JP6933699B2 - Method of surface modification of submicron silicon fine powder - Google Patents

Method of surface modification of submicron silicon fine powder Download PDF

Info

Publication number
JP6933699B2
JP6933699B2 JP2019186552A JP2019186552A JP6933699B2 JP 6933699 B2 JP6933699 B2 JP 6933699B2 JP 2019186552 A JP2019186552 A JP 2019186552A JP 2019186552 A JP2019186552 A JP 2019186552A JP 6933699 B2 JP6933699 B2 JP 6933699B2
Authority
JP
Japan
Prior art keywords
submicron
fine powder
silicon fine
temperature
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019186552A
Other languages
Japanese (ja)
Other versions
JP2020097515A (en
Inventor
小燿 孫
小燿 孫
家凱 曹
家凱 曹
松憲 王
松憲 王
Original Assignee
江蘇聯瑞新材料股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江蘇聯瑞新材料股▲ふん▼有限公司 filed Critical 江蘇聯瑞新材料股▲ふん▼有限公司
Publication of JP2020097515A publication Critical patent/JP2020097515A/en
Application granted granted Critical
Publication of JP6933699B2 publication Critical patent/JP6933699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/045Agglomeration, granulation, pelleting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、無機非金属材料の精密加工技術分野に関し、特にサブミクロンシリコン微粉末の表面改質の方法に関する。 The present invention relates to the field of precision processing technology for inorganic non-metallic materials, and particularly to a method for surface modification of submicron silicon fine powder.

シリコン微粉末には、絶縁性、熱安定性、耐薬品性などの利点を有して、エポキシ成形(EMC)、銅張積層板(CCL)、電気絶縁、コーティング、接着剤などの分野で広く使用されている。技術の進歩に伴い、電子製品もコンパクト化、即ちより軽く、薄く、短くて小さくなるように発展しているため、CCLシートはますます薄くなっているので、より微細なフィラーが必要となり、通常のミクロンサイズのSiOはCCL極薄基板の使用要件を満たせなくなり、一方、 サブミクロンSiOは、その使用要件を満たす上に、機械的特性及び加工特性も一層すぐれている。コーティング及び接着剤の分野では、環境保護に対する意識の高まりに伴い、油性コーティングや接着剤に代わって水性コーティングや接着剤を使用するのはが時代のトレンドとなっているが、ミクロンサイズのSiOは、高密度なので、使用中に沈降しやすくて使用出来る範囲が限られることに対し、サブミクロンのSiOは 沈降の要件を満たすことに加えて、優れた機械的特性、一層優れた透明性、小さなヘイズ、優れた接触感などの優れた機能を示している。 Silicone fine powder has advantages such as insulation, thermal stability, and chemical resistance, and is widely used in fields such as epoxy molding (EMC), copper-clad laminate (CCL), electrical insulation, coating, and adhesives. in use. As technology advances, electronic products are also becoming more compact, that is, lighter, thinner, shorter and smaller, and as CCL sheets become thinner and thinner, finer fillers are usually required. The micron-sized SiO 2 cannot meet the usage requirements of the CCL ultrathin substrate, while the submicron SiO 2 meets the usage requirements and has further excellent mechanical and processing characteristics. In the field of coatings and adhesives, the use of water-based coatings and adhesives in place of oil-based coatings and adhesives has become a trend of the times due to growing awareness of environmental protection, but micron-sized SiO 2 Because of its high density, it tends to settle during use, limiting its usable range, whereas submicron SiO 2 meets the settling requirements, as well as excellent mechanical properties and better transparency. It shows excellent features such as small haze and excellent contact feeling.

サブミクロンシリコン微粉末は、ミクロンシリコン粉末より大きい比表面積を有するので、直接に使用すると、体系の粘度が高く、分散しにくいなどの問題があるため、それに対する表面改質が必要となる。 Since the submicron silicon fine powder has a specific surface area larger than that of the micron silicon powder, when it is used directly, there are problems such as high viscosity of the system and difficulty in dispersion, so that surface modification is required for it.

中国でも外国でもシリコン微粉末の生産における表面改質と言えば、乾式改質と湿式改質に分けられてもよい。そのうち、乾式法改質はプロセスが簡単で、生産物が比較的に少ないが、改質剤がシリコン微粉末の表面に均一に分散しにくく、改質効果が乏しい。乾式改質は、クロンシリコン微粉末の表面改質にのみ適用でき、例えば、特許文献1では、D50=3−50μmの超微細シリコン微粉末を原料として選択し、表面改質混合液を使用して、乾式改質によって表面改質シリコン微粉末を取得した。特許文献2はアルミナボールをボールミルに入れて、4〜16メッシュの石英砂及び改質剤のヘキサメチルジシラザンを一緒にボールミルに加えて研磨したことで、メカノケミカル改質し、篩い分けて様々な粒子サイズを有する改質シリコン微粉末を得ることになる。 Speaking of surface reforming in the production of fine silicon powder in both China and foreign countries, it may be divided into dry reforming and wet reforming. Among them, the dry method modification has a simple process and a relatively small amount of product, but the modifier is difficult to uniformly disperse on the surface of the silicon fine powder, and the modification effect is poor. The dry modification can be applied only to the surface modification of cron silicon fine powder. For example, in Patent Document 1, ultrafine silicon fine powder of D50 = 3-50 μm is selected as a raw material, and a surface modification mixed solution is used. Then, surface-modified silicon fine powder was obtained by dry modification. In Patent Document 2, alumina balls are placed in a ball mill, and 4 to 16 mesh of quartz sand and hexamethyldisilazane as a modifier are added to the ball mill and polished, thereby modifying mechanochemicals and sieving them in various ways. A modified silicon fine powder having a large particle size will be obtained.

サブミクロン、ナノシリコン微粉末の場合、湿式改質が必要である。しかし、湿式改質には、サブミクロン、ナノシリコン微粉末の乾燥後に凝集する問題があり、粒子の単分散が実現できないので製品の使用効果に悪影響を及ぼし、サブミクロン、ナノ製品が持つべき効果が得られない、という問題がある。 In the case of submicron and nanosilicon fine powder, wet modification is required. However, wet modification has a problem of agglutination after drying of submicron and nanosilicon fine powder, and since monodisperse of particles cannot be realized, it adversely affects the effect of using the product, and the effect that the submicron and nano product should have. There is a problem that it cannot be obtained.

例えば、特許文献3は、結晶質の石英砂又は溶融石英を原料とし、乾式研磨によってミクロンシリコン微粉末を調製し、次にミクロンサイズのシリコン微粉末を、改質剤を加えて湿式法研磨し、粒子サイズがサブミクロンレベルになるまで研磨して、圧力濾過によりサブミクロンシリコン微粉末フィルターケーキを得ることになるが、使用する時に超音波でそれを分散させるのが必要である。該プロセスによる製品は使用するときに超音波でそれを分散をさせる必要があるため、使用するには不便である。 For example, in Patent Document 3, using crystalline quartz sand or molten quartz as a raw material, micron silicon fine powder is prepared by dry polishing, and then micron size silicon fine powder is wet-polished by adding a modifier. The submicron silicon fine powder filter cake will be obtained by pressure filtration after polishing to the submicron level, but it is necessary to disperse it with ultrasonic waves when using. Products by this process are inconvenient to use because they need to be ultrasonically dispersed when used.

特許文献4は、ナノシリカと分散剤及びエタノールをナノシリカ分散液に調製し、次にナノシリカ分散液に超音波発生器を挿入して、複合改質剤を添加して改質し、改質ナノシリカ溶液を得て、最後に改質ナノシリカ溶液を濾過、乾燥、粉砕、篩い分けて、改質ナノシリカを取得する。該プロセスは複雑で、エタノールを溶媒として使用するので、コストが高く、しかも、安全上の懸念があり、且つ、単に粉砕する及び篩分けすることだけでは粒子の単分散を実現することはできない。 In Patent Document 4, nanosilica, a dispersant, and ethanol are prepared in a nanosilica dispersion, then an ultrasonic generator is inserted into the nanosilica dispersion, and a composite modifier is added to modify the nanosilica solution. Finally, the modified nanosilica solution is filtered, dried, pulverized, and sieved to obtain modified nanosilica. The process is complex and uses ethanol as the solvent, which is costly, has safety concerns, and cannot achieve monodisperse of particles by simply pulverizing and sieving.

特許文献5はシリカ1部を蒸留水50部に加え、濁液になるまで攪拌して、それに当該濁液を超音波で、40〜70℃で10〜30分間超音波分散したことで、シリカ分散液を得て、次に一定量の、様々な鎖長を有する改質剤を分散液に加え、補助剤を1滴加え、一定の温度で超音波にかけ、その後、スラリーを濾過、洗浄、乾燥して、改質シリカ製品を得ることになる。 該プロセスは複雑で、調製された分散液の固形分が低く、コストが高く、乾燥後の製品は凝集したこともなり、単分散を実現できない。 Patent Document 5 describes silica by adding 1 part of silica to 50 parts of distilled water, stirring until it becomes a turbid liquid, and ultrasonically dispersing the turbid liquid at 40 to 70 ° C. for 10 to 30 minutes. Obtain a dispersion, then add a constant amount of modifiers of various chain lengths to the dispersion, add one drop of auxiliary agent, sonicate at a constant temperature, then filter and wash the slurry. It will be dried to obtain a modified silica product. The process is complicated, the solid content of the prepared dispersion is low, the cost is high, and the dried product also agglomerates, making it impossible to achieve monodisperse.

特許文献6はストーバー法(stober法)によって調製されたナノシリカ産物を、アルコール洗浄、水洗浄し、更に凍結乾燥させ、単分散ナノシリカ粉末体Aを得て、次に、単分散ナノシリカ粉末Aをエタノールに入れて超音波分散し、システムBを得て、また、体系Bを反応容器に入れて密閉し、一定の時間で特定の温度及び圧力条件を維持して、その後、大気圧になるまで圧力を徐々に解放し、 疎水的に改質されたナノシリカ粒子を得る。該方法は凝集が少なく、製品は単分散であるが、凍結乾燥する必要があり、コストが高い。 In Patent Document 6, a nanosilica product prepared by the Stöber method is washed with alcohol, washed with water, and further freeze-dried to obtain a monodisperse nanosilica powder A, and then the monodisperse nanosilica powder A is ethanol. Stöber is ultrasonically dispersed to obtain system B, and system B is placed in a reaction vessel and sealed to maintain a specific temperature and pressure condition for a certain period of time, and then the pressure is reached until atmospheric pressure is reached. Is gradually released to obtain hydrophobically modified nanosilica particles. The method has less agglutination and the product is monodisperse, but requires lyophilization and is costly.

中国特許公開第101591478号公報Chinese Patent Publication No. 101591478 中国特許公開第103613956号公報Chinese Patent Publication No. 1036193956 中国特許公開第103627215号公報Chinese Patent Publication No. 1032627215 中国特許公開第10694729A3号公報Chinese Patent Publication No. 1069427A3 中国特許公開第103194097号公報Chinese Patent Publication No. 103194097 中国特許公開第106745006号公報Chinese Patent Publication No. 106745006

本発明が解決しようとする技術的課題は、従来の技術の欠陥に対して、製造プロセスが簡単で、経済的で、環境に優しく、低コストで、粒子分散性が良く、使用が便利なサブミクロンシリコン微粉末の表面改質の方法を提供することである。 The technical problem to be solved by the present invention is that the manufacturing process is simple, economical, environmentally friendly, low cost, good particle dispersibility, and convenient to use, as opposed to the defects of the conventional technology. It is to provide a method of surface modification of micron silicon fine powder.

本発明が解決しようとする技術的課題は、次の技術案によって達成される。
(1)サブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御し、均一に混合された後、サンドミルに送って、予備分散温度を50〜90℃に制御しながら予備分散を行い、均一分散後、サブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに、シランカップリング剤、ヘキサメチルジシラザン又はシランカップリング剤とヘキサメチルジシラザンとの混合物であり、好ましくはシランカップリング剤である改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%との添加量で加え、湿式法研磨により改質して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーに入れて吸気温度120〜300℃で、乾燥、改質し、水分含有量が0.3%以下になるまで乾燥した後、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料をジェットミルで1.0Pa以上の圧力をかけて、粒度が前処理する前と一致するように解凝集を行う解凝集ステップと、
を含むことを特徴とするサブミクロンシリコン微粉末の表面改質の方法。
The technical problem to be solved by the present invention is achieved by the following technical proposal.
(1) Pour submicron silicon fine powder and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, heat with stirring, control the temperature of the material to 50 to 90 ° C, and mix uniformly. After that, it is sent to a sand mill to perform pre-dispersion while controlling the pre-dispersion temperature to 50 to 90 ° C., and after uniform dispersion, a pretreatment step of obtaining a submicron slurry and a pretreatment step.
(2) The submicron slurry according to step (1) is modified with a silane coupling agent, hexamethyldisilazane, or a mixture of a silane coupling agent and hexamethyldisilazane, preferably a silane coupling agent. A pre-modification step of adding the agent in an amount of 1.0 to 4.0% of the weight of the submicron silicon fine powder and reforming by wet polishing to complete the pre-modification.
(3) The submicron slurry prepared in step (2) is placed in a flash dryer, dried and modified at an intake temperature of 120 to 300 ° C., and dried until the water content becomes 0.3% or less. , The secondary reforming step of sending to the collector and keeping the heat at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes to complete the secondary reforming.
(4) A deagglomeration step in which the material after heat retention is subjected to a pressure of 1.0 Pa or more with a jet mill to disaggregate the material so that the particle size matches that before the pretreatment.
A method for surface modification of submicron silicon fine powder, which comprises.

本発明が解決しようとする技術的課題は、また、ステップ(1)における上記サンドミルのライニングはポリウレタン、炭化ケイ素又は酸化ジルコニウムであり、粉砕メディアはジルコニア又は窒化ケイ素であり、粉砕メディアの直径は0.2〜0.8mmである技術案によって実現できる。 The technical problem to be solved by the present invention is that the lining of the sand mill in step (1) is polyurethane, silicon carbide or zirconium oxide, the pulverized media is zirconia or silicon nitride, and the diameter of the pulverized media is 0. It can be realized by a technical proposal of 2 to 0.8 mm.

本発明が解決しようとする技術的課題は、また、ステップ(3)におけるフラッシュドライヤーのブレード及び内壁に炭化タングステン又はジルコニアをスプレーコータする技術案によって実現できる。 The technical problem to be solved by the present invention can also be realized by the technical proposal of spray coating tungsten carbide or zirconia on the blade and inner wall of the flash dryer in step (3).

本発明が解決しようとする技術的課題は、また、ステップ(4)に記載のジェットミルの内側ライニング及び分級ロータはアルミナ又はジルコニアであるか、又は内側ライニング及び分級ロータの表面にアルミナ又はジルコニアをスプレーコータするものであるか、との技術案によって実現できる。 The technical problem to be solved by the present invention is that the inner lining and classification rotor of the jet mill according to step (4) is alumina or zirconia, or the surface of the inner lining and classification rotor is alumina or zirconia. It can be realized by the technical proposal of whether it is a spray coater.

本発明が解決しようとする技術的課題は、更に、
(1)粒度がD50=0.2μm〜1.0μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御し、3〜5分間攪拌した後、サンドミルに送って予備分散を行い、材料の温度を50〜90℃に維持しながら、5〜10分間予備分散してサブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、湿式法研磨改質により20〜30分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーを通して、吸気温度120〜300℃で水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、粒度がD50=0.2μm〜1.0μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと
を含む技術案によって実現できる。
Further, the technical problem to be solved by the present invention is further described.
(1) Pour submicron silicon fine powder having a particle size of D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, and stir. Heat, control the temperature of the material to 50-90 ° C, stir for 3-5 minutes, then send to a sand mill for pre-dispersion, pre-disperse for 5-10 minutes while maintaining the temperature of the material at 50-90 ° C. A pretreatment step to disperse to obtain a submicron slurry,
(2) A modifier is added to the submicron slurry according to step (1) at 1.0 to 4.0% by weight of the submicron silicon fine powder, and the mixture is polished by a wet polishing modification for 20 to 30 minutes. A pre-reform step to complete the pre-reform and
(3) The submicron slurry prepared in step (2) is dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less through a flash dryer, and then sent to a collector. A secondary reforming step that completes the secondary reforming by keeping the heat at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes.
(4) A deagglomeration step in which the heat-retained material is deagglomerated by applying a pressure of 1.0 Pa or more with a jet mill until the particle size becomes D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm. It can be realized by a technical proposal including.

本発明が解決しようとする技術的課題は、また、
(1)粒度がD50=0.5〜0.7μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御し、4分間攪拌した後、サンドミルに送って予備分散を行い、材料の温度を70℃に維持しながら、8分間予備分散後、サブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の2.5%で加え、湿式法研磨改質により25分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、吸気温度が210〜220℃であるフラッシュドライヤーを通して水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.2Paの圧力をかけて、粒度がD50=0.5〜0.7μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと
を含む技術案によって実現できる。
The technical problem to be solved by the present invention is also
(1) Submicron silicon fine powder having a particle size of D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm and deionized water are poured into a mixing tank at a mass ratio of 1: 1 and heated with stirring to prepare a material. After controlling the temperature to 70 ° C. and stirring for 4 minutes, it was sent to a sand mill for pre-dispersion, and while maintaining the temperature of the material at 70 ° C., after pre-dispersion for 8 minutes, a pretreatment step of obtaining a submicron slurry was performed. ,
(2) Add a modifier to the submicron slurry according to step (1) at 2.5% by weight of the submicron silicon fine powder, and polish for 25 minutes by wet polishing modification to complete the preliminary modification. Preliminary reforming step and
(3) The submicron slurry prepared in step (2) is dried and reformed through a flash dryer having an intake air temperature of 210 to 220 ° C. until the water content becomes 0.3% or less, and then sent to a collector. In the secondary reforming step, which completes the secondary reforming by keeping warm for 40 minutes at a heat retention temperature of 90 to 100 ° C.
(4) A deagglomeration step of applying a pressure of 1.2 Pa with a jet mill to deagglomerate the material after heat retention until the particle size becomes D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm. It can be realized by the technical proposal including.

従来技術と比較して、本発明は溶媒として脱イオン水を使用し、廃水排出がなく、経済的且つ環境にやさしく、メカノケミカル法改質と湿式改質を組み合わせて改質する方法として、改質効果がよく、ジェット解凝集によってサブミクロンシリコン微粉末製品の粒子凝集の問題が解決され、サブミクロンシリコン微粉末製品の粒子を完全に分散することが実現される。また、プロセスが簡易で使用されやすく、CCL、塗料、接着剤などの分野で広く使用できる。 Compared with the prior art, the present invention uses deionized water as a solvent, does not discharge waste water, is economical and environmentally friendly, and is modified as a method for reforming by combining mechanochemical method modification and wet modification. Good quality effect, jet deagglomeration solves the problem of particle agglomeration of submicron silicon fine powder products and realizes complete dispersion of particles of submicron silicon fine powder products. In addition, the process is simple and easy to use, and it can be widely used in fields such as CCL, paints, and adhesives.

当業者が本発明をさらに理解できるように、本発明における具体的な技術案をさらに説明したが、それらの技術案は制限をもたらすものではない。 Specific technical proposals in the present invention have been further described so that those skilled in the art can better understand the present invention, but these technical proposals do not impose any restrictions.

実施例1
サブミクロンシリコン微粉末の表面改質の方法であって、そのステップは以下の通りである。
(1)サブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御して、均一に攪拌した後、サンドミルに送って予備分散を行い、均一に分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、温度が50〜90℃になるように維持しながら、湿式法研磨改質により20〜30分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーに入れて、吸気温度120〜300℃で水分含有量が0.3%以下になるまで乾燥、改質した後、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、前処理する前の粒度と一致するまで解凝集を行う解凝集ステップ。
Example 1
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Pour submicron silicon fine powder and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, heat with stirring, and control the temperature of the material to 50 to 90 ° C. to make it uniform. After stirring, it is sent to a sand mill for pre-dispersion, and after uniform dispersion, a pretreatment step to obtain a submicron slurry,
(2) The modifier was added to the submicron slurry according to step (1) at 1.0 to 4.0% by weight of the submicron silicon fine powder, and the temperature was maintained at 50 to 90 ° C. Pre-modification step, which completes pre-modification by polishing for 20-30 minutes by wet polishing modification,
(3) The submicron slurry prepared in step (2) is placed in a flash dryer, dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less, and then placed in a collector. Secondary reforming step, which is sent in and kept warm at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes to complete the secondary reforming.
(4) A deagglomeration step in which the material after heat retention is subjected to a pressure of 1.0 Pa or more with a jet mill to deagglomerate until it matches the particle size before pretreatment.

実施例2
実施例1記載のサブミクロンシリコン微粉末表面改質の方法であって、ステップ(2)に記載の改質剤はシランカップリング剤、ヘキサメチルジシラザン又はシランカップリング剤とヘキサメチルジシラザンとの混合物であり、好ましくはシランカップリング剤である。
Example 2
The method for surface modification of a submicron silicon fine powder according to Example 1, wherein the modifier according to step (2) is a silane coupling agent, hexamethyldisilazane or a silane coupling agent and hexamethyldisilazane. It is a mixture of silane coupling agents, preferably a silane coupling agent.

実施例3
実施例1〜2記載のサブミクロンシリコン微粉末表面改質の方法であって、ステップ(3)におけるフラッシュドライヤーのブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしている。
Example 3
The method of surface modification of submicron silicon fine powder according to Examples 1 and 2, wherein tungsten carbide or zirconium oxide is spray coated on the blade and inner wall of the flash dryer in step (3).

実施例4
実施例1〜3記載のサブミクロンシリコン微粉末表面改質の方法であって、ステップ(1)記載のサンドミルの内側ライニングはポリウレタン、炭化ケイ素又はジルコニアであり、粉砕メディアはジルコニア又は窒化ケイ素であり、当該粉砕メディアの直径は0.2〜0.8mmである。
Example 4
The method of surface modification of submicron silicon fine powder according to Examples 1 to 3, wherein the inner lining of the sand mill according to step (1) is polyurethane, silicon carbide or zirconia, and the pulverized medium is zirconia or silicon nitride. , The diameter of the pulverized media is 0.2 to 0.8 mm.

実施例5
実施例1〜4記載のサブミクロンシリコン微粉末表面改質方法であって、ステップ(4)記載のジェットミルの内側ライニング及び分級ロータはアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアがスプレーコータをしている。
Example 5
In the submicron silicon fine powder surface modification method according to Examples 1 to 4, the inner lining and classification rotor of the jet mill according to step (4) are either alumina or zirconia, or the surface is sprayed with alumina or zirconia. I'm a coater.

実施例6
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.4〜0.6μm、D100≦2.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、700〜1000RPMとの回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の2.5%で加え、材料の温度が70℃になるように維持し、湿式法研磨改質により800〜1100RPMとの回転速度で25分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して、210〜220℃の吸気温度で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしているものであり、ローター直径が200mmであるジェットミルで1.2Paの圧力をかけて、3500r/minとの回転速度で粒度がD50=0.4〜0.6μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップ。
Example 6
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.4 to 0.6 μm and D100 ≦ 2.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 1: 1 and heated with stirring. , The temperature of the material is controlled to 70 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and the rotation speed is 700 to 1000 RPM, 8 Pretreatment step to obtain submicron slurry after pre-dispersion for minutes,
(2) Add a modifier to the submicron slurry according to step (1) at 2.5% of the weight of the submicron silicon fine powder, maintain the temperature of the material at 70 ° C., and perform wet polishing modification. Pre-reform step, which completes pre-reform by polishing for 25 minutes at a rotation speed of 800 to 1100 RPM.
(3) The submicron slurry prepared in step (2) was passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall, and the water content was 0. Secondary reforming step, which is dried and reformed to 3% or less, sent to a collector and kept warm at a heat retention temperature of 90 to 100 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.2 Pa in a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a spray coater of alumina or zirconia on the surface and a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration until the particle size becomes D50 = 0.4 to 0.6 μm and D100 ≦ 3.0 μm at a rotation speed of 3500 r / min.

実施例7
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.2〜0.4μm、D100≦2.0μmのサブミクロンシリコン微粉末及び脱イオン水を4:6の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を80℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、900〜1000RPM回転速度で、10分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにシランカップリング剤KH560をサブミクロンシリコン微粉末重量の3.0%で加え、材料の温度が80℃になるように維持し、湿式法研磨改質により1000〜1100RPMの回転速度で30分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して吸気温度が250〜260℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで100〜110℃の保温温度で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.6Paの圧力をかけて、3500r/minとの回転速度で粒度がD50=0.2〜0.4μm、D100≦2.0μmになるまで解凝集を行う解凝集ステップ。
Example 7
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.2 to 0.4 μm and D100 ≦ 2.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 4: 6, and heated with stirring. , The temperature of the material is controlled to 80 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 900 to 1000 RPM for 10 minutes. Pretreatment step to obtain submicron slurry after dispersion,
(2) Add the silane coupling agent KH560 to the submicron slurry according to step (1) at 3.0% of the weight of the submicron silicon fine powder, maintain the temperature of the material at 80 ° C., and perform wet polishing. Pre-reform step, which completes pre-reform by polishing for 30 minutes at a rotation speed of 1000-1100 RPM by remodeling.
(3) The submicron slurry prepared in step (2) is passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall, and the intake temperature is 250 to 260 ° C., and the water content is 0.3. Secondary reforming step, which is dried and reformed to less than%, sent to a collector and kept warm at a heat retention temperature of 100 to 110 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is the one in which the inner lining and classification rotor are alumina or zirconia, or the surface is spray coated with alumina or zirconia, and the rotor diameter is 200 mm with a jet mill of 1.6 Pa. A deagglomeration step in which pressure is applied and deagglomeration is performed at a rotation speed of 3500 r / min until the particle size becomes D50 = 0.2 to 0.4 μm and D100 ≦ 2.0 μm.

実施例8
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.5〜0.7μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、800〜900RPM回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにシランカップリング剤KH570をサブミクロンシリコン微粉末重量の2.5%で加え、材料の温度が70℃になるように維持し、湿式法研磨改質により900〜1000RPMの回転速度で25分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して、260〜270℃の吸気温度で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで100〜110℃の保温温度で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.2Paの圧力をかけて、3200r/minとの回転速度で粒度がD50=0.5〜0.7μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップ。
Example 8
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 1: 1 and heated with stirring. , The temperature of the material is controlled to 70 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 800 to 900 RPM for 8 minutes. Pretreatment step to obtain submicron slurry after dispersion,
(2) Add the silane coupling agent KH570 to the submicron slurry according to step (1) at 2.5% of the weight of the submicron silicon fine powder, maintain the temperature of the material at 70 ° C., and perform wet polishing. Pre-reform step, which completes pre-reform by polishing for 25 minutes at a rotation speed of 900-1000 RPM by remodeling.
(3) The submicron slurry prepared in step (2) was passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall at an intake temperature of 260 to 270 ° C. and a water content of 0. Secondary reforming step, which is dried and reformed to 3% or less, sent to a collector and kept warm at a heat retention temperature of 100 to 110 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.2 Pa with a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a surface coated with alumina or zirconia and having a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration until the particle size becomes D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm at a rotation speed of 3200 r / min.

実施例9
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.4〜0.6μm、D100≦2.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合した後、6Lのサンドミルに送って予備分散を行い、800〜900RPM回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにシランカップリング剤KH570とヘキサメチルジシラザンとの質量比が1:1であるシランカップリング剤KH570とヘキサメチルジシラザンとの混合物をサブミクロンシリコン微粉末重量の1.5%で加え、材料の温度を70℃に維持しながら、装置の回転速度900〜1000RPM、研磨時間20分間で湿式法研磨改質し、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしていたフラッシュドライヤーを通して、吸気温度230〜240℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.2Paの圧力をかけて、3200r/minの回転速度で粒度がD50=0.4〜0.6μm、D100≦2.0μmになるまで解凝集を行う解凝集ステップ。
Example 9
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.4 to 0.6 μm and D100 ≦ 2.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 1: 1 and heated with stirring. , The temperature of the material is controlled to 70 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 800 to 900 RPM for 8 minutes. After that, a pretreatment step to obtain a submicron slurry,
(2) Submicron of the submicron slurry according to step (1) is a mixture of the silane coupling agent KH570 and hexamethyldisilazane having a mass ratio of silane coupling agent KH570 and hexamethyldisilazane of 1: 1. Add at 1.5% of the weight of the fine silicon powder, and while maintaining the temperature of the material at 70 ° C., perform wet polishing and reforming at a rotation speed of 900 to 1000 RPM and a polishing time of 20 minutes to complete the preliminary reforming. Modification step,
(3) The submicron slurry prepared in step (2) is passed through a flash dryer in which tungsten carbide or zirconium oxide was spray coated on the blade and the inner wall, and the intake temperature is 230 to 240 ° C., and the water content is 0.3. Secondary reforming step, which is dried and reformed to less than%, sent to a collector and kept warm at a heat retention temperature of 90 to 100 ° C. for 40 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.2 Pa with a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a surface coated with alumina or zirconia and having a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration at a rotation speed of 3200 r / min until the particle size becomes D50 = 0.4 to 0.6 μm and D100 ≦ 2.0 μm.

実施例10
サブミクロンシリコン微粉末表面改質の方法であって、そのステップは以下の通りである。
(1)粒度がD50=0.6〜0.8μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を6:4の質量比で100Lの混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50℃に制御して、30HZの攪拌周波数で4分間攪拌し、均一に混合された後、6Lのサンドミルに送って予備分散を行い、700〜800RPM回転速度で、8分間予備分散後、サブミクロンスラリーを得る前処理ステップ、
(2)ステップ(1)に記載のサブミクロンスラリーにヘキサメチルジシラザンをサブミクロンシリコン微粉末重量の1.0%で加え、材料の温度を50℃に維持し、湿式法研磨改質により800〜900RPMの回転速度で20分間研磨して、予備改質を完成する予備改質ステップ、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、ブレードと内壁に炭化タングステン又は酸化ジルコニウムをスプレーコータしたフラッシュドライヤーを通して、吸気温度130〜140℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで60〜70℃の保温温度で、20分間保温して二次改質を完了する二次改質ステップ、
(4)保温後の材料を、内側ライニング及び分級ロータがアルミナ又はジルコニアであるか、又は表面にアルミナ又はジルコニアをスプレーコータしていたものであり、ローター直径が200mmであるジェットミルで1.0Paの圧力をかけて、3100r/minの回転速度で粒度がD50=0.6〜0.8μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップ。
Example 10
It is a method of surface modification of submicron silicon fine powder, and the steps are as follows.
(1) Submicron silicon fine powder having a particle size of D50 = 0.6 to 0.8 μm and D100 ≦ 3.0 μm and deionized water are poured into a 100 L mixing tank at a mass ratio of 6: 4 and heated with stirring. , The temperature of the material is controlled to 50 ° C., the mixture is stirred at a stirring frequency of 30 Hz for 4 minutes, mixed uniformly, and then sent to a 6 L sand mill for pre-dispersion, and pre-dispersed at a rotation speed of 700 to 800 RPM for 8 minutes. Pretreatment step to obtain submicron slurry after dispersion,
(2) Hexamethyl disilazane was added to the submicron slurry according to step (1) at 1.0% of the weight of the submicron silicon fine powder, the temperature of the material was maintained at 50 ° C., and 800 by wet polishing modification. Pre-reform step, which completes pre-reform by polishing at a rotation speed of ~ 900 RPM for 20 minutes.
(3) The submicron slurry prepared in step (2) is passed through a flash dryer in which tungsten carbide or zirconium oxide is spray-coated on the blade and the inner wall, and the intake temperature is 130 to 140 ° C., and the water content is 0.3% or less. Secondary reforming step, which is dried and reformed until it becomes, sent to a collector and kept warm at a heat retention temperature of 60 to 70 ° C. for 20 minutes to complete the secondary reforming.
(4) The material after heat retention is 1.0 Pa with a jet mill having an inner lining and a classification rotor of alumina or zirconia, or a surface coated with alumina or zirconia and having a rotor diameter of 200 mm. The deagglomeration step of performing deagglomeration at a rotation speed of 3100 r / min until the particle size becomes D50 = 0.6 to 0.8 μm and D100 ≦ 3.0 μm.

実施例8で調製された改質サブミクロンシリコン微粉末製品を、非改質サブミクロンシリコン微粉末製品と比較し、製品の性能は、次の表を参照する。 The modified submicron silicon fine powder product prepared in Example 8 is compared with the non-modified submicron silicon fine powder product, and the performance of the product is referred to the following table.

表1

Figure 0006933699
Table 1
Figure 0006933699

上記の表1から分かるように:
1)サブミクロンシリコン微粉末製品は改質した前後に粒子サイズ(D50、D100)につい変更がほとんどないので、製品が凝集なく、良好な分散性を持ち、サブミクロンシリコン微粉末の湿式法改質における乾燥後にある製品の凝集問題を回避したことを示し、
2)改質後のサブミクロンシリコン微粉末製品の活性化率は100%に達したので、基本的にすべての粒子が改質剤でコーティングされていて、改質効果が良好であることを示し、
3)改質後のサブミクロンシリコン微粉末製品の油吸収量は明らかに減少したので、改質効果が良好で、粘度が低く、流動性が良好で、分散性が良好であることを示し、
4)改質後のサブミクロンシリコン微粉末製品の沈降時間が明らかに延ばしたので、改質効果が良好であり、適用時の沈降防止効果良好であり、保管期間は長くなることを示す。
As you can see from Table 1 above:
1) Since the particle size (D50, D100) of the submicron silicon fine powder product hardly changes before and after the modification, the product does not agglomerate and has good dispersibility, and the submicron silicon fine powder is wet-modified. Shows that the problem of agglomeration of the product after drying was avoided in
2) Since the activation rate of the submicron silicon fine powder product after modification reached 100%, it was shown that basically all the particles were coated with the modifier and the modification effect was good. ,
3) Since the oil absorption amount of the submicron silicon fine powder product after modification was clearly reduced, it was shown that the modification effect was good, the viscosity was low, the fluidity was good, and the dispersibility was good.
4) Since the settling time of the submicron silicon fine powder product after modification was clearly extended, it is shown that the modification effect is good, the settling prevention effect at the time of application is good, and the storage period is long.

本発明は、サブミクロンシリコン微粉末を、前処理、予備改質、二次改質及び解凝集することによって、改質効果が良好な表面処理したサブミクロンシリコン微粉末を得る。そのプロセスが簡単で、経済的で、環境に優しく、低コストで、その製品改質効果がよく、粒子分散性が良く、使用が便利で、CCL、コーティング、接着剤などの分野に広く使用できる。

The present invention obtains a surface-treated submicron silicon fine powder having a good modification effect by pretreating, pre-modifying, secondary modifying and deagglomerating the submicron silicon fine powder. The process is simple, economical, environmentally friendly, low cost, its product modification effect is good, its particle dispersibility is good, it is convenient to use, and it can be widely used in fields such as CCL, coatings and adhesives. ..

Claims (8)

(1)サブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御し、均一に混合された後、サンドミルに送って、温度を50〜90℃に制御しながら予備分散を行い、均一分散後、サブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに、シランカップリング剤、ヘキサメチルジシラザン又はシランカップリング剤とヘキサメチルジシラザンとの混合物である改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、湿式法研磨により改質して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーに入れて吸気温度120〜300℃で、水分含有量が0.3%以下になるまで乾燥、改質して、コレクターに送り込んで、保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、粒度が前処理する前と一致するまで解凝集を行う解凝集ステップと、
を含むことを特徴とするサブミクロンシリコン微粉末の表面改質の方法。
(1) Pour submicron silicon fine powder and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, heat with stirring, control the temperature of the material to 50 to 90 ° C, and mix uniformly. After that, it is sent to a sand mill, pre-dispersed while controlling the temperature to 50 to 90 ° C., uniform dispersion, and then a pretreatment step to obtain a submicron slurry.
(2) In the submicron slurry according to step (1), add a silane coupling agent, hexamethyldisilazane, or a modifier which is a mixture of the silane coupling agent and hexamethyldisilazane to the submicron silicon fine powder weight. A pre-reform step that completes the pre-reform by adding 1.0-4.0% and reforming by wet polishing.
(3) The submicron slurry prepared in step (2) is placed in a flash dryer, dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less, and used as a collector. In the secondary reforming step, which is sent in and kept warm at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes to complete the secondary reforming.
(4) A deagglomeration step of applying a pressure of 1.0 Pa or more with a jet mill to deagglomerate the material after heat retention until the particle size matches that before the pretreatment.
A method for surface modification of submicron silicon fine powder, which comprises.
ステップ(2)に記載の改質剤がシランカップリング剤であることを特徴とする請求項1に記載のサブミクロンシリコン微粉末の表面改質の方法。 The method for surface modification of a submicron silicon fine powder according to claim 1, wherein the modifier according to step (2) is a silane coupling agent. ステップ(1)における前記サンドミルのライニングはポリウレタン、炭化ケイ素又は酸化ジルコニウムであり、粉砕メディアはジルコニア又は窒化ケイ素であり、前記粉砕メディアの直径は0.2〜0.8mmであることを特徴とする請求項1又は2に記載のサブミクロンシリコン微粉末の表面改質方法。 The sand mill lining in step (1) is polyurethane, silicon carbide or zirconium oxide, the pulverized media is zirconia or silicon nitride, and the pulverized media has a diameter of 0.2 to 0.8 mm. The method for surface modification of submicron silicon fine powder according to claim 1 or 2. ステップ(3)におけるフラッシュドライヤーは、ブレード及び内壁に炭化タングステン又はジルコニアをスプレーコータしていて、吸気温度が120〜300℃であることを特徴とする請求項1又は2に記載のサブミクロンシリコン微粉末の表面改質方法。 The submicron silicon fine according to claim 1 or 2, wherein the flash dryer in step (3) is spray coated with tungsten carbide or zirconia on the blade and the inner wall, and the intake air temperature is 120 to 300 ° C. A method for modifying the surface of powder. ステップ(4)に記載のジェットミルの内側ライニング及び分級ロータはアルミナ、ジルコニアであるか、又は内側ライニング及び分級ロータの表面にアルミナ又はジルコニアをスプレーコータしているものであり、解凝集圧力が1.0Pa以上であることを特徴とする請求項1又は2に記載のサブミクロンシリコン微粉末の表面改質方法。 The inner lining and classification rotor of the jet mill according to step (4) is either alumina or zirconia, or the surface of the inner lining and classification rotor is spray coated with alumina or zirconia and has a deagglomeration pressure of 1. The method for surface modification of submicron silicon fine powder according to claim 1 or 2, wherein the content is 0.0 Pa or more. ステップ(1)に記載のサブミクロンシリコン微粉末の粒度がD50=0.2μm〜1.0μm、D100≦3.0μmであることを特徴とする請求項1又は2に記載のサブミクロンシリコン微粉末の表面改質方法。 The submicron silicon fine powder according to claim 1 or 2, wherein the particle size of the submicron silicon fine powder according to step (1) is D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm. Surface modification method. (1)粒度がD50=0.2μm〜1.0μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を3:7〜6:4の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を50〜90℃に制御し、3〜5分間攪拌した後、サンドミルに送って予備分散を行い、材料の温度を50〜90℃に維持しながら、5〜10分間予備分散してサブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の1.0〜4.0%で加え、湿式法研磨改質により20〜30分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーを通して、吸気温度120〜300℃で、水分含有量が0.3%以下になるまで乾燥、改質した後、コレクターに送り込んで保温温度60〜120℃で、20〜60分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.0Pa以上の圧力をかけて、粒度がD50=0.2μm−1.0μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと、
を含ことを特徴とする請求項1に記載のサブミクロンシリコン微粉末の表面改質の方法。
(1) Pour submicron silicon fine powder having a particle size of D50 = 0.2 μm to 1.0 μm and D100 ≦ 3.0 μm and deionized water into a mixing tank at a mass ratio of 3: 7 to 6: 4, and stir. Heat, control the temperature of the material to 50-90 ° C, stir for 3-5 minutes, then send to a sand mill for pre-dispersion, pre-disperse for 5-10 minutes while maintaining the temperature of the material at 50-90 ° C. A pretreatment step to disperse to obtain a submicron slurry,
(2) A modifier is added to the submicron slurry according to step (1) at 1.0 to 4.0% by weight of the submicron silicon fine powder, and the mixture is polished by a wet polishing modification for 20 to 30 minutes. A pre-reform step to complete the pre-reform and
(3) The submicron slurry prepared in step (2) is dried and reformed at an intake temperature of 120 to 300 ° C. until the water content becomes 0.3% or less through a flash dryer, and then sent to a collector. In the secondary reforming step, which completes the secondary reforming by keeping the heat at a heat retention temperature of 60 to 120 ° C. for 20 to 60 minutes.
(4) A deagglomeration step in which the heat-retained material is deagglomerated by applying a pressure of 1.0 Pa or more with a jet mill until the particle size becomes D50 = 0.2 μm-1.0 μm and D100 ≦ 3.0 μm. ,
The method for surface modification of a submicron silicon fine powder according to claim 1.
(1)粒度がD50=0.5〜0.7μm、D100≦3.0μmのサブミクロンシリコン微粉末及び脱イオン水を1:1の質量比で混合タンクに注ぎ、攪拌しながら加熱し、材料の温度を70℃に制御しながら、4分間攪拌した後、サンドミルに送って予備分散を行い、材料の温度を70℃に維持しながら、8分間予備分散後、サブミクロンスラリーを得る前処理ステップと、
(2)ステップ(1)に記載のサブミクロンスラリーに改質剤をサブミクロンシリコン微粉末重量の2.5%で加え、湿式法研磨改質により25分間研磨して、予備改質を完成する予備改質ステップと、
(3)ステップ(2)によって調製されたサブミクロンスラリーを、フラッシュドライヤーを通して、吸気温度210〜220℃で、水分含有量が0.3%以下になるまで乾燥、改質した後、コレクターに送り込んで保温温度90〜100℃で、40分間保温して二次改質を完了する二次改質ステップと、
(4)保温後の材料を、ジェットミルで1.2Paの圧力をかけて、粒度がD50=0.5〜0.7μm、D100≦3.0μmになるまで解凝集を行う解凝集ステップと
を含むことを特徴とする請求項7に記載のサブミクロンシリコン微粉末の表面改質の方法。

(1) Submicron silicon fine powder having a particle size of D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm and deionized water are poured into a mixing tank at a mass ratio of 1: 1 and heated with stirring to prepare a material. After stirring for 4 minutes while controlling the temperature of the material to 70 ° C., it is sent to a sand mill for pre-dispersion, and after pre-dispersing for 8 minutes while maintaining the temperature of the material at 70 ° C., a pretreatment step of obtaining a submicron slurry When,
(2) Add a modifier to the submicron slurry according to step (1) at 2.5% by weight of the submicron silicon fine powder, and polish for 25 minutes by wet polishing modification to complete the preliminary modification. Preliminary reforming step and
(3) The submicron slurry prepared in step (2) is dried and reformed at an intake temperature of 210 to 220 ° C. until the water content becomes 0.3% or less through a flash dryer, and then sent to a collector. In the secondary reforming step, which completes the secondary reforming by keeping warm for 40 minutes at a heat retention temperature of 90 to 100 ° C.
(4) A deagglomeration step of applying a pressure of 1.2 Pa with a jet mill to deagglomerate the material after heat retention until the particle size becomes D50 = 0.5 to 0.7 μm and D100 ≦ 3.0 μm. The method for surface modification of a submicron silicon fine powder according to claim 7, wherein the submicron silicon fine powder is contained.

JP2019186552A 2018-10-10 2019-10-10 Method of surface modification of submicron silicon fine powder Active JP6933699B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811178335.7 2018-10-10
CN201811178335.7A CN109320998B (en) 2018-10-10 2018-10-10 Method for modifying surface of submicron silicon micropowder

Publications (2)

Publication Number Publication Date
JP2020097515A JP2020097515A (en) 2020-06-25
JP6933699B2 true JP6933699B2 (en) 2021-09-08

Family

ID=65261864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186552A Active JP6933699B2 (en) 2018-10-10 2019-10-10 Method of surface modification of submicron silicon fine powder

Country Status (3)

Country Link
JP (1) JP6933699B2 (en)
KR (1) KR102262637B1 (en)
CN (1) CN109320998B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079128A (en) * 2019-04-29 2019-08-02 江苏辉迈粉体科技有限公司 A kind of Submicron spherical silica micropowder organic dispersions and preparation method thereof
CN110408237A (en) * 2019-08-07 2019-11-05 江苏联瑞新材料股份有限公司 A kind of woodcare paint clear finish silicon powder and preparation method thereof
CN110484025B (en) * 2019-08-27 2021-05-18 佛山金戈新材料股份有限公司 Method for improving settling resistance and dispersibility of silicon micro powder in organic silicon pouring sealant
CN110665615B (en) * 2019-10-10 2022-04-19 青岛瓷兴新材料有限公司 Preparation method of superfine silicon powder
CN111073350A (en) * 2019-12-25 2020-04-28 中建材蚌埠玻璃工业设计研究院有限公司 Preparation method of submicron active silica micropowder
CN113755032A (en) * 2020-12-16 2021-12-07 安徽进化硅纳米材料科技有限公司 Method for refining silicon dioxide, ultrafine silicon dioxide powder and use
CN113004718A (en) * 2021-03-15 2021-06-22 刘绍辉 Superfine active silicon micro powder applied to electronic industry and preparation method thereof
CN113149024B (en) * 2021-04-25 2024-01-23 中建材玻璃新材料研究院集团有限公司 Preparation method of ultra-pure submicron silicon micropowder foam
CN114539809A (en) * 2022-02-14 2022-05-27 连云港威晟硅材料有限公司 Surface-modified silicon micropowder and preparation method thereof
CN114539810A (en) * 2022-03-01 2022-05-27 昆明冶金研究院有限公司 High-dispersion modified silica fume and preparation method thereof
CN114539815A (en) * 2022-03-01 2022-05-27 昆明冶金研究院有限公司 A kind of modified microsilica powder with high coverage and high dispersibility and preparation method thereof
CN114804749A (en) * 2022-04-29 2022-07-29 中铁三局集团有限公司 Superfine modified silica micropowder low-resilience high-early-strength wet-spraying concrete and construction method thereof
CN115338401B (en) * 2022-08-30 2023-09-29 广州市华司特合金制品有限公司 Powder treatment method of high-specific gravity tungsten alloy
CN115477859B (en) * 2022-10-12 2024-03-26 江苏联瑞新材料股份有限公司 High-strength surface-modified silica micropowder for vinyl silica gel and preparation method thereof
CN116178992A (en) * 2022-12-26 2023-05-30 江苏联瑞新材料股份有限公司 Preparation method of low-viscosity and high-fluidity surface-modified silica micropowder for underfill
CN116376328B (en) * 2023-02-17 2024-05-17 广西电网有限责任公司电力科学研究院 A method for short-time and high-efficiency epoxy coating of micron alumina
CN116515170A (en) * 2023-05-11 2023-08-01 蚌埠中恒新材料科技有限责任公司 Surface modification method of high-purity superfine spherical powder
CN117777764A (en) * 2023-12-21 2024-03-29 联瑞新材(连云港)有限公司 Preparation method of ultra-low cutting point spherical silicon micro powder for HDI
CN117757286A (en) * 2023-12-22 2024-03-26 联瑞新材(连云港)有限公司 Alkali-resistant spherical silica slurry for packaging substrate and preparation method thereof
CN118744990B (en) * 2024-06-07 2025-01-21 江苏富乐华功率半导体研究院有限公司 A method for preparing silicon powder slurry

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19616781A1 (en) * 1996-04-26 1997-11-06 Degussa Silanized silica
CN1305764C (en) * 2004-03-31 2007-03-21 张永 Hyperpure, superfine silicon powder and preparation method
JP5580513B2 (en) * 2007-12-06 2014-08-27 株式会社アドマテックス Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method
CN101280125B (en) * 2008-05-27 2010-12-08 阮建军 Production method of superfine silicon powder for electronic grade low-heat expansion coefficient copper clad laminate
WO2011006684A1 (en) * 2009-07-16 2011-01-20 Evonik Degussa Gmbh Dispersion and method for modifying a surface with hydrophobized silica
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
CN103627215B (en) * 2013-11-27 2016-05-11 江苏联瑞新材料股份有限公司 A kind of preparation method of submicron order silicon powder
JP6195524B2 (en) * 2014-01-28 2017-09-13 日揮触媒化成株式会社 Hydrophobic silica powder and method for producing the same
JP6347644B2 (en) * 2014-03-28 2018-06-27 デンカ株式会社 Surface-modified silica powder and slurry composition
CN104744971A (en) * 2015-03-04 2015-07-01 江西科越科技有限公司 Preparation process of wet-process superfine modified calcium carbonate

Also Published As

Publication number Publication date
KR102262637B1 (en) 2021-06-09
CN109320998A (en) 2019-02-12
JP2020097515A (en) 2020-06-25
KR20200041279A (en) 2020-04-21
CN109320998B (en) 2021-02-23

Similar Documents

Publication Publication Date Title
JP6933699B2 (en) Method of surface modification of submicron silicon fine powder
EP2594611B1 (en) Method for preparing white carbon black modified by silane coupling agent
CN110088039B (en) Coarse-free aluminum nitride powder
JP5412109B2 (en) Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same
CN102604282A (en) Preparing method of PTFE (polytetrafluoroethylene) composite material filled with nano particles
JP7094283B2 (en) Surface-modified nanodiamonds, dispersions containing surface-modified nanodiamonds, and resin dispersions
CN110951279A (en) Preparation method of superfine acicular wollastonite modified spherical silicon dioxide composite powder
CN101602508A (en) Preparation method and application of monodisperse nano silica spherical particle hydrosol
WO2021073060A1 (en) Method for preparing hollow glass microbeads with high floatation rate
JP5042529B2 (en) Fine particle-containing composition and method for producing the same
CN106590063A (en) Preparing method of water-based high-dispersity titanium dioxide
CN106752121A (en) The preparation method of silicon dioxide coating type aluminium pigment
JP6258131B2 (en) Hydrophobic airgel powder, production method thereof, and filler using the same
Li et al. Surface modification of alumina nanoparticles and its application in tape casting of micro-nano green tape
CN108611089A (en) A kind of organically-modified fluorescence nano raw powder's production technology and application
CN113968733B (en) Preparation method of high-solid-content low-viscosity zirconia ceramic slurry
CN108299579B (en) Graphene/nano silicon dioxide/polystyrene hybrid material and preparation method and application thereof
CN111875990A (en) Composite titanium dioxide and preparation method and application thereof
CN117757286A (en) Alkali-resistant spherical silica slurry for packaging substrate and preparation method thereof
CN117777764A (en) Preparation method of ultra-low cutting point spherical silicon micro powder for HDI
JP6195524B2 (en) Hydrophobic silica powder and method for producing the same
JP5170437B2 (en) Method for producing soft agglomerated powder and method for producing inorganic particle-organic polymer composite paste
CN105419399A (en) Treatment method for performing surface modification on zinc oxide through mechanical force ball milling method
JP2008184485A (en) Filler-containing aqueous slurry composition
JP2003013106A (en) Method for producing silica-coated metal composite powder and silica-coated metal composite powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6933699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250