JP2005239531A - Spheric carbon nanotube aggregate, its manufacturing method and method for manufacturing composite material - Google Patents

Spheric carbon nanotube aggregate, its manufacturing method and method for manufacturing composite material Download PDF

Info

Publication number
JP2005239531A
JP2005239531A JP2004146306A JP2004146306A JP2005239531A JP 2005239531 A JP2005239531 A JP 2005239531A JP 2004146306 A JP2004146306 A JP 2004146306A JP 2004146306 A JP2004146306 A JP 2004146306A JP 2005239531 A JP2005239531 A JP 2005239531A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
carbon nanotubes
spherical
aggregate
method
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004146306A
Other languages
Japanese (ja)
Other versions
JP4613268B2 (en )
Inventor
Jiyunzou Hachina
Isao Tanaka
純三 八名
勲 田中
Original Assignee
Nikkiso Co Ltd
Shimizu Corp
日機装株式会社
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily improve dispersibility of carbon nanotubes. <P>SOLUTION: A rotor 9 is rotated via a rotating shaft at about 100 m/s peripheral speed by a driving means not shown in the figure while a first opening/closing valve 3 and a second opening/closing valve 7 are closed. This generates a circulating air flow from an impact chamber 5 by way of an aperture above a collision ring 11, a circulation passage 6 and an aperture in the center of a front cover to the impact chamber 5. Then the first opening/closing valve 3 is opened, carbon nanotubes are put into the impact chamber 5 from a source material hopper 2, the carbon nanotubes are disintegrated for 3 to 30 minutes, and the carbon nanotubes are again aggregated and roll-granulated to obtain aggregates of spheric carbon nanotubes having 0.3-50 μm particle diameter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、球状カーボンナノチューブ集合体およびその製造方法並びに複合体の製造方法に関する。 The present invention relates to a process for producing spherical aggregates of carbon nanotubes and a manufacturing method thereof, and composites.

カーボンナノチューブは、直径が数nm〜十数nm、長さが数十nm〜数十μmのチューブ状の素材であり、燃料電池用電極や複合材料など多くの用途が検討されている。 Carbon nanotubes having a diameter several nm~ dozen nm, a tubular material having a length of several tens nm~ several tens [mu] m, such as many applications the electrode and composite material for a fuel cell has been studied. そして、これらの製品化においては、樹脂やバインダー中にカーボンナノチューブを分散させた後に成形することが多い。 At these commercialization, often molded after the carbon nanotubes dispersed in a resin or binder. 従って、樹脂やバインダー中におけるカーボンナノチューブの分散性の程度が最終製品の品質に大きく影響する。 Therefore, the degree of dispersion of the carbon nanotubes in a resin or binder greatly affects the quality of the final product.
カーボンナノチューブは極めて細い繊維状であるため、容易に絡み合い、樹脂やバインダー中あるいは各種の溶媒中における分散が悪い。 Since a carbon nanotube has an extremely fine fiber, easily entangled, poor dispersion in the resin or binder, or various solvents. そのため、分散性を向上させる方法として、メカノフュージョン法などの機械的粒子分散方法が提案されている(非特許文献1参照。)。 Therefore, as a method for improving the dispersibility, mechanical particle dispersion method such as a mechanofusion method has been proposed (see Non-Patent Document 1.). この方法は、粒子表面に強い機械的エネルギーを与えることによって、凝集性の高いナノサイズ粒子を解砕する方法である。 This method, by providing a strong mechanical energy to the particle surface, a method of crushing a highly cohesive nano-sized particles.

しかしながら、ナノサイズの繊維を解砕するのは容易ではなく、多大のエネルギーを必要とする。 However, it is not easy to crush the fibers of nanosize, and requires a great deal of energy. また、カーボンナノチューブ単独での解砕は困難で、通常は他の粉体粒子を添加し、その粒子表面にカーボンナノチューブを付着させることによって繊維をほぐすという方法が採られている。 The carbon nanotubes alone disintegration of the hard, usually is adopted a method of adding other powder particles, loosen fibers by depositing the carbon nanotubes on the surface of the particles.
本発明は、上述する問題点に鑑みてなされたもので、カーボンナノチューブの分散性を容易に向上させることを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to easily improve the dispersibility of the carbon nanotubes.

上記目的を達成するため、本発明に係る球状カーボンナノチューブ集合体では、カーボンナノチューブの形状が略球形であることを特徴とする。 To achieve the above object, the spherical carbon nanotube aggregate of the present invention, wherein the shape of the carbon nanotubes are substantially spherical.
また、本発明に係る球状カーボンナノチューブ集合体では、粒子径が0.3μm以上50μm以下であることが好適である。 Further, the spherical carbon nanotube aggregate of the present invention, it is preferable that the particle diameter is 0.3μm or more 50μm or less.
一般に、球状粒子は分散性や流動性が良い。 Generally, the spherical particles have good dispersibility and flowability. そこで、本発明では、カーボンナノチューブ集合体の形状を略球形とすることにより、カーボンナノチューブの分散性および流動性を向上させるものである。 Therefore, in the present invention, by making the shape of the aggregate of carbon nanotubes substantially spherical, and improves the dispersibility and flowability of the carbon nanotubes. しかし、発明者らの実験結果によれば、球状粒子の粒子径が0.3μm以下であると形状効果が得られず、逆に、球状粒子の粒子径が50μm以上では、添加した樹脂やバインダーや溶媒中で、重力の影響により球状粒子が沈降し分離してしまうことが確認された。 However, according to our experiments result, the particle diameter of the spherical particles is not obtained is the shape effect 0.3μm or less, on the contrary, the particle diameter of the spherical particles is 50μm or more, the added resin or binder in or in a solvent, spherical particles it was confirmed that results in separated sedimentation under the influence of gravity. そこで、本発明では、カーボンナノチューブが、からみ合った集合体としての粒子径が0.3μm以上50μm以下を好適とする。 Therefore, in the present invention, carbon nanotubes, the particle size of the aggregate entangled is preferably made of 0.3μm or 50μm or less.

また、本発明に係る球状カーボンナノチューブ集合体の製造方法では、高速気流中衝撃法を用いてカーボンナノチューブを解砕処理した後、当該カーボンナノチューブを再凝集させることにより、当該カーボンナノチューブの集合体を球状化することを特徴とする。 In the method for producing the spherical carbon nanotube aggregate of the present invention, after the disintegration of the carbon nanotubes using a high speed air stream impact method, by re-aggregating the carbon nanotubes, an aggregate of the carbon nanotubes characterized by spheronization.
ここで、高速気流中衝撃法とは、高速気流中衝撃装置を使用して、高速気流中における粒子同士の衝突や装置内壁への衝突を誘発することにより、粒子表面に強い機械的エネルギーを付与し、粒子を解砕する処理方法のことである。 Here, the high speed air stream impact method, using a high speed air stream impact device, by inducing collision of the collision and inner walls of the apparatus between the particles in a high speed gas stream, giving a strong mechanical energy to the particle surface and it refers to a processing method for crushing the particles. また、解砕とは、凝集した粒子を解きほぐすことである。 Further, disintegration and is to disentangle the aggregated particles.
本発明では、高速気流中衝撃法を用いてカーボンナノチューブを解砕処理した後、当該カーボンナノチューブを再凝集させることにより、カーボンナノチューブが転動造粒し、カーボンナノチューブ集合体の形状が球形になるのである。 In the present invention, after the disintegration of the carbon nanotubes using a high speed air stream impact method, by re-aggregating the carbon nanotubes, the carbon nanotubes are rolling granulation, the shape of the aggregate of carbon nanotubes is spherical than is. この際、高速気流中衝撃法による解砕処理時間をコントロールすることによって、カーボンナノチューブ集合体の形状や粒子径の制御が可能となる。 At this time, by controlling the cracking treatment time by high speed air stream impact method, it is possible to control the shape and particle diameter of the carbon nanotube aggregate. 例えば、3分間程度の解砕処理であれば、カーボンナノチューブ集合体の球状化は十分ではないが、粒子表面からカーボンナノチューブの繊維が長く延びたクラゲ状の集合体粒子を製造することができる。 For example, if the crushing treatment for about 3 minutes, spheroidization of the carbon nanotube aggregate is not sufficient, it is possible to produce a jellyfish-like aggregate particles fibers of the carbon nanotube from the particle surface is elongate. 10分間以上の解砕処理であれば、完全な球形に近いものが得られる。 If cracking treatment for more than 10 minutes, to obtain close to a perfect sphere. さらに処理時間を長くすると、造粒が進行し、粒子1個の密度が大きくなり、粒子径は小さくなるが、30分間を越えて解砕処理すると、集合体が壊れ始め、さらに粒子径が0.3μmより小さくなり、形状効果が得られない。 Further processing time longer, granulation proceeds and becomes large single density particles, although the particle size becomes smaller, when disintegrated beyond 30 minutes, beginning broken aggregates, further particle diameter 0 .3μm becomes smaller than, not the shape effect.

また、本発明に係る球状カーボンナノチューブ集合体の製造方法では、前記高速気流中衝撃法によるカーボンナノチューブの解砕に際し、水またはアルコールやカルボン酸などの親水性物質を添加することにより、カーボンナノチューブを親水化処理してもよい。 In the method for producing the spherical carbon nanotube aggregate of the present invention, upon disintegration of the carbon nanotube by the high speed air stream impact method, by adding a hydrophilic substance such as water or alcohol or carboxylic acid, the carbon nanotubes it may be subjected to a hydrophilic treatment.
本発明では、高速気流中におけるカーボンナノチューブ同士の衝突や装置内壁への衝突によってカーボンナノチューブ表面に生じる強い機械的エネルギーを使って、カーボンナノチューブ表面と、水または親水性物質との化学反応を促進させ、カーボンナノチューブ表面に親水性の官能基(例えば、水酸基やカルボキシル基)を導入する。 In the present invention, by using a strong mechanical energy produced in the carbon nanotube surface by collision of the collision and inner walls of the apparatus between the carbon nanotubes in a high speed gas stream, to promote the carbon nanotube surface, the chemical reaction with water or hydrophilic materials , the carbon nanotube surface to introduce hydrophilic functional groups (e.g., hydroxyl group or carboxyl group). その結果、カーボンナノチューブの親水性が改善され、親水性溶媒やバインダーへの分散性がさらに向上するものである。 The result is improved hydrophilicity of the carbon nanotubes, in which is further improved dispersibility in a hydrophilic solvent and a binder.

また、本発明に係る球状カーボンナノチューブ集合体の製造方法では、前記水または前記親水性物質に代えて、酸素または過酸化水素水を添加してもよい。 In the method for producing the spherical carbon nanotube aggregate of the present invention, instead of the water or the hydrophilic material may be added to oxygen or hydrogen peroxide.
本発明によれば、カーボンナノチューブ表面が酸化されることにより、カーボンナノチューブの親水性が改善される。 According to the present invention, by the carbon nanotube surface is oxidized, hydrophilic carbon nanotubes is improved.
また、本発明に係る球状カーボンナノチューブ集合体の製造方法では、前記水または前記親水性物質に代えて、アルコールと空気の混合ガスを添加してもよい。 In the method for producing the spherical carbon nanotube aggregate of the present invention, instead of the water or the hydrophilic material may be added to the gas mixture of alcohol and air.
本発明によれば、カーボンナノチューブ表面をアルコールと空気の混合ガスで改質することにより、カーボンナノチューブの親水性が改善される。 According to the present invention, by modifying the carbon nanotube surface with a mixed gas of alcohol and air, the hydrophilic carbon nanotubes is improved.
また、本発明に係る球状カーボンナノチューブ集合体の製造方法では、前記水または前記親水性物質に代えて、前記高速気流中衝撃法に使用する円筒状の装置の内周面を冷却してもよい。 In the method for producing the spherical carbon nanotube aggregate of the present invention, instead of the water or the hydrophilic material, the inner circumferential surface of the cylindrical apparatus for use in the high speed air stream impact method may be cooled .
本発明では、円筒状の高速気流中衝撃装置の内周面を冷却することにより、当該内周面に結露を生じさせ、結露による水分がカーボンナノチューブの改質に活用され、カーボンナノチューブの親水性が改善されるものである。 In the present invention, by cooling the inner circumferential surface of a cylindrical high-speed air stream in the impact device, causing dew condensation on the inner peripheral surface, the moisture due to condensation is utilized in the modification of carbon nanotubes, the carbon nanotubes hydrophilic There is intended to be improved.

また、本発明に係る複合体の製造方法では、請求項1または2に記載の球状カーボンナノチューブ集合体を硬化剤に添加した後、当該硬化剤と基材を混合して成型することを特徴とする。 In the method for producing a composite according to the present invention, after the addition of the spherical aggregate of carbon nanotubes according to the hardener to claim 1 or 2, and characterized in that molding by mixing the curing agent and the substrate to.
本発明では、球状カーボンナノチューブ集合体を硬化剤に添加した後、当該硬化剤と基材を混合して成型することにより、曲げ強度や曲げ弾性率を維持しつつ、あるいは増大させつつ導電性の高い複合体を製造することが可能となる。 In the present invention, after the addition of the spherical aggregate of carbon nanotubes in the curing agent, by molding a mixture of the curing agent and the substrate, the bending strength and bending while maintaining the modulus of elasticity, or the conductive property while increasing it is possible to manufacture a highly complex.

本発明によれば、カーボンナノチューブ集合体の形状を略球形とし、且つ、その粒子径を0.3μm以上50μm以下とすることにより、カーボンナノチューブの分散性を容易に向上させることができる。 According to the present invention, the shape of the carbon nanotube aggregate were substantially spherical, and by the particle size and 0.3μm or 50μm or less, it is possible to easily improve the dispersibility of the carbon nanotubes.

以下、本発明に係る球状カーボンナノチューブ集合体およびその製造方法について図面に基いて説明する。 Hereinafter, the spherical aggregate of carbon nanotubes and a manufacturing method according to the present invention will be described with reference to the accompanying drawings. 図1は高速気流中衝撃装置の立断面図であり、図2は高速気流中衝撃装置の側断面図である。 Figure 1 is a sectional elevation view of a high speed air stream impact device, FIG. 2 is a side sectional view of a high speed air stream impact device.
高速気流中衝撃装置1は、円筒状の衝突リング11と円筒状の衝突リング11の両端面を塞ぐ前部カバー14と後部カバー15とから形成される衝撃室5内に、円筒状の衝突リング11の中心軸上に回転軸13を有する円盤状のローター9を備えたものである。 A high speed air stream impact device 1, in the impact chamber 5 formed from the front cover 14 and rear cover 15 for closing both end surfaces of the cylindrical collision ring 11 and cylindrical collision ring 11, a cylindrical collision ring 11 are those provided with a disc-shaped rotor 9 on the center axis with the rotation axis 13 of the. ローター9の盤上には、ブレード10と呼ばれる板状の突起物が、回転軸13を中心とする放射状に配設されている。 The surface plate of the rotor 9, plate-like projections called blade 10 are radially arranged around the rotating shaft 13. ここで、ブレード10が描く最外周軌道面と衝突リング11の内周面とのギャップは、0.5〜20mm程度である。 Here, the gap between the inner peripheral surface of the outermost raceways and the collision ring 11 blade 10 is drawn is about 0.5 to 20 mm.
また、高速気流中衝撃装置1は、一端が衝突リング11の一部を貫通して衝撃室5内に開口するとともに、他端が前部カバー14の中心部から衝撃室5内に開口して閉回路を形成する循環回路6と、衝突リング11の一部に設けられた第二開閉弁7によって開閉される排出口8を備えている。 Further, a high speed air stream impact device 1 is configured to open in one end in an impact chamber 5 through a portion of the collision ring 11 and the other end opens from the center of the front cover 14 to the impact chamber 5 the circulation circuit 6 to form a closed circuit, and a discharge port 8 which is opened and closed by a second shut-off valve 7 provided in a part of the collision ring 11. 循環回路6には、原料を投入するための原料ホッパー2が、第一開閉弁3と原料供給用シュート4を介して連結されている。 The circulation circuit 6, the raw material hopper 2 for introducing the raw material, is connected via a first shut-off valve 3 and the raw material supply chute 4.
衝突リング11内部には、ジャケット12が設けられており、ジャケット12内に冷却水を通水できるようになっている。 Inside collision ring 11, and jacket 12 is provided, so that the possible water flow cooling water into the jacket 12.

次に、高速気流中衝撃装置1を用いた球状カーボンナノチューブ集合体の製造方法の第一の実施形態について説明する。 Next, it will be described first embodiment of a method for producing a spherical aggregate of carbon nanotubes with a high speed air stream impact device 1.
先ず、第一開閉弁3と第二開閉弁7を閉じた状態で、図示していない駆動手段によって回転軸13を介してローター9を、外周速度100m/s程度で回転させる。 First, in a closed state and the first on-off valve 3 and the second on-off valve 7, the rotor 9 through the rotary shaft 13 by a driving means not shown, is rotated at the peripheral speed of 100 m / s approximately. これにより、衝撃室5から衝突リング11上の開口、循環回路6、前部カバー14の中心部の開口を経て衝撃室5へ戻る循環気流が形成される。 Accordingly, the opening of the collision ring 11 from impact chamber 5, the circulation circuit 6, the circulation air flow through the opening in the central portion of the front cover 14 return to the impact chamber 5 is formed.
その後、第一開閉弁3を開き、原料ホッパー2から衝撃室5内へカーボンナノチューブを投入し、3分間以上30分間以下の間、カーボンナノチューブの解砕処理を行う。 Then open the first on-off valve 3, from the raw material hopper 2 to the impact chamber 5 charged with carbon nanotubes, during 30 minutes or less than three minutes, it performs disintegration treatment of the carbon nanotubes. 解砕処理では、カーボンナノチューブが循環回路6を循環しつつ、ブレード10や衝突リング11内壁に多数回衝突することにより、カーボンナノチューブ表面に強い機械的エネルギーが付与され、カーボンナノチューブの解砕が促進される。 In crushing process while circulating the carbon nanotubes circulation circuit 6, by impinging a number of times the blade 10 and the collision ring 11 inner wall, strong mechanical energy is imparted to the carbon nanotube surface, pulverization of the carbon nanotube promotes It is. 解砕処理後、カーボンナノチューブを衝撃室5内で再凝集させることにより、カーボンナノチューブが転動造粒し、粒子径0.3μm以上50μm以下の球形カーボンナノチューブ集合体が形成される。 After disintegration treatment, by re-aggregation of the carbon nanotubes in the impact chamber 5, the carbon nanotubes are rolling granulation, the following spherical aggregate of carbon nanotubes 50μm or more particle size 0.3μm is formed.
カーボンナノチューブ集合体の球状化が完了すると、第一開閉弁3を開くとともに、第二開閉弁7も開き、排出口8から球状カーボンナノチューブ集合体を排出する。 When spheroidizing of aggregate of carbon nanotubes is completed, with opening the first on-off valve 3, second on-off valve 7 is also opened to discharge the spherical carbon nanotube aggregate from the outlet 8.

引き続き、球状カーボンナノチューブ集合体の製造方法の第二の実施形態について説明する。 Continuing, a description is given of a second embodiment of a method for producing a spherical aggregate of carbon nanotubes.
本実施形態では、原料ホッパー2から衝撃室5内へカーボンナノチューブを投入した後、原料ホッパー2から衝撃室5内へアルコールやカルボン酸などの親水性物質を投入し、衝撃室5内の雰囲気を親水性に保つ。 In the present embodiment, after the raw material hopper 2 charged with carbon nanotubes to impact chamber 5, from the raw material hopper 2 to the impact chamber 5 was charged hydrophilic substance such as alcohol or a carboxylic acid, the atmosphere in the impact chamber 5 keep to hydrophilic. そして、第一開閉弁3を閉じ、数分間、攪拌混合処理を行う。 Then, closing the first on-off valve 3, a few minutes, stirring is carried out for mixing process. 攪拌混合処理では、カーボンナノチューブ表面に生じる強い機械的エネルギーにより、カーボンナノチューブ表面が周囲の親水性物質と化学反応を起こし、カーボンナノチューブ表面に親水性の官能基(例えば、水酸基やカルボキシル基)が導入される。 The stirring and mixing process, by strong mechanical energy produced in the carbon nanotube surface, cause the carbon nanotube surface hydrophilicity and chemical reactions of the surrounding, the carbon nanotube surface hydrophilic functional groups (e.g., hydroxyl group or carboxyl group) is introduced It is. その結果、カーボンナノチューブの親水性が改善され、親水性溶媒やバインダーへの分散性がさらに向上する。 The result is improved hydrophilicity of the carbon nanotubes, is further improved dispersibility in a hydrophilic solvent and a binder. また、水酸基をベースとして、その他の官能基を化学的に容易に付加することも可能となる。 Further, as the base of the hydroxyl group, the other functional group becomes chemically easily possible to add. これによって、疎水性の樹脂などへの添加・分散も容易となる。 Thus, it is easy added and dispersed to such a hydrophobic resin.

なお、本実施形態においては、カーボンナノチューブを高速気流中衝撃装置1に投入した後、親水性物質を高速気流中衝撃装置1に投入したが、予め、カーボンナノチューブと親水性物質を混合した後、それらを高速気流中衝撃装置1に投入してもよい。 In the present embodiment, after switching on the carbon nanotubes to a high speed air stream impact device 1 it has been turned a hydrophilic substance in a high speed air stream impact device 1, in advance, after mixing the carbon nanotubes and a hydrophilic substance, they may be put into a high speed air stream impact device 1.

本実施形態による球状カーボンナノチューブ集合体の製造方法によれは、カーボンナノチューブ集合体の形状を略球形とし、且つ、その粒子径を0.3μm以上50μm以下とすることにより、カーボンナノチューブの分散性を容易に向上させることができる。 According to the production method of the spherical aggregate of carbon nanotubes according to the present embodiment, the shape of the carbon nanotube aggregate were substantially spherical, and by the particle size and 0.3μm or 50μm or less, the dispersibility of carbon nanotubes it can be easily improved.

次に、複合体の製造方法について、球状カーボンナノチューブ集合体をエポキシ樹脂に添加して複合体を製造するケースを例にとり説明する。 Next, a method for manufacturing the composite, the case of the spherical aggregate of carbon nanotubes was added to the epoxy resin to produce the composite is described as an example.
先ず、球状カーボンナノチューブ集合体をエポキシ樹脂用硬化剤に1〜3重量%添加する。 First, the addition of 1-3% by weight of spherical aggregates of carbon nanotubes in epoxy resin curing agent. 通常、カーボンナノチューブは、エポキシ樹脂用硬化剤との相性が悪く、多くの凝集体が発生し、均一に混ぜることは困難であるが、球状カーボンナノチューブ集合体の場合は、容易に練り混ぜることができ、均一な状態にすることができる。 Usually, carbon nanotubes, poor compatibility with the epoxy resin curing agent, generates many aggregates, but uniformly mixing it is difficult, in the case of spherical aggregates of carbon nanotubes, be mixed easily kneading it can, can be made uniform state.
次いで、基材と硬化剤の重量比を100対89として、エポキシ基材と球状カーボンナノチューブ集合体が添加されたエポキシ樹脂用硬化剤を混合した後、薄板状に成型するものである。 Then, the 100 pairs 89 a weight ratio of the base material and curing agent after mixing the epoxy substrate and the spherical aggregates of carbon nanotubes were added epoxy resin curing agent is for molding into a thin plate. 発明者らの実験結果によれば、球状カーボンナノチューブ集合体を添加したものは均一に成型することが可能であった。 According to the inventors experimental results, those obtained by adding spherical carbon nanotube aggregate was possible to uniformly molded.

表1に、球状カーボンナノチューブ集合体を添加していないエポキシ樹脂と球状カーボンナノチューブ集合体を添加したエポキシ樹脂の物性を対比して示す。 Table 1 shows in comparison the physical properties of the epoxy resin with the addition of epoxy resin and the spherical aggregate of carbon nanotubes with no added spherical aggregate of carbon nanotubes. 同表より、球状カーボンナノチューブ集合体をエポキシ樹脂に添加した場合、曲げ強度や曲げ弾性率を維持しながら、体積弾性率が大幅に減少し、導電性を示すことがわかる。 From the table, when adding spherical aggregate of carbon nanotubes in epoxy resin, while maintaining the flexural strength and flexural modulus, significantly reduced the volume elastic modulus, it can be seen that the conductivity. カーボンブラックなどに比べて1/4以下の添加量で電気抵抗の大幅な低下が可能である。 It can be significant reduction in electrical resistance in amount of 1/4 or less as compared to carbon black. これにより、各種の導電性樹脂材料(ゴム、プラスチック、シール材など)や電磁シールド材料をはじめとした多くの利用が可能となる。 Accordingly, various conductive resin material (rubber, plastic, sealant, etc.) many users who including and electromagnetic shielding materials is possible.

なお、球状カーボンナノチューブ集合体は、樹脂材料のみならず、その高い分散性を利用して他の多くの材料への添加が容易であり、それらの材料の機能および性能の向上に有効である。 Incidentally, the spherical aggregate of carbon nanotubes, not only the resin material, by utilizing the high dispersibility is easily added to many other materials, it is effective in the function and performance improvement of those materials. 例えば、セラミックス、セメント、コンクリート、無機高分子への添加、あるいは、ガラスや板状成型体などへの複層化・複合化が考えられる。 For example, ceramics, cement, concrete, the addition of the inorganic polymer, or multi-layered-composite to a glass or sheet-like molded body can be considered.

以上、本発明に係る球状カーボンナノチューブ集合体およびその製造方法並びに複合体の製造方法について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Above, the spherical aggregate of carbon nanotubes according to the present invention and has been described manufacturing method of a method for manufacturing the same, and complex, the present invention is not limited to the above embodiments, appropriate modifications without departing from the scope thereof possible it is. 例えば、上記の実施形態では、親水性物質をカーボンナノチューブに添加しているが、本発明では、親水性物質に代えて、水、酸素、過酸化水素水あるいはアルコールと空気の混合ガスをカーボンナノチューブに添加してもよい。 For example, in the above embodiment, a hydrophilic substance is added to the carbon nanotube, the present invention, in place of the hydrophilic material, carbon nanotubes water, oxygen, hydrogen peroxide water or alcohol and a mixed gas of air it may be added to the. また、本発明では、ジャケット12に冷却水を通水し、衝突リング11の内周面を冷却することにより、当該内周面に結露を生じさせ、その結露を利用してもよい。 Further, in the present invention, and passed through the cooling water to the jacket 12, by cooling the inner circumferential surface of the impact ring 11, causing dew condensation on the inner peripheral surface, it may be used the condensation.

高速気流中衝撃装置の立断面図である。 It is an elevational sectional view of a high speed air stream impact device. 高速気流中衝撃装置の側断面図である。 It is a side sectional view of a high speed air stream impact device.

符号の説明 DESCRIPTION OF SYMBOLS

1 高速気流中衝撃装置2 原料ホッパー3 第一開閉弁4 原料供給用シュート5 衝撃室6 循環回路7 第二開閉弁8 排出口9 ローター10 ブレード11 衝突リング12 ジャケット13 回転軸14 前部カバー15 後部カバー 1 a high speed air stream percussion device 2 feed hopper 3 first shut-off valve 4 the raw material supply chute 5 impact chamber 6 circulation circuit 7 second shut-off valve 8 outlet 9 rotor 10 blade 11 collides ring 12 jacket 13 rotates shaft 14 front cover 15 rear cover

Claims (8)

  1. 形状が略球形であることを特徴とする球状カーボンナノチューブ集合体。 Spherical carbon nanotube aggregate, wherein the shape is substantially spherical.
  2. 粒子径が0.3μm以上50μm以下であることを特徴とする請求項1に記載の球状カーボンナノチューブ集合体。 Spherical carbon nanotube aggregate according to claim 1, wherein the particle size of 0.3μm or more 50μm or less.
  3. 高速気流中衝撃法を用いてカーボンナノチューブを解砕処理した後、当該カーボンナノチューブを再凝集させることにより、当該カーボンナノチューブの集合体を球状化することを特徴とする球状カーボンナノチューブ集合体の製造方法。 After disintegration of carbon nanotubes using a high speed air stream impact method, by re-aggregating the carbon nanotube manufacturing method of the spherical aggregate of carbon nanotubes, characterized in that spheroidizing aggregate of the carbon nanotubes .
  4. 前記高速気流中衝撃法によるカーボンナノチューブの解砕に際し、水または親水性物質を添加することにより、カーボンナノチューブを親水化することを特徴とする請求項3に記載の球状カーボンナノチューブ集合体の製造方法。 Upon disintegration of the carbon nanotube by the high speed air stream impact method, by adding water or a hydrophilic substance production method of the spherical aggregate of carbon nanotubes of claim 3, characterized in that the hydrophilic carbon nanotubes .
  5. 前記水または前記親水性物質に代えて、酸素または過酸化水素水を添加することを特徴とする請求項4に記載の球状カーボンナノチューブ集合体の製造方法。 Instead of the water or the hydrophilic material, the production method of the spherical aggregate of carbon nanotubes of claim 4, wherein the addition of oxygen or hydrogen peroxide.
  6. 前記水または前記親水性物質に代えて、アルコールと空気の混合ガスを添加することを特徴とする請求項4に記載の球状カーボンナノチューブ集合体の製造方法。 Instead of the water or the hydrophilic material, the production method of the spherical aggregate of carbon nanotubes of claim 4, characterized in that the addition of a gas mixture of alcohol and air.
  7. 前記水または前記親水性物質に代えて、前記高速気流中衝撃法に使用する円筒状の装置の内周面を冷却することを特徴とする請求項4に記載の球状カーボンナノチューブ集合体の製造方法。 Instead of the water or the hydrophilic material, the production method of the spherical aggregate of carbon nanotubes of claim 4, wherein the cooling the inner circumferential surface of the high speed air stream cylindrical device to be used for bombardment .
  8. 請求項1または2に記載の球状カーボンナノチューブ集合体を硬化剤に添加した後、当該硬化剤と基材を混合して成型することを特徴とする複合体の製造方法。 After addition of the spherical aggregate of carbon nanotubes according to the hardener to claim 1 or 2, process for preparing the composite, characterized in that molding by mixing the curing agent and the substrate.
JP2004146306A 2004-01-27 2004-05-17 Method of manufacturing a spherical carbon nanotube aggregate Active JP4613268B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004018519 2004-01-27
JP2004146306A JP4613268B2 (en) 2004-01-27 2004-05-17 Method of manufacturing a spherical carbon nanotube aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146306A JP4613268B2 (en) 2004-01-27 2004-05-17 Method of manufacturing a spherical carbon nanotube aggregate

Publications (2)

Publication Number Publication Date
JP2005239531A true true JP2005239531A (en) 2005-09-08
JP4613268B2 JP4613268B2 (en) 2011-01-12

Family

ID=35021663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146306A Active JP4613268B2 (en) 2004-01-27 2004-05-17 Method of manufacturing a spherical carbon nanotube aggregate

Country Status (1)

Country Link
JP (1) JP4613268B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143532A (en) * 2004-11-19 2006-06-08 Shimizu Corp Method of improving dispersibility of carbon nanotube
JP2008016769A (en) * 2006-07-10 2008-01-24 Shimizu Corp Electric double layer capacitor, carbon electrode therefor, and method of manufacturing carbon electrode therefor
WO2009008516A1 (en) 2007-07-11 2009-01-15 Mikuni Shikiso Kabushiki Kaisha Granulated product of carbon nanotube, and method for production thereof
EP2117012A1 (en) * 2007-02-20 2009-11-11 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
JP2011057458A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Aggregate of finele particulated carbon fiber
KR101124385B1 (en) * 2012-01-09 2012-03-22 김근배 Using the carbon nanotube dispersion coating solution and using the same methods
JP2012147846A (en) * 2011-01-17 2012-08-09 Yonex Co Ltd Badminton racket
JP2012224498A (en) * 2011-04-19 2012-11-15 Shimizu Corp Method for producing spherical carbon nanotube
WO2013054914A1 (en) 2011-10-12 2013-04-18 旭化成ケミカルズ株式会社 Carbon nanofiber aggregate, thermoplastic resin composition, and process for producing thermoplastic resin composition
KR101412216B1 (en) 2009-06-16 2014-06-25 나노 스트럭쳐 리서치 인스티튜트 컴퍼니 리미티드 Carbon nanotube-rich resin composition and method for producing same
CN103896249A (en) * 2014-03-25 2014-07-02 深圳市纳米港有限公司 Spherical carbon nanotube group and preparation method and use thereof
CN103922303A (en) * 2014-03-25 2014-07-16 深圳市纳米港有限公司 Spherical carbon nanotube aggregate as well as preparation method and application thereof
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797723A (en) * 1993-09-10 1995-04-11 Hyperion Catalysis Internatl Inc Carbon fiber material containing liquid
WO2002094713A1 (en) * 2001-05-25 2002-11-28 Tsinghua University Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
JP2003505332A (en) * 1999-07-21 2003-02-12 ハイピリオン カタリシス インターナショナル インコーポレイテッド The oxidation process of multi-walled carbon nanotubes
JP2004018290A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Granular agglomerate of carbonaceous fine fibrous body
JP4538780B2 (en) * 2003-10-20 2010-09-08 清水建設株式会社 Hydrophilic method of a carbon nanotube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797723A (en) * 1993-09-10 1995-04-11 Hyperion Catalysis Internatl Inc Carbon fiber material containing liquid
JP2003505332A (en) * 1999-07-21 2003-02-12 ハイピリオン カタリシス インターナショナル インコーポレイテッド The oxidation process of multi-walled carbon nanotubes
WO2002094713A1 (en) * 2001-05-25 2002-11-28 Tsinghua University Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
JP2004018290A (en) * 2002-06-13 2004-01-22 Mitsubishi Chemical Engineering Corp Granular agglomerate of carbonaceous fine fibrous body
JP4538780B2 (en) * 2003-10-20 2010-09-08 清水建設株式会社 Hydrophilic method of a carbon nanotube

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143532A (en) * 2004-11-19 2006-06-08 Shimizu Corp Method of improving dispersibility of carbon nanotube
JP4596134B2 (en) * 2004-11-19 2010-12-08 清水建設株式会社 Dispersible improvement method of a carbon nanotube
JP2008016769A (en) * 2006-07-10 2008-01-24 Shimizu Corp Electric double layer capacitor, carbon electrode therefor, and method of manufacturing carbon electrode therefor
JP4706975B2 (en) * 2006-07-10 2011-06-22 清水建設株式会社 Method for producing an electric double layer capacitor carbon electrode and an electric double layer capacitor carbon electrode
EP2117012A1 (en) * 2007-02-20 2009-11-11 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
EP2117012A4 (en) * 2007-02-20 2011-03-16 Toray Industries Carbon nanotube assembly and electrically conductive film
US9028790B2 (en) 2007-02-20 2015-05-12 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
WO2009008516A1 (en) 2007-07-11 2009-01-15 Mikuni Shikiso Kabushiki Kaisha Granulated product of carbon nanotube, and method for production thereof
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
KR101412216B1 (en) 2009-06-16 2014-06-25 나노 스트럭쳐 리서치 인스티튜트 컴퍼니 리미티드 Carbon nanotube-rich resin composition and method for producing same
JP2011057458A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Aggregate of finele particulated carbon fiber
JP2012147846A (en) * 2011-01-17 2012-08-09 Yonex Co Ltd Badminton racket
JP2012224498A (en) * 2011-04-19 2012-11-15 Shimizu Corp Method for producing spherical carbon nanotube
US9567452B2 (en) 2011-10-12 2017-02-14 Asahi Kasei Kabushiki Kaisha Carbon nanofiber aggregate, thermoplastic resin composition, and method for producing thermoplastic resin composition
WO2013054914A1 (en) 2011-10-12 2013-04-18 旭化成ケミカルズ株式会社 Carbon nanofiber aggregate, thermoplastic resin composition, and process for producing thermoplastic resin composition
KR101124385B1 (en) * 2012-01-09 2012-03-22 김근배 Using the carbon nanotube dispersion coating solution and using the same methods
CN103896249A (en) * 2014-03-25 2014-07-02 深圳市纳米港有限公司 Spherical carbon nanotube group and preparation method and use thereof
CN103922303B (en) * 2014-03-25 2016-06-08 深圳市纳米港有限公司 Spherical aggregates of carbon nanotubes and preparation and use
CN103896249B (en) * 2014-03-25 2016-09-07 深圳市纳米港有限公司 Spherical carbon nanotube-based groups and preparation and use
CN103922303A (en) * 2014-03-25 2014-07-16 深圳市纳米港有限公司 Spherical carbon nanotube aggregate as well as preparation method and application thereof

Also Published As

Publication number Publication date Type
JP4613268B2 (en) 2011-01-12 grant

Similar Documents

Publication Publication Date Title
Chen et al. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites
Han et al. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene
Šupová et al. Effect of nanofillers dispersion in polymer matrices: a review
Wang et al. Nano-CaCO 3/polypropylene composites made with ultra-high-speed mixer
Alig et al. Electrical conductivity recovery in carbon nanotube–polymer composites after transient shear
He et al. Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites
Choi et al. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites
JP2002146233A (en) Surface-treated fine spherical silica powder and resin composition
CN101433876A (en) Integrated device for airflow pulverization and surface modification and technique thereof for preparing ultrafine grain
CN1410475A (en) Polymer/carbon nano pipe composite powder and its solid phase shear break up preparation method
CN101148541A (en) Method for enhancing nylon selectivity laser sintering forming element by inorganic nano particles
CN1746216A (en) Preparation of polymer composite material from halloysite nanometer tube
Xu et al. The effect of the interface structure of different surface‐modified nano‐SiO2 on the mechanical properties of nylon 66 composites
EP1205437A1 (en) Method for preparing nano-size particulate graphite
CN1673261A (en) Natural liquid rubber slurry with added carbon nanotube and its prepn process
CN101454074A (en) Production of nanoparticles, especially nanoparticle composites, from powder agglomerates
JP2005068258A (en) Spherical alumina powder and its application
Che et al. Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT
US20080317794A1 (en) Agglomerate Particles, Method for Producing Nanocomposites, and the Use Thereof
Baskaran et al. Unsaturated polyester nanocomposites filled with nano alumina
JPH0753214A (en) Alkali titanate powder, its production, composite material containing the powder and production of alkali titanate sintered compact
CN1069244A (en) Process for preparation of precipitated silica, precipitated silica and their application in strengthening process of elastomers
Chen et al. Fabrication and characterization of polycarbonate/carbon nanotubes composites
Bhattacharya et al. Synergy in carbon black-filled natural rubber nanocomposites. Part I: Mechanical, dynamic mechanical properties, and morphology
CN101914190A (en) Preparation method of modified nano-silica monomer dispersion liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141029

Year of fee payment: 4