殺菌、殺菌材料、脱臭剤、
香料、化粧料、衣料、セメント、離型剤、樹脂成
形材料、製紙用添加剤、電磁波吸収材、遠赤外線
材料、制電調整剤、デイスク材料、液晶材料等の
ほか、標準粉体としても利用できる。
The present invention can be used in a wide variety of fields, such as paints, powder coatings, pigment glazes, toners, printing/transfer materials, foods, feeds, fertilizers, pharmaceuticals, industrial chemicals, ultraviolet sterilization, and sterilizing materials. , deodorizer,
Used in fragrances, cosmetics, clothing, cement, mold release agents, resin molding materials, paper manufacturing additives, electromagnetic wave absorbers, far-infrared ray materials, anti-static adjusters, disk materials, liquid crystal materials, etc., as well as standard powders. can.

〔実験例〕[Experiment example]

以下に実験例を記載する。 Experimental examples are described below.

実験例 1 粒径0.01〜0.2μmの酸化チタンと平均粒径
0.005μmの酸化第二鉄を1対99の配合比で前述の
装置により混合処理したところ、水中、油中にお
いても分離せず、長期間保存しても分離しない混
合物が得られ、顔料、化粧料等の混合、配合に利
用できることが判つた。
Experimental example 1 Titanium oxide with a particle size of 0.01 to 0.2 μm and an average particle size
When 0.005μm ferric oxide was mixed with the above-mentioned device at a mixing ratio of 1:99, a mixture was obtained that did not separate even in water or oil, and did not separate even after long-term storage, and was useful for pigments, cosmetics, etc. It was found that it can be used for mixing and blending ingredients, etc.

実験例 2 マイカ超微粉、酸化チタン、アルミナ、酸化珪
素、コロイダルシリカを前述の装置により造粒処
理し、かつ、180〜250℃で乾燥処理した。材料の
粒径と配合比は以下の通りである。
Experimental Example 2 Ultrafine mica powder, titanium oxide, alumina, silicon oxide, and colloidal silica were granulated using the above-mentioned apparatus and dried at 180 to 250°C. The particle size and blending ratio of the materials are as follows.

マイカ超微粉 平均粒径0.6μm 40% 酸化チタン 〃 0.1μm 15% アルミナ 〃 0.1μm 5% 酸化硅素 〃 0.05μm 20% コロイダルシリカ 〃 0.015μm 20% (固形分濃度20%) その結果、第3図に示すように1〜100μmの
球状造粒物が得られ、顔料、塗料、化粧料、標準
粉体等に利用できることが判つた。
Ultrafine mica powder Average particle size 0.6μm 40% Titanium oxide 〃 0.1μm 15% Alumina 〃 0.1μm 5% Silicon oxide〃 0.05μm 20% Colloidal silica 〃 0.015μm 20% (solid content concentration 20%) As a result, Figure 3 As shown in Figure 2, spherical granules with a diameter of 1 to 100 μm were obtained, and it was found that they could be used for pigments, paints, cosmetics, standard powders, etc.

実験例 3 第4図に示すように20〜100μmの異方形、海
綿状、ヒゲ状の四弗化エチレン樹脂を前述の装置
により球形化処理したところ、5分後には第5図
に示すように10〜30μmの球形及び楕円形にな
り、40分後には第6図に示すように30〜60μmの
楕円形、円形となり、樹脂成形材料、トナー等に
利用できることが判つた。
Experimental Example 3 As shown in Figure 4, anisotropic, spongy, and whisker-shaped tetrafluoroethylene resin with a size of 20 to 100 μm was spheronized using the above-mentioned apparatus, and after 5 minutes, it became spherical as shown in Figure 5. It became spherical and elliptical with a size of 10 to 30 μm, and after 40 minutes, it became an ellipse and a circle with a size of 30 to 60 μm as shown in FIG. 6, and it was found that it could be used for resin molding materials, toners, etc.

実験例 4 粒径3〜15μmのポリアミド樹脂球と粒径0.1〜
0.2μmの酸化チタン粉末を前記の装置により静電
気付与状態でかつ加熱状態でコーテイング処理し
たところ、第7図に示すようなコーテイング物質
が得られ、化粧料等に利用できることが判つた。
Experimental example 4 Polyamide resin spheres with a particle size of 3 to 15 μm and a particle size of 0.1 to 15 μm
When 0.2 μm titanium oxide powder was coated with the above-mentioned device under electrostatic charge and heating, a coating material as shown in FIG. 7 was obtained, and it was found that it could be used in cosmetics and the like.

実験例 5 平均粒径2μmのシリコーン樹脂球に平均粒径
0.015μmの酸化チタンをコーテイングさせるの
に、まずシリコーン球の表面を前述の装置により
摩擦して活性化させ、次に酸化チタンを前述の装
置に投入したところ第8図に示すようなコーテイ
ング物質が得られ、疎水性のシリコーンの性質が
親水性に変わつた。
Experimental example 5 Silicone resin spheres with an average particle size of 2 μm
To coat the 0.015 μm titanium oxide, first the surface of the silicone sphere was activated by rubbing with the above-mentioned device, and then the titanium oxide was put into the above-mentioned device, and the coating material as shown in Figure 8 was formed. The hydrophobic silicone properties were changed to hydrophilic properties.

実験例 6 実験例5で得たコーテイング物質の表面に前述
の装置でさらに酸化鉄をコーテイングした。酸化
鉄は脂肪酸を分散材に使用したもので平均粒径
0.005μmである。
Experimental Example 6 The surface of the coating material obtained in Experimental Example 5 was further coated with iron oxide using the above-mentioned apparatus. Iron oxide uses fatty acids as a dispersant and has an average particle size of
It is 0.005 μm.

その結果、第9図に示すようなコーテイング物
質が得られ、酸化チタンのコーテイングで親水性
に変わつたものが、再度疎水性の性質に戻り、吸
油性を増すものとなり、化粧料、離型剤、顔料な
どに利用できることが判つた。
As a result, a coating material as shown in Figure 9 was obtained, and the material that had become hydrophilic due to the titanium oxide coating returned to hydrophobic properties and increased oil absorption, making it useful for use in cosmetics, mold release agents, etc. It was found that it can be used for pigments, etc.

実験例 7 平均粒径6.7μmのポリメチルメタアクリレート
球の表面に平均粒径0.015μmの酸化チタンを前述
の装置でコーテイングしたところ、第10図に示
すようなコーテイング物質が得られた。
Experimental Example 7 When titanium oxide with an average particle size of 0.015 μm was coated on the surface of polymethyl methacrylate spheres with an average particle size of 6.7 μm using the above-mentioned apparatus, a coating material as shown in FIG. 10 was obtained.

つまり、ケーシングの温度がポリメチルメタア
クリレートのガラス転移点を越え、摩擦によつて
ポリメチルメタアルリレートの表面温度が200℃
近くに達すると、表面部分で酸化チタンとの捏和
作用が起こり始め、更に運転の継続でポリメチル
メタアクリレート内部への酸化チタンの拡散が進
み、その結果、上記コーテイング物質が得られる
のである。上記コーテイングは負の静電気をもつ
て安息角ゼロの非常に分散性のよい球状粒子であ
り、化粧料、トナー、顔料ベース、塗料、標準粉
体等として利用できることが判つた。
In other words, the temperature of the casing exceeds the glass transition point of polymethylmethacrylate, and the surface temperature of polymethylmethacrylate rises to 200℃ due to friction.
When it reaches close range, a kneading effect with titanium oxide begins to occur at the surface portion, and as the operation continues, the titanium oxide diffuses into the interior of the polymethyl methacrylate, and as a result, the above-mentioned coating material is obtained. It has been found that the above coating is a highly dispersible spherical particle with a negative electrostatic charge and zero angle of repose, and can be used as cosmetics, toners, pigment bases, paints, standard powders, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による粉粒体処理装
置の実施例を示し、第1図は全体概念図、第2図
は第1図の−線断面図である。第3図ないし
第10図は本発明における実験例で得られた物質
の顕微鏡写真である。 3……処理室、4……ケーシング、4a……ケ
ーシング内周面、5……駆動装置、9a……摩擦
片、9b……掻取り片。
1 and 2 show an embodiment of a powder processing apparatus according to the present invention, FIG. 1 is an overall conceptual diagram, and FIG. 2 is a sectional view taken along the line -- in FIG. 1. Figures 3 to 10 are micrographs of materials obtained in experimental examples of the present invention. 3... Processing chamber, 4... Casing, 4a... Casing inner peripheral surface, 5... Drive device, 9a... Friction piece, 9b... Scraping piece.

Claims (1)

【特許請求の範囲】 1 ケーシング4を高速回転させて、被処理材を
前記ケーシング4の内周面4aに押付け、その押
付けにより前記ケーシング内周面4aに形成した
粉体層に摩擦片9aにより圧縮力と剪断力を付与
する粉粒体処理方法であつて、 前記ケーシング内周面4aの粉体層に掻取り片
9bにより掻取り作用、分散作用及び撹拌作用を
付与し、 前記摩擦片9aと前記掻取り片9bの協働作用
により混合、造粒、球形化、コーテイング、カプ
セル化のいずれかの処理を被処理材に施す粉粒体
処理方法。 2 前記造粒、コーテイング、カプセル化のいず
れかの処理に際して、被処理材に液剤を添加する
請求項1記載の粉粒体処理方法。 3 前記造粒又はコーテイング処理に際して被処
理材を加熱する請求項1又は2記載の粉粒体処理
方法。 4 前記カプセル化に際して被処理材を加熱し、
その後で冷却する請求項1又は2記載の粉粒体処
理方法。 5 処理室3を形成するケーシング4を回転自在
に設け、前記ケーシング4をその内部の被処理材
が遠心力によりケーシング内周面4aに押付けら
れるように高速回転させる駆動装置5を設け、前
記ケーシング内周面4aの粉体層に圧縮力と剪断
力を付与する摩擦片9aを、前記ケーシング内周
面4aに対して相対回転自在に設けた粉粒体処理
装置であつて、 前記ケーシング内周面4aの粉体層に掻取り作
用、分散作用及び撹拌作用を付与する掻取り片9
bを、前記ケーシング内周面4aに対して相対回
転自在に設けてある粉粒体処理装置。 6 前記ケーシング4、前記摩擦片9a及び前記
掻取り片9bが加熱や冷却のための機構を有して
いる請求項5記載の粉粒体処理装置。 7 前記掻取り片9bの作用面を形成するに、前
記ケーシング内周面4aとの間隔及び作用面の幅
が前記ケーシング4の相対回転方向側ほど大にな
るクサビ状又は櫛刃状の形状にしてある請求項5
又は6記載の粉粒体処理装置。
[Claims] 1. The casing 4 is rotated at high speed to press the material to be treated against the inner circumferential surface 4a of the casing 4, and the powder layer formed on the inner circumferential surface 4a of the casing due to the pressing is coated with the friction piece 9a. A method for processing powder and granular material that applies compressive force and shearing force, the scraping action, dispersion action, and stirring action being applied to the powder layer on the inner circumferential surface 4a of the casing by means of scraping pieces 9b, and the friction pieces 9a and the scraping piece 9b to perform any one of mixing, granulation, spheroidization, coating, and encapsulation on a material to be treated. 2. The powder processing method according to claim 1, wherein a liquid agent is added to the material to be processed during any one of the granulation, coating, and encapsulation treatments. 3. The powder processing method according to claim 1 or 2, wherein the material to be processed is heated during the granulation or coating treatment. 4. Heating the material to be treated during the encapsulation,
The method for processing powder or granular material according to claim 1 or 2, wherein the method is followed by cooling. 5. A casing 4 forming a processing chamber 3 is rotatably provided, and a drive device 5 is provided for rotating the casing 4 at high speed so that the material to be processed inside the casing 4 is pressed against the inner circumferential surface 4a of the casing by centrifugal force. A powder and granular material processing device in which a friction piece 9a that applies compressive force and shear force to the powder layer on the inner circumferential surface 4a is rotatably provided relative to the inner circumferential surface 4a of the casing, the inner circumferential surface of the casing A scraping piece 9 that imparts a scraping action, a dispersion action, and an agitation action to the powder layer on the surface 4a.
b is provided to be rotatable relative to the inner circumferential surface 4a of the casing. 6. The granular material processing apparatus according to claim 5, wherein the casing 4, the friction piece 9a, and the scraping piece 9b have a mechanism for heating and cooling. 7 The working surface of the scraping piece 9b is formed into a wedge-like or comb-like shape in which the distance from the inner circumferential surface 4a of the casing and the width of the working surface become larger toward the relative rotation direction of the casing 4. Claim 5
Or the powder processing device according to 6.
JP61186642A 1986-04-18 1986-08-07 Method and apparatus for treating particulate matter Granted JPS6342728A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61186642A JPS6342728A (en) 1986-08-07 1986-08-07 Method and apparatus for treating particulate matter
DE91100425T DE3787175T2 (en) 1986-04-18 1987-04-16 Device for treating particulate material.
DE8787105640T DE3775597D1 (en) 1986-04-18 1987-04-16 DEVICE FOR TREATING PARTICULATE MATERIAL.
EP87105640A EP0241930B1 (en) 1986-04-18 1987-04-16 Particulate material treating apparatus
US07/039,140 US4789105A (en) 1986-04-18 1987-04-16 Particulate material treating apparatus
CA000535019A CA1279304C (en) 1986-04-18 1987-04-16 Particulate material treating apparatus
EP91100425A EP0421980B1 (en) 1986-04-18 1987-04-16 Particulate material treating apparatus
KR1019870003720A KR900005175B1 (en) 1986-04-18 1987-04-18 Particulate material treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186642A JPS6342728A (en) 1986-08-07 1986-08-07 Method and apparatus for treating particulate matter

Publications (2)

Publication Number Publication Date
JPS6342728A JPS6342728A (en) 1988-02-23
JPH0478341B2 true JPH0478341B2 (en) 1992-12-10

Family

ID=16192159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186642A Granted JPS6342728A (en) 1986-04-18 1986-08-07 Method and apparatus for treating particulate matter

Country Status (1)

Country Link
JP (1) JPS6342728A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217347A (en) * 1989-02-15 1990-08-30 Hosokawa Micron Corp Production of ceramic raw material, ceramic raw material obtained by same production and molded article thereof
JP2760880B2 (en) * 1989-09-05 1998-06-04 ホソカワミクロン株式会社 Powder processing equipment
JPH0466139A (en) * 1990-07-03 1992-03-02 Hosokawa Micron Corp Powder processing device
NL9400618A (en) * 1994-04-18 1995-12-01 Goudsche Machinefabriek Bv Device for cooling and processing a molten product into a granulate product.
JP2005028356A (en) * 2003-06-17 2005-02-03 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method for producing composite particle and composite particle produced by the same
JP4580339B2 (en) * 2003-06-20 2010-11-10 ホソカワミクロン株式会社 Powder processing method and powder processing apparatus
WO2006035553A1 (en) * 2004-09-29 2006-04-06 Nittech Co., Ltd. Spherical capsule having outer coating layer and containing glazing material for forming glaze and coloring agent for coloring calcined glaze encapsulated therein
KR20110124436A (en) * 2010-05-11 2011-11-17 이스트힐(주) Composite pigment for cosmetic compositions and manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
JPS6342728A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
KR900005175B1 (en) Particulate material treating apparatus
US4915987A (en) Method of improving quality of surface of solid particles and apparatus thereof
AU643191B2 (en) Coloured powder coating compositions
TWI314865B (en)
JPH032009B2 (en)
JPH0338238A (en) Device and method for granulating powder material
JPH0478341B2 (en)
CN206295928U (en) A kind of homogeneous microcapsules preparation system of particle
JPS6164326A (en) Preparation of composite particle
JP2006143532A (en) Method of improving dispersibility of carbon nanotube
JP2005239531A (en) Spheric carbon nanotube aggregate, its manufacturing method and method for manufacturing composite material
JPS62262737A (en) Method for reforming surface of solid particle and its apparatus
KR100665042B1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
KR101200119B1 (en) Methods for forming pigment pseudoparticles
JPH0816795B2 (en) Toner manufacturing method and apparatus
JP4142318B2 (en) Method for producing drug-containing composite particles
JPH0461687B2 (en)
JP2001327850A (en) Centrifugal rolling granulator and powder and granular material treating method using the same
KR20070108798A (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JPH0542326B2 (en)
JP3890171B2 (en) Centrifugal rolling granulator and powder processing method using the same
US20030003229A1 (en) Centrifuged rotating drum for treating cohesive powders
CN113399093A (en) Method for preparing spheroidal powder by mechanical crushing method and spheroidal powder
JPS5973036A (en) Granulation coating apparatus
JPH05168895A (en) Method for modifying surface of solid grain

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term