JP6933699B2 - Method of surface modification of submicron silicon fine powder - Google Patents
Method of surface modification of submicron silicon fine powder Download PDFInfo
- Publication number
- JP6933699B2 JP6933699B2 JP2019186552A JP2019186552A JP6933699B2 JP 6933699 B2 JP6933699 B2 JP 6933699B2 JP 2019186552 A JP2019186552 A JP 2019186552A JP 2019186552 A JP2019186552 A JP 2019186552A JP 6933699 B2 JP6933699 B2 JP 6933699B2
- Authority
- JP
- Japan
- Prior art keywords
- submicron
- fine powder
- silicon fine
- temperature
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 72
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 68
- 229910052710 silicon Inorganic materials 0.000 title claims description 65
- 239000010703 silicon Substances 0.000 title claims description 65
- 238000012986 modification Methods 0.000 title claims description 53
- 230000004048 modification Effects 0.000 title claims description 52
- 238000000034 method Methods 0.000 title claims description 31
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 44
- 239000002002 slurry Substances 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 35
- 238000002407 reforming Methods 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000006185 dispersion Substances 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 23
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 20
- 238000005498 polishing Methods 0.000 claims description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 17
- 239000003607 modifier Substances 0.000 claims description 15
- 239000004576 sand Substances 0.000 claims description 15
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 12
- 239000007921 spray Substances 0.000 claims description 11
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 8
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 8
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 238000002715 modification method Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 230000000694 effects Effects 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- 239000006004 Quartz sand Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000004520 agglutination Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000005543 nano-size silicon particle Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/006—Combinations of treatments provided for in groups C09C3/04 - C09C3/12
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/04—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
- C09C3/041—Grinding
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/04—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
- C09C3/043—Drying, calcination
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/04—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
- C09C3/045—Agglomeration, granulation, pelleting
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/08—Treatment with low-molecular-weight non-polymer organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
本発明は、無機非金属材料の精密加工技術分野に関し、特にサブミクロンシリコン微粉末の表面改質の方法に関する。 The present invention relates to the field of precision processing technology for inorganic non-metallic materials, and particularly to a method for surface modification of submicron silicon fine powder.
シリコン微粉末には、絶縁性、熱安定性、耐薬品性などの利点を有して、エポキシ成形(EMC)、銅張積層板(CCL)、電気絶縁、コーティング、接着剤などの分野で広く使用されている。技術の進歩に伴い、電子製品もコンパクト化、即ちより軽く、薄く、短くて小さくなるように発展しているため、CCLシートはますます薄くなっているので、より微細なフィラーが必要となり、通常のミクロンサイズのSiO2はCCL極薄基板の使用要件を満たせなくなり、一方、 サブミクロンSiO2は、その使用要件を満たす上に、機械的特性及び加工特性も一層すぐれている。コーティング及び接着剤の分野では、環境保護に対する意識の高まりに伴い、油性コーティングや接着剤に代わって水性コーティングや接着剤を使用するのはが時代のトレンドとなっているが、ミクロンサイズのSiO2は、高密度なので、使用中に沈降しやすくて使用出来る範囲が限られることに対し、サブミクロンのSiO2は 沈降の要件を満たすことに加えて、優れた機械的特性、一層優れた透明性、小さなヘイズ、優れた接触感などの優れた機能を示している。 Silicone fine powder has advantages such as insulation, thermal stability, and chemical resistance, and is widely used in fields such as epoxy molding (EMC), copper-clad laminate (CCL), electrical insulation, coating, and adhesives. in use. As technology advances, electronic products are also becoming more compact, that is, lighter, thinner, shorter and smaller, and as CCL sheets become thinner and thinner, finer fillers are usually required. The micron-sized SiO 2 cannot meet the usage requirements of the CCL ultrathin substrate, while the submicron SiO 2 meets the usage requirements and has further excellent mechanical and processing characteristics. In the field of coatings and adhesives, the use of water-based coatings and adhesives in place of oil-based coatings and adhesives has become a trend of the times due to growing awareness of environmental protection, but micron-sized SiO 2 Because of its high density, it tends to settle during use, limiting its usable range, whereas submicron SiO 2 meets the settling requirements, as well as excellent mechanical properties and better transparency. It shows excellent features such as small haze and excellent contact feeling.
サブミクロンシリコン微粉末は、ミクロンシリコン粉末より大きい比表面積を有するので、直接に使用すると、体系の粘度が高く、分散しにくいなどの問題があるため、それに対する表面改質が必要となる。 Since the submicron silicon fine powder has a specific surface area larger than that of the micron silicon powder, when it is used directly, there are problems such as high viscosity of the system and difficulty in dispersion, so that surface modification is required for it.
中国でも外国でもシリコン微粉末の生産における表面改質と言えば、乾式改質と湿式改質に分けられてもよい。そのうち、乾式法改質はプロセスが簡単で、生産物が比較的に少ないが、改質剤がシリコン微粉末の表面に均一に分散しにくく、改質効果が乏しい。乾式改質は、クロンシリコン微粉末の表面改質にのみ適用でき、例えば、特許文献1では、D50=3−50μmの超微細シリコン微粉末を原料として選択し、表面改質混合液を使用して、乾式改質によって表面改質シリコン微粉末を取得した。特許文献2はアルミナボールをボールミルに入れて、4〜16メッシュの石英砂及び改質剤のヘキサメチルジシラザンを一緒にボールミルに加えて研磨したことで、メカノケミカル改質し、篩い分けて様々な粒子サイズを有する改質シリコン微粉末を得ることになる。 Speaking of surface reforming in the production of fine silicon powder in both China and foreign countries, it may be divided into dry reforming and wet reforming. Among them, the dry method modification has a simple process and a relatively small amount of product, but the modifier is difficult to uniformly disperse on the surface of the silicon fine powder, and the modification effect is poor. The dry modification can be applied only to the surface modification of cron silicon fine powder. For example, in Patent Document 1, ultrafine silicon fine powder of D50 = 3-50 μm is selected as a raw material, and a surface modification mixed solution is used. Then, surface-modified silicon fine powder was obtained by dry modification. In Patent Document 2, alumina balls are placed in a ball mill, and 4 to 16 mesh of quartz sand and hexamethyldisilazane as a modifier are added to the ball mill and polished, thereby modifying mechanochemicals and sieving them in various ways. A modified silicon fine powder having a large particle size will be obtained.
サブミクロン、ナノシリコン微粉末の場合、湿式改質が必要である。しかし、湿式改質には、サブミクロン、ナノシリコン微粉末の乾燥後に凝集する問題があり、粒子の単分散が実現できないので製品の使用効果に悪影響を及ぼし、サブミクロン、ナノ製品が持つべき効果が得られない、という問題がある。 In the case of submicron and nanosilicon fine powder, wet modification is required. However, wet modification has a problem of agglutination after drying of submicron and nanosilicon fine powder, and since monodisperse of particles cannot be realized, it adversely affects the effect of using the product, and the effect that the submicron and nano product should have. There is a problem that it cannot be obtained.
例えば、特許文献3は、結晶質の石英砂又は溶融石英を原料とし、乾式研磨によってミクロンシリコン微粉末を調製し、次にミクロンサイズのシリコン微粉末を、改質剤を加えて湿式法研磨し、粒子サイズがサブミクロンレベルになるまで研磨して、圧力濾過によりサブミクロンシリコン微粉末フィルターケーキを得ることになるが、使用する時に超音波でそれを分散させるのが必要である。該プロセスによる製品は使用するときに超音波でそれを分散をさせる必要があるため、使用するには不便である。 For example, in Patent Document 3, using crystalline quartz sand or molten quartz as a raw material, micron silicon fine powder is prepared by dry polishing, and then micron size silicon fine powder is wet-polished by adding a modifier. The submicron silicon fine powder filter cake will be obtained by pressure filtration after polishing to the submicron level, but it is necessary to disperse it with ultrasonic waves when using. Products by this process are inconvenient to use because they need to be ultrasonically dispersed when used.
特許文献4は、ナノシリカと分散剤及びエタノールをナノシリカ分散液に調製し、次にナノシリカ分散液に超音波発生器を挿入して、複合改質剤を添加して改質し、改質ナノシリカ溶液を得て、最後に改質ナノシリカ溶液を濾過、乾燥、粉砕、篩い分けて、改質ナノシリカを取得する。該プロセスは複雑で、エタノールを溶媒として使用するので、コストが高く、しかも、安全上の懸念があり、且つ、単に粉砕する及び篩分けすることだけでは粒子の単分散を実現することはできない。 In Patent Document 4, nanosilica, a dispersant, and ethanol are prepared in a nanosilica dispersion, then an ultrasonic generator is inserted into the nanosilica dispersion, and a composite modifier is added to modify the nanosilica solution. Finally, the modified nanosilica solution is filtered, dried, pulverized, and sieved to obtain modified nanosilica. The process is complex and uses ethanol as the solvent, which is costly, has safety concerns, and cannot achieve monodisperse of particles by simply pulverizing and sieving.
特許文献5はシリカ1部を蒸留水50部に加え、濁液になるまで攪拌して、それに当該濁液を超音波で、40〜70℃で10〜30分間超音波分散したことで、シリカ分散液を得て、次に一定量の、様々な鎖長を有する改質剤を分散液に加え、補助剤を1滴加え、一定の温度で超音波にかけ、その後、スラリーを濾過、洗浄、乾燥して、改質シリカ製品を得ることになる。 該プロセスは複雑で、調製された分散液の固形分が低く、コストが高く、乾燥後の製品は凝集したこともなり、単分散を実現できない。 Patent Document 5 describes silica by adding 1 part of silica to 50 parts of distilled water, stirring until it becomes a turbid liquid, and ultrasonically dispersing the turbid liquid at 40 to 70 ° C. for 10 to 30 minutes. Obtain a dispersion, then add a constant amount of modifiers of various chain lengths to the dispersion, add one drop of auxiliary agent, sonicate at a constant temperature, then filter and wash the slurry. It will be dried to obtain a modified silica product. The process is complicated, the solid content of the prepared dispersion is low, the cost is high, and the dried product also agglomerates, making it impossible to achieve monodisperse.
特許文献6はストーバー法(stober法)によって調製されたナノシリカ産物を、アルコール洗浄、水洗浄し、更に凍結乾燥させ、単分散ナノシリカ粉末体Aを得て、次に、単分散ナノシリカ粉末Aをエタノールに入れて超音波分散し、システムBを得て、また、体系Bを反応容器に入れて密閉し、一定の時間で特定の温度及び圧力条件を維持して、その後、大気圧になるまで圧力を徐々に解放し、 疎水的に改質されたナノシリカ粒子を得る。該方法は凝集が少なく、製品は単分散であるが、凍結乾燥する必要があり、コストが高い。 In Patent Document 6, a nanosilica product prepared by the Stöber method is washed with alcohol, washed with water, and further freeze-dried to obtain a monodisperse nanosilica powder A, and then the monodisperse nanosilica powder A is ethanol. Stöber is ultrasonically dispersed to obtain system B, and system B is placed in a reaction vessel and sealed to maintain a specific temperature and pressure condition for a certain period of time, and then the pressure is reached until atmospheric pressure is reached. Is gradually released to obtain hydrophobically modified nanosilica particles. The method has less agglutination and the product is monodisperse, but requires lyophilization and is costly.
本発明が解決しようとする技術的課題は、従来の技術の欠陥に対して、製造プロセスが簡単で、経済的で、環境に優しく、低コストで、粒子分散性が良く、使用が便利なサブミクロンシリコン微粉末の表面改質の方法を提供することである。 The technical problem to be solved by the present invention is that the manufacturing process is simple, economical, environmentally friendly, low cost, good particle dispersibility, and convenient to use, as opposed to the defects of the conventional technology. It is to provide a method of surface modification of micron silicon fine powder.
本発明が解決しようとする技術的課題は、次の技術案によって達成される。
(1)サブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御し、均一に混合された後、サンドミルに送って、予備分散温度を50〜90℃に制御しながら予備分散を行い、均一分散後、サブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに、シランカップリング剤、ヘキサメチルジシラザン又はシランカップリング剤とヘキサメチルジシラザンとの混合物であり、好ましくはシランカップリング剤である改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%との添加量で加え、湿式法研磨により改質して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーに入れて吸気温度120〜300℃で、乾燥、改質し、水分含有量が0.3%以下になるまで乾燥した後、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料をジェットミルで1.0Pa以上の圧力をかけて、粒度が前処理する前と一致するように解凝集を行う解凝集ステップと、
を含むことを特徴とするサブミクロンシリコン微粉末の表面改質の方法。
The technical problem to be solved by the present invention is achieved by the following technical proposal.
(1) Pour submicron silicon fine powder and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, heat with stirring, control the temperature of the material to 50 to 90 ° C, and mix uniformly. After that, it is sent to a sand mill to perform pre-dispersion while controlling the pre-dispersion temperature to 50 to 90 ° C., and after uniform dispersion, a pretreatment step of obtaining a submicron slurry and a pretreatment step.
(2) The submicron slurry according to step (1) is modified with a silane coupling agent, hexamethyldisilazane, or a mixture of a silane coupling agent and hexamethyldisilazane, preferably a silane coupling agent. A pre-modification step of adding the agent in an amount of 1.0 to 4.0% of the weight of the submicron silicon fine powder and reforming by wet polishing to complete the pre-modification.
(3) The submicron slurry prepared in step (2) is placed in a flash dryer, dried and modified at an intake temperature of 120 to 300 ° C., and dried until the water content becomes 0.3% or less. , The secondary reforming step of sending to the collector and keeping the heat at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes to complete the secondary reforming.
(4) A deagglomeration step in which the material after heat retention is subjected to a pressure of 1.0 Pa or more with a jet mill to disaggregate the material so that the particle size matches that before the pretreatment.
A method for surface modification of submicron silicon fine powder, which comprises.
本発明が解決しようとする技術的課題は、また、ステップ(1)における上記サンドミルのライニングはポリウレタン、炭化ケイ素又は酸化ジルコニウムであり、粉砕メディアはジルコニア又は窒化ケイ素であり、粉砕メディアの直径は0.2〜0.8mmである技術案によって実現できる。 The technical problem to be solved by the present invention is that the lining of the sand mill in step (1) is polyurethane, silicon carbide or zirconium oxide, the pulverized media is zirconia or silicon nitride, and the diameter of the pulverized media is 0. It can be realized by a technical proposal of 2 to 0.8 mm.
本発明が解決しようとする技術的課題は、また、ステップ(3)におけるフラッシュドライヤーのブレード及び内壁に炭化タングステン又はジルコニアをスプレーコータする技術案によって実現できる。 The technical problem to be solved by the present invention can also be realized by the technical proposal of spray coating tungsten carbide or zirconia on the blade and inner wall of the flash dryer in step (3).
本発明が解決しようとする技術的課題は、また、ステップ(4)に記載のジェットミルの内側ライニング及び分級ロータはアルミナ又はジルコニアであるか、又は内側ライニング及び分級ロータの表面にアルミナ又はジルコニアをスプレーコータするものであるか、との技術案によって実現できる。 The technical problem to be solved by the present invention is that the inner lining and classification rotor of the jet mill according to step (4) is alumina or zirconia, or the surface of the inner lining and classification rotor is alumina or zirconia. It can be realized by the technical proposal of whether it is a spray coater.
本発明が解決しようとする技術的課題は、更に、
(1)粒度がD50=0.2μm〜1.0μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御し、3〜5分間攪拌した後、サンドミルに送って予備分散を行い、材料の温度を50〜90℃に維持しながら、5〜10分間予備分散してサブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、湿式法研磨改質により20〜30分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーを通して、吸気温度120〜300℃で水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、粒度がD50=0.2μm〜1.0μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと
を含む技術案によって実現できる。
Further, the technical problem to be solved by the present invention is further described.
(1) Pour submicron silicon fine powder having a particle size of D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, and stir. Heat, control the temperature of the material to 50-90 ° C, stir for 3-5 minutes, then send to a sand mill for pre-dispersion, pre-disperse for 5-10 minutes while maintaining the temperature of the material at 50-90 ° C. A pretreatment step to disperse to obtain a submicron slurry,
(2) A modifier is added to the submicron slurry according to step (1) at 1.0 to 4.0% by weight of the submicron silicon fine powder, and the mixture is polished by a wet polishing modification for 20 to 30 minutes. A pre-reform step to complete the pre-reform and
(3) The submicron slurry prepared in step (2) is dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less through a flash dryer, and then sent to a collector. A secondary reforming step that completes the secondary reforming by keeping the heat at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes.
(4) A deagglomeration step in which the heat-retained material is deagglomerated by applying a pressure of 1.0 Pa or more with a jet mill until the particle size becomes D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm. It can be realized by a technical proposal including.
本発明が解決しようとする技術的課題は、また、
(1)粒度がD50=0.5〜0.7μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御し、4分間攪拌した後、サンドミルに送って予備分散を行い、材料の温度を70℃に維持しながら、8分間予備分散後、サブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の2.5%で加え、湿式法研磨改質により25分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、吸気温度が210〜220℃であるフラッシュドライヤーを通して水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.2Paの圧力をかけて、粒度がD50=0.5〜0.7μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと
を含む技術案によって実現できる。
The technical problem to be solved by the present invention is also
(1) Submicron silicon fine powder having a particle size of D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm and deionized water are poured into a mixing tank at a mass ratio of 1: 1 and heated with stirring to prepare a material. After controlling the temperature to 70 ° C. and stirring for 4 minutes, it was sent to a sand mill for pre-dispersion, and while maintaining the temperature of the material at 70 ° C., after pre-dispersion for 8 minutes, a pretreatment step of obtaining a submicron slurry was performed. ,
(2) Add a modifier to the submicron slurry according to step (1) at 2.5% by weight of the submicron silicon fine powder, and polish for 25 minutes by wet polishing modification to complete the preliminary modification. Preliminary reforming step and
(3) The submicron slurry prepared in step (2) is dried and reformed through a flash dryer having an intake air temperature of 210 to 220 ° C. until the water content becomes 0.3% or less, and then sent to a collector. In the secondary reforming step, which completes the secondary reforming by keeping warm for 40 minutes at a heat retention temperature of 90 to 100 ° C.
(4) A deagglomeration step of applying a pressure of 1.2 Pa with a jet mill to deagglomerate the material after heat retention until the particle size becomes D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm. It can be realized by the technical proposal including.
従来技術と比較して、本発明は溶媒として脱イオン水を使用し、廃水排出がなく、経済的且つ環境にやさしく、メカノケミカル法改質と湿式改質を組み合わせて改質する方法として、改質効果がよく、ジェット解凝集によってサブミクロンシリコン微粉末製品の粒子凝集の問題が解決され、サブミクロンシリコン微粉末製品の粒子を完全に分散することが実現される。また、プロセスが簡易で使用されやすく、CCL、塗料、接着剤などの分野で広く使用できる。 Compared with the prior art, the present invention uses deionized water as a solvent, does not discharge waste water, is economical and environmentally friendly, and is modified as a method for reforming by combining mechanochemical method modification and wet modification. Good quality effect, jet deagglomeration solves the problem of particle agglomeration of submicron silicon fine powder products and realizes complete dispersion of particles of submicron silicon fine powder products. In addition, the process is simple and easy to use, and it can be widely used in fields such as CCL, paints, and adhesives.
当業者が本発明をさらに理解できるように、本発明における具体的な技術案をさらに説明したが、それらの技術案は制限をもたらすものではない。 Specific technical proposals in the present invention have been further described so that those skilled in the art can better understand the present invention, but these technical proposals do not impose any restrictions.
実施例1
サブミクロンシリコン微粉末の表面改質の方法であって、そのステップは以下の通りである。
(1)サブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御して、均一に攪拌した後、サンドミルに送って予備分散を行い、均一に分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、温度が50〜90℃になるように維持しながら、湿式法研磨改質により20〜30分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーに入れて、吸気温度120〜300℃で水分含有量が0.3%以下になるまで乾燥、改質した後、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、前処理する前の粒度と一致するまで解凝集を行う解凝集ステップ。
Example 1
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Pour submicron silicon fine powder and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, heat with stirring, and control the temperature of the material to 50 to 90 ° C. to make it uniform. After stirring, it is sent to a sand mill for pre-dispersion, and after uniform dispersion, a pretreatment step to obtain a submicron slurry,
(2) The modifier was added to the submicron slurry according to step (1) at 1.0 to 4.0% by weight of the submicron silicon fine powder, and the temperature was maintained at 50 to 90 ° C. Pre-modification step, which completes pre-modification by polishing for 20-30 minutes by wet polishing modification,
(3) The submicron slurry prepared in step (2) is placed in a flash dryer, dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less, and then placed in a collector. Secondary reforming step, which is sent in and kept warm at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes to complete the secondary reforming.
(4) A deagglomeration step in which the material after heat retention is subjected to a pressure of 1.0 Pa or more with a jet mill to deagglomerate until it matches the particle size before pretreatment.
実施例2
実施例1記載のサブミクロンシリコン微粉末表面改質の方法であって、ステップ(2)に記載の改質剤はシランカップリング剤、ヘキサメチルジシラザン又はシランカップリング剤とヘキサメチルジシラザンとの混合物であり、好ましくはシランカップリング剤である。
Example 2
The method for surface modification of a submicron silicon fine powder according to Example 1, wherein the modifier according to step (2) is a silane coupling agent, hexamethyldisilazane or a silane coupling agent and hexamethyldisilazane. It is a mixture of silane coupling agents, preferably a silane coupling agent.
実施例3
実施例1〜2記載のサブミクロンシリコン微粉末表面改質の方法であって、ステップ(3)におけるフラッシュドライヤーのブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしている。
Example 3
The method of surface modification of submicron silicon fine powder according to Examples 1 and 2, wherein tungsten carbide or zirconium oxide is spray coated on the blade and inner wall of the flash dryer in step (3).
実施例4
実施例1〜3記載のサブミクロンシリコン微粉末表面改質の方法であって、ステップ(1)記載のサンドミルの内側ライニングはポリウレタン、炭化ケイ素又はジルコニアであり、粉砕メディアはジルコニア又は窒化ケイ素であり、当該粉砕メディアの直径は0.2〜0.8mmである。
Example 4
The method of surface modification of submicron silicon fine powder according to Examples 1 to 3, wherein the inner lining of the sand mill according to step (1) is polyurethane, silicon carbide or zirconia, and the pulverized medium is zirconia or silicon nitride. , The diameter of the pulverized media is 0.2 to 0.8 mm.
実施例5
実施例1〜4記載のサブミクロンシリコン微粉末表面改質方法であって、ステップ(4)記載のジェットミルの内側ライニング及び分級ロータはアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアがスプレーコータをしている。
Example 5
In the submicron silicon fine powder surface modification method according to Examples 1 to 4, the inner lining and classification rotor of the jet mill according to step (4) are either alumina or zirconia, or the surface is sprayed with alumina or zirconia. I'm a coater.
実施例6
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.4〜0.6μm、D100≦2.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、700〜1000RPMとの回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の2.5%で加え、材料の温度が70℃になるように維持し、湿式法研磨改質により800〜1100RPMとの回転速度で25分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して、210〜220℃の吸気温度で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしているものであり、ローター直径が200mmであるジェットミルで1.2Paの圧力をかけて、3500r/minとの回転速度で粒度がD50=0.4〜0.6μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップ。
Example 6
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.4 to 0.6 μm and D100 ≦ 2.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 1: 1 and heated with stirring. , The temperature of the material is controlled to 70 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and the rotation speed is 700 to 1000 RPM, 8 Pretreatment step to obtain submicron slurry after pre-dispersion for minutes,
(2) Add a modifier to the submicron slurry according to step (1) at 2.5% of the weight of the submicron silicon fine powder, maintain the temperature of the material at 70 ° C., and perform wet polishing modification. Pre-reform step, which completes pre-reform by polishing for 25 minutes at a rotation speed of 800 to 1100 RPM.
(3) The submicron slurry prepared in step (2) was passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall, and the water content was 0. Secondary reforming step, which is dried and reformed to 3% or less, sent to a collector and kept warm at a heat retention temperature of 90 to 100 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.2 Pa in a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a spray coater of alumina or zirconia on the surface and a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration until the particle size becomes D50 = 0.4 to 0.6 μm and D100 ≦ 3.0 μm at a rotation speed of 3500 r / min.
実施例7
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.2〜0.4μm、D100≦2.0μmのサブミクロンシリコン微粉末及び脱イオン水を4:6の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を80℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、900〜1000RPM回転速度で、10分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにシランカップリング剤KH560をサブミクロンシリコン微粉末重量の3.0%で加え、材料の温度が80℃になるように維持し、湿式法研磨改質により1000〜1100RPMの回転速度で30分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して吸気温度が250〜260℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで100〜110℃の保温温度で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.6Paの圧力をかけて、3500r/minとの回転速度で粒度がD50=0.2〜0.4μm、D100≦2.0μmになるまで解凝集を行う解凝集ステップ。
Example 7
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.2 to 0.4 μm and D100 ≦ 2.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 4: 6, and heated with stirring. , The temperature of the material is controlled to 80 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 900 to 1000 RPM for 10 minutes. Pretreatment step to obtain submicron slurry after dispersion,
(2) Add the silane coupling agent KH560 to the submicron slurry according to step (1) at 3.0% of the weight of the submicron silicon fine powder, maintain the temperature of the material at 80 ° C., and perform wet polishing. Pre-reform step, which completes pre-reform by polishing for 30 minutes at a rotation speed of 1000-1100 RPM by remodeling.
(3) The submicron slurry prepared in step (2) is passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall, and the intake temperature is 250 to 260 ° C., and the water content is 0.3. Secondary reforming step, which is dried and reformed to less than%, sent to a collector and kept warm at a heat retention temperature of 100 to 110 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is the one in which the inner lining and classification rotor are alumina or zirconia, or the surface is spray coated with alumina or zirconia, and the rotor diameter is 200 mm with a jet mill of 1.6 Pa. A deagglomeration step in which pressure is applied and deagglomeration is performed at a rotation speed of 3500 r / min until the particle size becomes D50 = 0.2 to 0.4 μm and D100 ≦ 2.0 μm.
実施例8
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.5〜0.7μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、800〜900RPM回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにシランカップリング剤KH570をサブミクロンシリコン微粉末重量の2.5%で加え、材料の温度が70℃になるように維持し、湿式法研磨改質により900〜1000RPMの回転速度で25分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して、260〜270℃の吸気温度で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで100〜110℃の保温温度で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.2Paの圧力をかけて、3200r/minとの回転速度で粒度がD50=0.5〜0.7μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップ。
Example 8
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 1: 1 and heated with stirring. , The temperature of the material is controlled to 70 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 800 to 900 RPM for 8 minutes. Pretreatment step to obtain submicron slurry after dispersion,
(2) Add the silane coupling agent KH570 to the submicron slurry according to step (1) at 2.5% of the weight of the submicron silicon fine powder, maintain the temperature of the material at 70 ° C., and perform wet polishing. Pre-reform step, which completes pre-reform by polishing for 25 minutes at a rotation speed of 900-1000 RPM by remodeling.
(3) The submicron slurry prepared in step (2) was passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall at an intake temperature of 260 to 270 ° C. and a water content of 0. Secondary reforming step, which is dried and reformed to 3% or less, sent to a collector and kept warm at a heat retention temperature of 100 to 110 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.2 Pa with a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a surface coated with alumina or zirconia and having a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration until the particle size becomes D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm at a rotation speed of 3200 r / min.
実施例9
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.4〜0.6μm、D100≦2.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合した後、6Lのサンドミルに送って予備分散を行い、800〜900RPM回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにシランカップリング剤KH570とヘキサメチルジシラザンとの質量比が1:1であるシランカップリング剤KH570とヘキサメチルジシラザンとの混合物をサブミクロンシリコン微粉末重量の1.5%で加え、材料の温度を70℃に維持しながら、装置の回転速度900〜1000RPM、研磨時間20分間で湿式法研磨改質し、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して、吸気温度230〜240℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.2Paの圧力をかけて、3200r/minの回転速度で粒度がD50=0.4〜0.6μm、D100≦2.0μmになるまで解凝集を行う解凝集ステップ。
Example 9
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.4 to 0.6 μm and D100 ≦ 2.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 1: 1 and heated with stirring. , The temperature of the material is controlled to 70 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 800 to 900 RPM for 8 minutes. After that, a pretreatment step to obtain a submicron slurry,
(2) Submicron of the submicron slurry according to step (1) is a mixture of the silane coupling agent KH570 and hexamethyldisilazane having a mass ratio of silane coupling agent KH570 and hexamethyldisilazane of 1: 1. Add at 1.5% of the weight of the fine silicon powder, and while maintaining the temperature of the material at 70 ° C., perform wet polishing and reforming at a rotation speed of 900 to 1000 RPM and a polishing time of 20 minutes to complete the preliminary reforming. Modification step,
(3) The submicron slurry prepared in step (2) is passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall, and the intake temperature is 230 to 240 ° C., and the water content is 0.3. Secondary reforming step, which is dried and reformed to less than%, sent to a collector and kept warm at a heat retention temperature of 90 to 100 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.2 Pa with a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a surface coated with alumina or zirconia and having a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration at a rotation speed of 3200 r / min until the particle size becomes D50 = 0.4 to 0.6 μm and D100 ≦ 2.0 μm.
実施例10
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.6〜0.8μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を6:4の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、700〜800RPM回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにヘキサメチルジシラザンをサブミクロンシリコン微粉末重量の1.0%で加え、材料の温度を50℃に維持し、湿式法研磨改質により800〜900RPMの回転速度で20分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしたフラッシュドライヤーを通して、吸気温度130〜140℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで60〜70℃の保温温度で、20分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.0Paの圧力をかけて、3100r/minの回転速度で粒度がD50=0.6〜0.8μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップ。
Example 10
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.6 to 0.8 μm and D100 ≦ 3.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 6: 4 and heated with stirring. , The temperature of the material is controlled to 50 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 700 to 800 RPM for 8 minutes. Pretreatment step to obtain submicron slurry after dispersion,
(2) Hexamethyl disilazane was added to the submicron slurry according to step (1) at 1.0% of the weight of the submicron silicon fine powder, the temperature of the material was maintained at 50 ° C., and 800 by wet polishing modification. Pre-reform step, which completes pre-reform by polishing at a rotation speed of ~ 900 RPM for 20 minutes.
(3) The submicron slurry prepared in step (2) is passed through a flash dryer in which tungsten carbide or zirconium oxide is spray-coated on the blade and the inner wall, and the intake temperature is 130 to 140 ° C., and the water content is 0.3% or less. Secondary reforming step, which is dried and reformed until it becomes, sent to a collector and kept warm at a heat retention temperature of 60 to 70 ° C. for 20 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.0 Pa with a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a surface coated with alumina or zirconia and having a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration at a rotation speed of 3100 r / min until the particle size becomes D50 = 0.6 to 0.8 μm and D100 ≦ 3.0 μm.
実施例8で調製された改質サブミクロンシリコン微粉末製品を、非改質サブミクロンシリコン微粉末製品と比較し、製品の性能は、次の表を参照する。 The modified submicron silicon fine powder product prepared in Example 8 is compared with the non-modified submicron silicon fine powder product, and the performance of the product is referred to the following table.
表1
Table 1
上記の表1から分かるように:
1)サブミクロンシリコン微粉末製品は改質した前後に粒子サイズ(D50、D100)につい変更がほとんどないので、製品が凝集なく、良好な分散性を持ち、サブミクロンシリコン微粉末の湿式法改質における乾燥後にある製品の凝集問題を回避したことを示し、
2)改質後のサブミクロンシリコン微粉末製品の活性化率は100%に達したので、基本的にすべての粒子が改質剤でコーティングされていて、改質効果が良好であることを示し、
3)改質後のサブミクロンシリコン微粉末製品の油吸収量は明らかに減少したので、改質効果が良好で、粘度が低く、流動性が良好で、分散性が良好であることを示し、
4)改質後のサブミクロンシリコン微粉末製品の沈降時間が明らかに延ばしたので、改質効果が良好であり、適用時の沈降防止効果良好であり、保管期間は長くなることを示す。
As you can see from Table 1 above:
1) Since the particle size (D50, D100) of the submicron silicon fine powder product hardly changes before and after the modification, the product does not agglomerate and has good dispersibility, and the submicron silicon fine powder is wet-modified. Shows that the problem of agglomeration of the product after drying was avoided in
2) Since the activation rate of the submicron silicon fine powder product after modification reached 100%, it was shown that basically all the particles were coated with the modifier and the modification effect was good. ,
3) Since the oil absorption amount of the submicron silicon fine powder product after modification was clearly reduced, it was shown that the modification effect was good, the viscosity was low, the fluidity was good, and the dispersibility was good.
4) Since the settling time of the submicron silicon fine powder product after modification was clearly extended, it is shown that the modification effect is good, the settling prevention effect at the time of application is good, and the storage period is long.
本発明は、サブミクロンシリコン微粉末を、前処理、予備改質、二次改質及び解凝集することによって、改質効果が良好な表面処理したサブミクロンシリコン微粉末を得る。そのプロセスが簡単で、経済的で、環境に優しく、低コストで、その製品改質効果がよく、粒子分散性が良く、使用が便利で、CCL、コーティング、接着剤などの分野に広く使用できる。
The present invention obtains a surface-treated submicron silicon fine powder having a good modification effect by pretreating, pre-modifying, secondary modifying and deagglomerating the submicron silicon fine powder. The process is simple, economical, environmentally friendly, low cost, its product modification effect is good, its particle dispersibility is good, it is convenient to use, and it can be widely used in fields such as CCL, coatings and adhesives. ..
Claims (8)
(2)ステップ(1)に記載のサブミクロンスラリーに、シランカップリング剤、ヘキサメチルジシラザン又はシランカップリング剤とヘキサメチルジシラザンとの混合物である改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、湿式法研磨により改質して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーに入れて吸気温度120〜300℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで、保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、粒度が前処理する前と一致するまで解凝集を行う解凝集ステップと、
を含むことを特徴とするサブミクロンシリコン微粉末の表面改質の方法。 (1) Pour submicron silicon fine powder and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, heat with stirring, control the temperature of the material to 50 to 90 ° C, and mix uniformly. After that, it is sent to a sand mill, pre-dispersed while controlling the temperature to 50 to 90 ° C., uniform dispersion, and then a pretreatment step to obtain a submicron slurry.
(2) In the submicron slurry according to step (1), add a silane coupling agent, hexamethyldisilazane, or a modifier which is a mixture of the silane coupling agent and hexamethyldisilazane to the submicron silicon fine powder weight. A pre-reform step that completes the pre-reform by adding 1.0-4.0% and reforming by wet polishing.
(3) The submicron slurry prepared in step (2) is placed in a flash dryer, dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less, and used as a collector. In the secondary reforming step, which is sent in and kept warm at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes to complete the secondary reforming.
(4) A deagglomeration step of applying a pressure of 1.0 Pa or more with a jet mill to deagglomerate the material after heat retention until the particle size matches that before the pretreatment.
A method for surface modification of submicron silicon fine powder, which comprises.
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、湿式法研磨改質により20〜30分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーを通して、吸気温度120〜300℃で、水分含有量が0.3%以下になるまで乾燥、改質した後、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、粒度がD50=0.2μm−1.0μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと、
を含ことを特徴とする請求項1に記載のサブミクロンシリコン微粉末の表面改質の方法。 (1) Pour submicron silicon fine powder having a particle size of D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, and stir. Heat, control the temperature of the material to 50-90 ° C, stir for 3-5 minutes, then send to a sand mill for pre-dispersion, pre-disperse for 5-10 minutes while maintaining the temperature of the material at 50-90 ° C. A pretreatment step to disperse to obtain a submicron slurry,
(2) A modifier is added to the submicron slurry according to step (1) at 1.0 to 4.0% by weight of the submicron silicon fine powder, and the mixture is polished by a wet polishing modification for 20 to 30 minutes. A pre-reform step to complete the pre-reform and
(3) The submicron slurry prepared in step (2) is dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less through a flash dryer, and then sent to a collector. In the secondary reforming step, which completes the secondary reforming by keeping the heat at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes.
(4) A deagglomeration step in which the heat-retained material is deagglomerated by applying a pressure of 1.0 Pa or more with a jet mill until the particle size becomes D50 = 0.2 μm-1.0 μm and D100 ≦ 3.0 μm. ,
The method for surface modification of a submicron silicon fine powder according to claim 1.
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の2.5%で加え、湿式法研磨改質により25分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーを通して、吸気温度210〜220℃で、水分含有量が0.3%以下になるまで乾燥、改質した後、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.2Paの圧力をかけて、粒度がD50=0.5〜0.7μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと
を含むことを特徴とする請求項7に記載のサブミクロンシリコン微粉末の表面改質の方法。
(1) Submicron silicon fine powder having a particle size of D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm and deionized water are poured into a mixing tank at a mass ratio of 1: 1 and heated with stirring to prepare a material. After stirring for 4 minutes while controlling the temperature of the material to 70 ° C., it is sent to a sand mill for pre-dispersion, and after pre-dispersing for 8 minutes while maintaining the temperature of the material at 70 ° C., a pretreatment step of obtaining a submicron slurry When,
(2) Add a modifier to the submicron slurry according to step (1) at 2.5% by weight of the submicron silicon fine powder, and polish for 25 minutes by wet polishing modification to complete the preliminary modification. Preliminary reforming step and
(3) The submicron slurry prepared in step (2) is dried and reformed at an intake temperature of 210 to 220 ° C. until the water content becomes 0.3% or less through a flash dryer, and then sent to a collector. In the secondary reforming step, which completes the secondary reforming by keeping warm for 40 minutes at a heat retention temperature of 90 to 100 ° C.
(4) A deagglomeration step of applying a pressure of 1.2 Pa with a jet mill to deagglomerate the material after heat retention until the particle size becomes D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm. The method for surface modification of a submicron silicon fine powder according to claim 7, wherein the submicron silicon fine powder is contained.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811178335.7 | 2018-10-10 | ||
CN201811178335.7A CN109320998B (en) | 2018-10-10 | 2018-10-10 | Method for modifying surface of submicron silicon micropowder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020097515A JP2020097515A (en) | 2020-06-25 |
JP6933699B2 true JP6933699B2 (en) | 2021-09-08 |
Family
ID=65261864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019186552A Active JP6933699B2 (en) | 2018-10-10 | 2019-10-10 | Method of surface modification of submicron silicon fine powder |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6933699B2 (en) |
KR (1) | KR102262637B1 (en) |
CN (1) | CN109320998B (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110079128A (en) * | 2019-04-29 | 2019-08-02 | 江苏辉迈粉体科技有限公司 | A kind of Submicron spherical silica micropowder organic dispersions and preparation method thereof |
CN110408237A (en) * | 2019-08-07 | 2019-11-05 | 江苏联瑞新材料股份有限公司 | A kind of woodcare paint clear finish silicon powder and preparation method thereof |
CN110484025B (en) * | 2019-08-27 | 2021-05-18 | 佛山金戈新材料股份有限公司 | Method for improving settling resistance and dispersibility of silicon micro powder in organic silicon pouring sealant |
CN110665615B (en) * | 2019-10-10 | 2022-04-19 | 青岛瓷兴新材料有限公司 | Preparation method of superfine silicon powder |
CN111073350A (en) * | 2019-12-25 | 2020-04-28 | 中建材蚌埠玻璃工业设计研究院有限公司 | Preparation method of submicron active silica micropowder |
CN113755032A (en) * | 2020-12-16 | 2021-12-07 | 安徽进化硅纳米材料科技有限公司 | Method for refining silicon dioxide, ultrafine silicon dioxide powder and use |
CN113004718A (en) * | 2021-03-15 | 2021-06-22 | 刘绍辉 | Superfine active silicon micro powder applied to electronic industry and preparation method thereof |
CN113149024B (en) * | 2021-04-25 | 2024-01-23 | 中建材玻璃新材料研究院集团有限公司 | Preparation method of ultra-pure submicron silicon micropowder foam |
CN114539809A (en) * | 2022-02-14 | 2022-05-27 | 连云港威晟硅材料有限公司 | Surface-modified silicon micropowder and preparation method thereof |
CN114539810A (en) * | 2022-03-01 | 2022-05-27 | 昆明冶金研究院有限公司 | High-dispersion modified silica fume and preparation method thereof |
CN114539815A (en) * | 2022-03-01 | 2022-05-27 | 昆明冶金研究院有限公司 | A kind of modified microsilica powder with high coverage and high dispersibility and preparation method thereof |
CN114804749A (en) * | 2022-04-29 | 2022-07-29 | 中铁三局集团有限公司 | Superfine modified silica micropowder low-resilience high-early-strength wet-spraying concrete and construction method thereof |
CN115338401B (en) * | 2022-08-30 | 2023-09-29 | 广州市华司特合金制品有限公司 | Powder treatment method of high-specific gravity tungsten alloy |
CN115477859B (en) * | 2022-10-12 | 2024-03-26 | 江苏联瑞新材料股份有限公司 | High-strength surface-modified silica micropowder for vinyl silica gel and preparation method thereof |
CN116178992A (en) * | 2022-12-26 | 2023-05-30 | 江苏联瑞新材料股份有限公司 | Preparation method of low-viscosity and high-fluidity surface-modified silica micropowder for underfill |
CN116376328B (en) * | 2023-02-17 | 2024-05-17 | 广西电网有限责任公司电力科学研究院 | A method for short-time and high-efficiency epoxy coating of micron alumina |
CN116515170A (en) * | 2023-05-11 | 2023-08-01 | 蚌埠中恒新材料科技有限责任公司 | Surface modification method of high-purity superfine spherical powder |
CN117777764A (en) * | 2023-12-21 | 2024-03-29 | 联瑞新材(连云港)有限公司 | Preparation method of ultra-low cutting point spherical silicon micro powder for HDI |
CN117757286A (en) * | 2023-12-22 | 2024-03-26 | 联瑞新材(连云港)有限公司 | Alkali-resistant spherical silica slurry for packaging substrate and preparation method thereof |
CN118744990B (en) * | 2024-06-07 | 2025-01-21 | 江苏富乐华功率半导体研究院有限公司 | A method for preparing silicon powder slurry |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19616781A1 (en) * | 1996-04-26 | 1997-11-06 | Degussa | Silanized silica |
CN1305764C (en) * | 2004-03-31 | 2007-03-21 | 张永 | Hyperpure, superfine silicon powder and preparation method |
JP5580513B2 (en) * | 2007-12-06 | 2014-08-27 | 株式会社アドマテックス | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method |
CN101280125B (en) * | 2008-05-27 | 2010-12-08 | 阮建军 | Production method of superfine silicon powder for electronic grade low-heat expansion coefficient copper clad laminate |
WO2011006684A1 (en) * | 2009-07-16 | 2011-01-20 | Evonik Degussa Gmbh | Dispersion and method for modifying a surface with hydrophobized silica |
JP2011173779A (en) * | 2010-01-26 | 2011-09-08 | Sakai Chem Ind Co Ltd | Silica particles, process for production of same, and resin composition containing same |
CN103627215B (en) * | 2013-11-27 | 2016-05-11 | 江苏联瑞新材料股份有限公司 | A kind of preparation method of submicron order silicon powder |
JP6195524B2 (en) * | 2014-01-28 | 2017-09-13 | 日揮触媒化成株式会社 | Hydrophobic silica powder and method for producing the same |
JP6347644B2 (en) * | 2014-03-28 | 2018-06-27 | デンカ株式会社 | Surface-modified silica powder and slurry composition |
CN104744971A (en) * | 2015-03-04 | 2015-07-01 | 江西科越科技有限公司 | Preparation process of wet-process superfine modified calcium carbonate |
-
2018
- 2018-10-10 CN CN201811178335.7A patent/CN109320998B/en active Active
-
2019
- 2019-10-10 KR KR1020190125285A patent/KR102262637B1/en active Active
- 2019-10-10 JP JP2019186552A patent/JP6933699B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR102262637B1 (en) | 2021-06-09 |
CN109320998A (en) | 2019-02-12 |
JP2020097515A (en) | 2020-06-25 |
KR20200041279A (en) | 2020-04-21 |
CN109320998B (en) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6933699B2 (en) | Method of surface modification of submicron silicon fine powder | |
EP2594611B1 (en) | Method for preparing white carbon black modified by silane coupling agent | |
CN110088039B (en) | Coarse-free aluminum nitride powder | |
JP5412109B2 (en) | Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same | |
CN102604282A (en) | Preparing method of PTFE (polytetrafluoroethylene) composite material filled with nano particles | |
JP7094283B2 (en) | Surface-modified nanodiamonds, dispersions containing surface-modified nanodiamonds, and resin dispersions | |
CN110951279A (en) | Preparation method of superfine acicular wollastonite modified spherical silicon dioxide composite powder | |
CN101602508A (en) | Preparation method and application of monodisperse nano silica spherical particle hydrosol | |
WO2021073060A1 (en) | Method for preparing hollow glass microbeads with high floatation rate | |
JP5042529B2 (en) | Fine particle-containing composition and method for producing the same | |
CN106590063A (en) | Preparing method of water-based high-dispersity titanium dioxide | |
CN106752121A (en) | The preparation method of silicon dioxide coating type aluminium pigment | |
JP6258131B2 (en) | Hydrophobic airgel powder, production method thereof, and filler using the same | |
Li et al. | Surface modification of alumina nanoparticles and its application in tape casting of micro-nano green tape | |
CN108611089A (en) | A kind of organically-modified fluorescence nano raw powder's production technology and application | |
CN113968733B (en) | Preparation method of high-solid-content low-viscosity zirconia ceramic slurry | |
CN108299579B (en) | Graphene/nano silicon dioxide/polystyrene hybrid material and preparation method and application thereof | |
CN111875990A (en) | Composite titanium dioxide and preparation method and application thereof | |
CN117757286A (en) | Alkali-resistant spherical silica slurry for packaging substrate and preparation method thereof | |
CN117777764A (en) | Preparation method of ultra-low cutting point spherical silicon micro powder for HDI | |
JP6195524B2 (en) | Hydrophobic silica powder and method for producing the same | |
JP5170437B2 (en) | Method for producing soft agglomerated powder and method for producing inorganic particle-organic polymer composite paste | |
CN105419399A (en) | Treatment method for performing surface modification on zinc oxide through mechanical force ball milling method | |
JP2008184485A (en) | Filler-containing aqueous slurry composition | |
JP2003013106A (en) | Method for producing silica-coated metal composite powder and silica-coated metal composite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6933699 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |