JP5042529B2 - Fine particle-containing composition and method for producing the same - Google Patents

Fine particle-containing composition and method for producing the same Download PDF

Info

Publication number
JP5042529B2
JP5042529B2 JP2006146976A JP2006146976A JP5042529B2 JP 5042529 B2 JP5042529 B2 JP 5042529B2 JP 2006146976 A JP2006146976 A JP 2006146976A JP 2006146976 A JP2006146976 A JP 2006146976A JP 5042529 B2 JP5042529 B2 JP 5042529B2
Authority
JP
Japan
Prior art keywords
fine particles
producing
mass
aqueous
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006146976A
Other languages
Japanese (ja)
Other versions
JP2007197655A (en
Inventor
武 楊原
健太 堀
雅人 野家
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2006146976A priority Critical patent/JP5042529B2/en
Publication of JP2007197655A publication Critical patent/JP2007197655A/en
Application granted granted Critical
Publication of JP5042529B2 publication Critical patent/JP5042529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、親水性の微小粒子が親水性が高くない有機化合物から構成される材料に混合乃至分散された複合材料の原料などとして好適な微小粒子含有組成物及びその製造方法に関する。   The present invention relates to a fine particle-containing composition suitable as a raw material for a composite material in which hydrophilic fine particles are mixed or dispersed in a material composed of an organic compound that is not highly hydrophilic, and a method for producing the same.

従来技術としては、親水性コロイド状シリカを含有し、ジシロキサン化合物及び/又はモノアルコキシシラン化合物のシリル化剤を含有し、且つその残余として疎水性有機溶媒と炭素数1〜3のアルコールとの混合溶媒と媒体中15重量%以下の水とからなる媒体を含有する反応混合物を、アルカリが除去され又は当量以上の酸で中和された状態で熟成することにより、疎水性コロイド状シリカが分散したシリル化処理シリカゾルを生成させ、次に当該シリル化処理シリカゾルに疎水性有機溶媒を添加して、蒸留することにより、疎水性オルガノシリカゾルを製造することが開示されている(特許文献1)。   As a prior art, it contains a hydrophilic colloidal silica, a silylating agent of a disiloxane compound and / or a monoalkoxysilane compound, and the remainder of a hydrophobic organic solvent and an alcohol having 1 to 3 carbon atoms. Hydrophobic colloidal silica is dispersed by aging a reaction mixture containing a mixed solvent and a medium composed of 15% by weight or less of water in the medium in a state where alkali is removed or neutralized with an acid of an equivalent amount or more. It is disclosed that a hydrophobic organosilica sol is produced by producing a silylated silica sol, and then adding a hydrophobic organic solvent to the silylated silica sol and performing distillation (Patent Document 1).

また、予め有機溶媒に超微粒子を分散させ、ついでこの超微粒子分散溶液と樹脂成分を混合させ、樹脂成分中に上記超微粒子を分散させることにより超微粒子分散樹脂組成物を作成する技術が開示されている(特許文献2)。
特開平11−43319号公報 特開平5−287082号公報
Also disclosed is a technique for preparing an ultrafine particle dispersed resin composition by dispersing ultrafine particles in an organic solvent in advance, then mixing the ultrafine particle dispersion solution and the resin component, and dispersing the ultrafine particles in the resin component. (Patent Document 2).
JP 11-43319 A Japanese Patent Application Laid-Open No. H5-287082

本発明では従来技術よりも簡便な方法にて、親水性の微小粒子が親水性が高くない材料(以下、「混合材料」と称する)中で凝集することなく安定的に分散することができる複合材料の原料などとして好適な微粒子含有組成物の製造方法及びそのような微小粒子含有組成物を提供することを解決すべき課題とする。   In the present invention, a composite in which hydrophilic fine particles can be stably dispersed without agglomerating in a material having low hydrophilicity (hereinafter referred to as “mixed material”) by a simpler method than in the prior art. It is an object to be solved to provide a method for producing a fine particle-containing composition suitable as a raw material of the material, and to provide such a fine particle-containing composition.

上記課題を解決する目的で本発明者らは鋭意検討を行った結果、以下の知見を得た。すなわち、親水性が高い微小粒子を親水性が高くない混合材料中に混合乃至分散させるために、微小粒子を分散させる媒質を沸点が低いものから順に親水性が低くなるように徐々に変化させ、併せて微小粒子の表面性状を改質する表面改質剤を作用させることで凝集することがなく微小粒子含有組成物を調製ができるものであり、本知見に基づき、以下の発明を完成した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and obtained the following knowledge. That is, in order to mix or disperse microparticles with high hydrophilicity in a mixed material with low hydrophilicity, the medium in which the microparticles are dispersed is gradually changed so that the hydrophilicity decreases in order from the lowest boiling point, At the same time, a composition containing fine particles can be prepared without agglomeration by acting a surface modifier that modifies the surface properties of the fine particles. Based on this finding, the following invention has been completed.

本発明の微小粒子含有組成物の製造方法は、 水系媒質に微小粒子を分散して水系スラリーを調製する工程と、
該水系媒質よりも沸点が高く且つ前記水系媒質に混合できる水系有機溶媒を前記水系スラリーに添加する工程と、
を有し、
前記水系スラリーに添加する工程の以後に順不同で行われる、
水系有機溶媒よりも沸点が高く且つ前記水性スラリーに前記水性有機溶媒を添加した状態で溶解でき且つそのまま又は反応することで高分子とすることができる有機化合物である混合材料を該水系スラリーに添加する工程と、
前記微小粒子に作用して該微小粒子の疎水性を向上する表面改質剤を該水系スラリーに添加する工程と、
を有することを特徴とする。
The method for producing a composition containing fine particles of the present invention comprises a step of dispersing fine particles in an aqueous medium to prepare an aqueous slurry,
Adding an aqueous organic solvent in the aqueous slurry can be mixed and the aqueous medium boiling point rather higher than the water-based medium,
Have
Performed in random order after the step of adding to the aqueous slurry,
Water-based slurry mixed material is an organic compound may be a polymer by directly or reaction can and dissolved while adding the aqueous organic solvent to the high rather and the aqueous slurry having a boiling point than the aqueous organic solvent Adding to,
Adding to the aqueous slurry a surface modifier that acts on the microparticles to improve the hydrophobicity of the microparticles;
It is characterized by having.

ここで、前記水系媒質は水であることが望ましい。そして、前記表面改質剤はシランカップリング剤又はシリル化剤であることが望ましい。   Here, the aqueous medium is preferably water. The surface modifier is preferably a silane coupling agent or a silylating agent.

分散できる微小粒子としては金属酸化物又は樹脂材料から構成されるものが採用できる。例えば、前記水系スラリーとしては親水性コロイドシリカが採用できる。そして、前記混合材料は、エポキシ基、オキセタン基、水酸基、ブロックされたイソシアネート基、アミノ基、ハーフエステル基、アミック基、カルボキシ基及び炭素-炭素二重結合基などの反応性が高い官能基を化学構造中に導入しても良い。更にこれらの官能基は条件を整えることで、有機化合物を互いに結合(重合)させることができる。   As the fine particles that can be dispersed, those composed of a metal oxide or a resin material can be employed. For example, hydrophilic colloidal silica can be employed as the aqueous slurry. The mixed material has a highly reactive functional group such as an epoxy group, an oxetane group, a hydroxyl group, a blocked isocyanate group, an amino group, a half ester group, an amic group, a carboxy group, and a carbon-carbon double bond group. It may be introduced into the chemical structure. Furthermore, these functional groups can bond (polymerize) organic compounds to each other by adjusting the conditions.

更に、前記表面改質剤添加工程後に、前記水系媒質を蒸発除去する工程、そして、その後に、前記水系有機溶媒を蒸発除去する工程を有するを設けることで、混合材料中に微小粒子を分散等させることが可能になる。   Furthermore, after the surface modifier addition step, a step of evaporating and removing the aqueous medium and a step of evaporating and removing the aqueous organic solvent are provided to disperse the fine particles in the mixed material. It becomes possible to make it.

そして、前記混合材料添加工程に供される前記微小粒子は、イオン性物質含有量が所定値以下であることが望ましい。例えば、前記微小粒子はテトラアルコキシシランの重縮合により形成されたコロイドシリカが採用できる。また、前記微小粒子は洗浄により前記イオン性物質の含有量が所定値以下に低減することもできる。洗浄はイオン性物質を溶解できる溶媒(例えば、水など)により行うことができる。イオン性物質の含有量としては、ナトリウムの量について例示すると、50ppm以下であることが望ましい。   And as for the said microparticle provided to the said mixed material addition process, it is desirable for ionic substance content to be below a predetermined value. For example, the fine particles may be colloidal silica formed by polycondensation of tetraalkoxysilane. Moreover, the content of the ionic substance can be reduced to a predetermined value or less by washing the fine particles. The washing can be performed with a solvent (for example, water) that can dissolve the ionic substance. As content of an ionic substance, when it illustrates about the quantity of sodium, it is desirable that it is 50 ppm or less.

また、前記微小粒子は一次粒子径が1nm以上100nm以下の二次粒子を形成した凝集体を含み、製造された前記微小粒子含有組成物のチクソ比が1.2以下であることが望ましい。ここで、本明細書における「チクソ比」とはE型粘度計を用いて測定した粘度に基づき算出されるもので、シュアレートが4(/秒)の時の粘度を基準として10(/秒)の時の粘度の比で表される値である。流体のチクソ比が1の場合はその流体はニュートン流動を示す。チクソ比が1超の場合はチキソトロピー流体であり、1未満の場合はダイラタンシー流体である。チクソ比が1から離れるほど、チキソトロピー又はダイラタンシーの程度が大きくなる。   In addition, it is desirable that the fine particles include an aggregate in which secondary particles having a primary particle diameter of 1 nm to 100 nm are formed, and the thixo ratio of the produced fine particle-containing composition is 1.2 or less. Here, the “thixo ratio” in the present specification is calculated based on the viscosity measured using an E-type viscometer, and is 10 (/ second) based on the viscosity when the shear rate is 4 (/ second). ) Is a value represented by the ratio of the viscosity at the time. When the thixotropic ratio of the fluid is 1, the fluid exhibits Newtonian flow. When the thixo ratio is more than 1, it is a thixotropic fluid, and when it is less than 1, it is a dilatancy fluid. The further the thixo ratio is from 1, the greater the degree of thixotropy or dilatancy.

また、前記微小粒子は2種類若しくはそれ以上の種類の粒子(第1微小粒子、第2微小粒子・・・)を混合することができる。第1微小粒子は体積平均粒径が1nm以上50nm以下が望ましく、第2微小粒子は体積平均粒径が100nm以上5μm以下とすることが望ましい。更に、前記第2微小粒子は、前記水系媒質蒸発除去工程後に混合・分散することもできる。   The fine particles can be mixed with two or more kinds of particles (first fine particles, second fine particles,...). The first fine particles preferably have a volume average particle size of 1 nm to 50 nm, and the second fine particles preferably have a volume average particle size of 100 nm to 5 μm. Furthermore, the second fine particles may be mixed and dispersed after the aqueous medium evaporation removing step.

本発明の微小粒子含有組成物及び微小粒子含有組成物の製造方法は、微小粒子を分散する水系媒質から、水系有機溶媒への置換が、その沸点の差から徐々に進行させることが可能になり、微小粒子の凝集を引き起こすことなく混合材料中に微小粒子を分散等させることが可能になる。また、含有される微小粒子中のイオン性物質の濃度を制限することで、電気・電子部品などに適用した場合の予期しない影響が低減できる。   In the fine particle-containing composition and the method for producing the fine particle-containing composition of the present invention, the replacement from the aqueous medium in which the fine particles are dispersed to the aqueous organic solvent can be gradually advanced from the difference in boiling point. The fine particles can be dispersed in the mixed material without causing the fine particles to aggregate. Further, by restricting the concentration of the ionic substance in the contained fine particles, the unexpected influence when applied to electric / electronic parts can be reduced.

また、微小粒子として、一次粒子径が1nm以上100nm以下の二次粒子を形成した凝集体を含む金属酸化物粒子を採用することで、機械的強度が高い微小粒子含有組成物とすることができる。   Further, by employing metal oxide particles containing aggregates in which secondary particles having a primary particle diameter of 1 nm or more and 100 nm or less are used as the fine particles, a composition containing fine particles having high mechanical strength can be obtained. .

(微小粒子含有組成物の製造方法)
本発明の製造方法は(a)水性スラリーを調製する工程と(b)(b1)その水性スラリーに水系有機溶媒を添加する工程と(b2)混合材料を添加する工程と(c)表面改質剤を添加する工程とを有する。更に(d)その他の工程を有することができる。
(Production method of fine particle-containing composition)
The production method of the present invention includes (a) a step of preparing an aqueous slurry, (b ) (b1 ) a step of adding a water-based organic solvent to the aqueous slurry, (b2) a step of adding a mixed material, and (c) a surface modification. Adding an agent. Furthermore, (d) it can have another process.

(a)水性スラリーを調製する工程は微小粒子を水系媒質に分散した水性スラリーを調製する工程である。微小粒子を水系媒質中に添加した後、撹拌、超音波照射などにより、分散させる。また、微小粒子を構成する材料を水系媒質に溶解した溶液を用意し、その材料の溶解性を何らかの方法(イオン交換、化学反応による置換基の導入・脱離、pHや温度などの制御など)にて低下させることで微小粒子を析出し、微小粒子を含む水性スラリーを得ることができる。例えば、水ガラス水溶液をイオン交換樹脂でイオン交換することによって、コロイドシリカ水性スラリーを調製することができる。   (A) The step of preparing an aqueous slurry is a step of preparing an aqueous slurry in which fine particles are dispersed in an aqueous medium. After the fine particles are added to the aqueous medium, they are dispersed by stirring, ultrasonic irradiation or the like. In addition, a solution is prepared by dissolving the material constituting the microparticles in an aqueous medium, and the solubility of the material is determined by any method (ion exchange, introduction / desorption of substituents by chemical reaction, control of pH, temperature, etc.) By lowering at, fine particles are precipitated, and an aqueous slurry containing fine particles can be obtained. For example, an aqueous colloidal silica slurry can be prepared by ion exchange of a water glass aqueous solution with an ion exchange resin.

微小粒子としては表面性状が親水性であること以外は特に限定しない。表面が親水性であるとは、最終的に混合等させる混合材料に対して、そのままの状態で分散させた場合に、凝集を生ずるようなものである。   The fine particles are not particularly limited except that the surface properties are hydrophilic. When the surface is hydrophilic, the surface of the mixed material finally mixed or the like is aggregated when dispersed as it is.

そして、微小粒子は、その直径が1nm〜10μm程度のものが望ましい。特に1nm〜500nm、1nm〜100nmといった直径もつナノメートルオーダーの微小粒子も収率良く混合することができる。1nm以上100nm以下(より望ましくは5nm以上50nm以下)といった直径もつナノメートルオーダーの微小粒子を配合する場合には二次粒子を形成した凝集体を含むことで、機械的強度を高くすることができ、且つ、製造される微小粒子含有組成物がチキソトロピーを示す程度を制限することができる。その場合にチクソ比が1.2以下にすることが望ましく、1以下にすることが更に望ましい。また、必要に応じてチクソ比を0.8以上にすることも望ましい。凝集体の粒径としては特に限定しないが、1μm以下とすることが望ましく、0.5μm以下とすることが更に望ましい。二次粒子を形成する方法についても特に限定しないが、気相法で生成された所定の一次粒子径をもつシリカの微小粒子について、水性スラリーを調製するために水中に分散するときに、分散強度、分散時間などの条件を変更することで所定の粒径をもつ二次粒子を得る方法が例示できる。   The fine particles preferably have a diameter of about 1 nm to 10 μm. In particular, nanometer-order fine particles having diameters of 1 nm to 500 nm and 1 nm to 100 nm can be mixed with good yield. When blending nanometer-order fine particles having a diameter of 1 nm to 100 nm (more desirably, 5 nm to 50 nm), the mechanical strength can be increased by including an aggregate formed with secondary particles. And the extent to which the produced microparticle-containing composition exhibits thixotropy can be limited. In that case, the thixo ratio is preferably 1.2 or less, and more preferably 1 or less. It is also desirable that the thixo ratio is 0.8 or more as necessary. The particle size of the aggregate is not particularly limited, but is preferably 1 μm or less, and more preferably 0.5 μm or less. The method for forming secondary particles is not particularly limited, but the dispersion strength of silica fine particles having a predetermined primary particle size generated by a gas phase method is dispersed when dispersed in water to prepare an aqueous slurry. A method of obtaining secondary particles having a predetermined particle size by changing conditions such as dispersion time can be exemplified.

また、微小粒子としては体積平均粒径が0.1nm以上50nm以下の第1微小粒子と体積平均粒径が100nm以上5μm以下の第2微小粒子とを含有することが望ましい。相対的に粒径が大きい第2微小粒子の間に第1微小粒子が組み合わせられることでいわゆるベアリング効果が期待でき、流動性の改善が期待できる。第2微小粒子の体積平均粒径は、第1微小粒子の体積平均粒径に対して2倍以上8倍以下にすることが望ましい。更に、第2微小粒子は、(d)にて後述する水系媒質蒸発除去工程後に混合・分散されることが望ましい。また、第2微小粒子は添加する前に、シランカップリング剤又はシリル化剤にて処理することが望ましい。   The fine particles preferably contain first fine particles having a volume average particle diameter of 0.1 nm to 50 nm and second fine particles having a volume average particle diameter of 100 nm to 5 μm. By combining the first microparticles between the second microparticles having a relatively large particle size, a so-called bearing effect can be expected, and an improvement in fluidity can be expected. The volume average particle size of the second microparticles is desirably 2 to 8 times the volume average particle size of the first microparticles. Furthermore, it is desirable that the second fine particles are mixed and dispersed after the aqueous medium evaporation removing step described later in (d). Moreover, it is desirable to treat the second fine particles with a silane coupling agent or a silylating agent before adding them.

また、微小粒子を構成する材料としては金属酸化物(シリカ(コロイドシリカ)、アルミナ、チタニア、水酸化アルミニウム、粘土鉱物など)や、樹脂材料(ラテックス、シリコーン樹脂、アクリル樹脂などの合成高分子、天然ラテックスなどの天然高分子など)、金属(金、銀、白金など)、炭化物(SiCなど)や窒化物(AlN)などのセラミクスなどが例示できる。その表面には何らかの表面処理を行うことで親水化されたものでも良い。微小粒子が細長い形状をもつコロイドシリカである場合にはそのアスペクト比(粒子の長径と短径との比)が2以上(より好ましくは10以上。更には繊維状であってもよい。)であることが最終製品の強度向上の観点から望ましい。アスペクト比がこの範囲にある微小粒子が微小粒子全体の質量を基準として50%以上含有することが好ましく、80%以上含有することがより好ましく、90%以上含有することが更に好ましい。   In addition, the materials constituting the fine particles include metal oxides (silica (colloidal silica), alumina, titania, aluminum hydroxide, clay minerals, etc.), resin materials (latex, silicone resin, acrylic polymer, and other synthetic polymers, Examples thereof include ceramics such as natural polymers such as natural latex), metals (gold, silver, platinum, etc.), carbides (SiC, etc.) and nitrides (AlN). The surface may be made hydrophilic by performing some kind of surface treatment. When the fine particles are colloidal silica having an elongated shape, the aspect ratio (ratio of the major axis to the minor axis of the particles) is 2 or more (more preferably 10 or more, and may be fibrous). It is desirable from the viewpoint of improving the strength of the final product. The fine particles having an aspect ratio within this range preferably contain 50% or more, more preferably 80% or more, still more preferably 90% or more, based on the mass of the whole fine particles.

微小粒子は最終的に目的とする性質(例えば、コーティング剤に本発明の微小粒子含有組成物を適用する場合に、硬度を上げたり、熱膨張性を小さくしたり、電気や熱の伝導性を向上したりする目的が例示できる)に応じて、その材料、形状、添加量などを決定する。微小粒子としては充填性を向上する目的で、真球性が高いことが望ましい。例えば、金属酸化物で説明すると、含酸素雰囲気下にて金属粉末を酸化させて得られる方法(VMC法)や、火炎溶融法などの方法で製造できる。VMC法は、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を得る方法である。火炎溶融法は目的とする球状金属酸化物粒子を構成する金属酸化物を粉砕などにより粉末化した後に、火炎中に投入・溶解させた後、冷却・固化させることで、球状金属酸化物粒子を製造する方法である。   The fine particles are ultimately intended properties (for example, when applying the fine particle-containing composition of the present invention to a coating agent, the hardness is increased, the thermal expansibility is decreased, the electrical and thermal conductivity is reduced. The purpose, shape, amount of addition, etc. are determined according to the purpose of improvement. It is desirable that the fine particles have high sphericity for the purpose of improving the filling property. For example, the metal oxide can be described by a method (VMC method) obtained by oxidizing metal powder in an oxygen-containing atmosphere, a flame melting method, or the like. In the VMC method, a chemical flame is formed by a burner in an atmosphere containing oxygen, and an amount of metal powder that forms part of the target oxide particles is added to the chemical flame so that a dust cloud is formed. In this method, deflagration is caused to obtain oxide particles. In the flame melting method, the metal oxide constituting the target spherical metal oxide particles is pulverized by pulverization or the like, and then charged and dissolved in a flame. It is a manufacturing method.

また、本実施形態の微小粒子含有組成物を半導体封止材などの電気・電子部品に適用する場合には、(b)の混合材料添加工程に供される前記微小粒子におけるイオン性物質の含有量を所定値以下に制限することが望ましい。本方法にて製造された微小粒子含有組成物からイオン性物質が溶出乃至移行することで、電気・電子部品に予期しない影響が生起しうるからである。更に、電気・電子部品などへの適用のほか、イオン性物質の存在が好ましくない用途に適用する場合にも同様にイオン性物質の含有量を所定値以下に制限することが望ましい。 When the composition containing fine particles of the present embodiment is applied to an electrical / electronic component such as a semiconductor encapsulant, the ionic substance in the fine particles used in the mixed material addition step (b 2 ) It is desirable to limit the content to a predetermined value or less. This is because an ionic substance is eluted or migrated from the composition containing fine particles produced by this method, which may cause unexpected effects on electric / electronic parts. Furthermore, in addition to application to electrical / electronic components, it is also desirable to limit the content of the ionic substance to a predetermined value or less when applied to applications where the presence of the ionic substance is undesirable.

ここで、イオン性物質の含有量として設定する所定値としては、微小粒子含有組成物の用途によって適正値が異なるが、半導体封止材に用いる場合には100ppm以下とすることが望ましく、50ppm以下にすることが更に望ましい。制御すべきイオン性物質としては特に限定しないが、アルカリ金属や、アルカリ土類金属、ハロゲンなどの無機物や有機酸などの有機物などが塩などとして存在することが例示できる。特に、ナトリウムの量を所定値以下に制御することが望ましい。微小粒子中に含有されうるイオン性物質としてはナトリウムが最も可能性が高く、ナトリウムの量を制御することでその他のイオン性物質の含有量も同時に低減できることが予測される。微小粒子中のイオン性物質の含有量を測定する方法としては特に限定しないが、ICPなどの通常の手法が採用できる。例えば、微小粒子がシリカである場合、フッ酸などにて溶解後、ICP測定に供することができる。   Here, as the predetermined value set as the content of the ionic substance, an appropriate value varies depending on the use of the fine particle-containing composition, but when used for a semiconductor sealing material, it is preferably 100 ppm or less, and 50 ppm or less. More desirably. Although it does not specifically limit as an ionic substance which should be controlled, Organic substances, such as an inorganic substance, such as an alkali metal, alkaline earth metal, and halogen, and an organic acid, etc. can be illustrated. In particular, it is desirable to control the amount of sodium below a predetermined value. Sodium is most likely as an ionic substance that can be contained in the microparticles, and it is predicted that the content of other ionic substances can be simultaneously reduced by controlling the amount of sodium. The method for measuring the content of the ionic substance in the fine particles is not particularly limited, but a normal method such as ICP can be adopted. For example, when the fine particles are silica, they can be subjected to ICP measurement after being dissolved in hydrofluoric acid or the like.

イオン性物質の含有量の制御の方法としては特に限定しないが、(a)原材料中のイオン性物質(及び/又は、その後、イオン性物質に変化する物質)の含有量を制御した上で、微小粒子を合成により製造する方法、(b)微小粒子からイオン性物質を洗浄などにより除去する方法が例示できる。   The method for controlling the content of the ionic substance is not particularly limited, but (a) after controlling the content of the ionic substance (and / or the substance that changes to the ionic substance) in the raw material, Examples thereof include a method for producing fine particles by synthesis, and (b) a method for removing ionic substances from the fine particles by washing or the like.

微小粒子をしてシリカ微粒子を採用する場合を例に挙げて説明する。(a)の方法として、テトラアルコキシシランの重縮合により形成されたコロイドシリカが採用できる。反応条件を制御することで、粒径が制御された微小粒子の懸濁液を得ることができる。テトラアルコキシシランとしてはテトラエトキシシラン(TEOS)やその他任意のアルコキシ基を有するものが挙げられる。このようにして製造されたコロイドシリカとしては扶桑化学工業製コロイドシリカPL−3が挙げられる。   The case where fine particles are used and silica fine particles are employed will be described as an example. As the method (a), colloidal silica formed by polycondensation of tetraalkoxysilane can be employed. By controlling the reaction conditions, a suspension of fine particles with a controlled particle size can be obtained. Examples of the tetraalkoxysilane include tetraethoxysilane (TEOS) and those having any other alkoxy group. Examples of the colloidal silica thus produced include colloidal silica PL-3 manufactured by Fuso Chemical Industry.

また、必要な純度をもつシリコンを酸素と反応させてシリカを形成し、そのシリカを微細化することで、イオン性物質の含有量が所定値以下に制御された微小粒子を得ることができる。予めシリコンを微細化することで、微細化されたシリカ粒子を得ることができる。更に、微小粒子の粒径を制御したい場合には遠心力による重力分級などの一般的な分級方法にて分級を行うことができる。   In addition, silicon having the required purity is reacted with oxygen to form silica, and the silica is refined to obtain fine particles in which the content of the ionic substance is controlled to a predetermined value or less. By refining silicon in advance, finely divided silica particles can be obtained. Furthermore, when it is desired to control the particle size of the fine particles, classification can be performed by a general classification method such as gravity classification by centrifugal force.

(b)の手法としては、イオン性物質の含有量については特に制限のない一般的な製法にて微小粒子を製造した後、その微小粒子を洗浄することで、イオン性物質を溶解・除去する方法が挙げられる。洗浄に用いる好ましい溶媒としては水(特にイオン交換などによりイオン性物質の含有量を低減させた水)が挙げられる。洗浄回数の増加、洗浄に用いる溶媒量の増加により、イオン性物質の含有量を低減できる。また、洗浄時に加熱することで粘度が低下でき、更なる洗浄効果の向上が期待できる。   As a method of (b), after producing fine particles by a general production method with no particular restriction on the content of ionic substances, the fine particles are washed to dissolve and remove the ionic substances. A method is mentioned. A preferable solvent used for washing includes water (in particular, water in which the content of ionic substances is reduced by ion exchange or the like). By increasing the number of washings and the amount of solvent used for washing, the content of ionic substances can be reduced. Moreover, the viscosity can be lowered by heating at the time of washing, and further improvement of the washing effect can be expected.

水系媒質としては親水性が高い(混合材料との親和性がそのままでは十分でない)微小粒子を分散できる媒質であり、その製造工程において液体であることが望ましい。例えば、水が挙げられる。   The aqueous medium is a medium that can disperse fine particles having high hydrophilicity (the affinity with the mixed material is not sufficient as it is), and is desirably a liquid in the production process. An example is water.

(b)水系有機溶媒は水系媒質よりも沸点が高く、水系媒質と混合できる有機溶媒である。沸点が高いことで、蒸発等により除去する場合に水系媒質から除去が進行し、微小粒子を分散する媒質を水系媒質から水系有機溶媒に徐々に置換することができる。ここで、沸点がより高いとは水系媒質を除去する場合の雰囲気における沸点が高いことを意味する。例えば、減圧雰囲気下にて水系媒質を除去する場合にはその圧力下における沸点にて比較する。また、他の添加物により沸点が変化するような場合(共沸混合物の形成、沸点上昇など)はその効果も考慮することが望ましい。 (B 1 ) The aqueous organic solvent is an organic solvent having a boiling point higher than that of the aqueous medium and can be mixed with the aqueous medium. Since the boiling point is high, the removal proceeds from the aqueous medium when removing by evaporation or the like, and the medium in which the fine particles are dispersed can be gradually replaced from the aqueous medium to the aqueous organic solvent. Here, the higher boiling point means that the boiling point in the atmosphere when removing the aqueous medium is high. For example, when the aqueous medium is removed under a reduced pressure atmosphere, the comparison is made with the boiling point under the pressure. In addition, when the boiling point is changed by other additives (formation of an azeotrope, increase in boiling point, etc.), it is desirable to consider the effect.

水系媒質と水系有機溶媒との混合比は特に限定しないが、水系有機溶媒より沸点が高い有機化合物である混合材料が溶解する程度に水系有機溶媒を添加することが望ましい。そして、水系有機溶媒の量は多すぎると、生産効率が低下するおそれがある。   The mixing ratio of the aqueous medium and the aqueous organic solvent is not particularly limited, but it is desirable to add the aqueous organic solvent to such an extent that the mixed material that is an organic compound having a higher boiling point than the aqueous organic solvent is dissolved. And when there is too much quantity of an aqueous organic solvent, there exists a possibility that production efficiency may fall.

水系媒質として水を採用する場合に、水系有機溶媒としては、プロピレングリコールモノメチルエーテル(プロピレングリコール−1−メチルエーテル、沸点119℃程度;プロピレングリコール−2−メチルエーテル、沸点130℃程度)、ブタノール(沸点117.7℃)、N−メチル−2−ピロリドン(沸点204℃程度)、γ−ブチロラクトン(沸点204℃程度)などが例示できる。   When water is employed as the aqueous medium, examples of the aqueous organic solvent include propylene glycol monomethyl ether (propylene glycol-1-methyl ether, boiling point of about 119 ° C .; propylene glycol-2-methyl ether, boiling point of about 130 ° C.), butanol ( Examples include boiling point 117.7 ° C.), N-methyl-2-pyrrolidone (boiling point of about 204 ° C.), γ-butyrolactone (boiling point of about 204 ° C.), and the like.

(b2)混合材料は、水系有機溶媒よりも沸点が高い有機化合物である。沸点が水系有機溶媒及び水系媒質よりも高いので、最終的に微小粒子とともに残存することになる。混合材料はそのまま、又は、反応することで高分子にすることできる。混合材料は、微小粒子を分散するマトリクスを形成することもできる。混合材料は、水性スラリーに水系有機溶媒を添加した状態で、溶解できる化合物である。混合材料は高分子であっても低分子であっても良い。混合材料は、エポキシ基、オキセタン基、水酸基、ブロックされたイソシアネート基、アミノ基、ハーフエステル基、アミック基、カルボキシ基及び炭素-炭素二重結合基を化学構造中に有することが望ましい。これらの官能基は好適な反応条件を設定することで互いに結合可能な官能基(重合性官能基)であり、混合材料の分子量を向上できる。好適な反応条件としては単純に加熱や光照射を行ったり、熱や光照射によりラジカルやイオン(アニオン、カチオン)などの反応性種を生成したり、それらの官能基間を結合する反応開始剤(重合開始剤)を添加して加熱や光照射を行うことなどである。重合反応に際して必要な化合物を硬化剤として添加したり、その反応に対する触媒を添加することもできる。 (B2) The mixed material is an organic compound having a boiling point higher than that of the aqueous organic solvent. Since the boiling point is higher than that of the aqueous organic solvent and the aqueous medium, it finally remains together with the fine particles. The mixed material can be made into a polymer as it is or by reacting. The mixed material can also form a matrix in which the microparticles are dispersed. Mixing material, while adding an aqueous organic solvent to the aqueous slurry, a compound capable dissolve. The mixed material may be a polymer or a low molecule. The mixed material desirably has an epoxy group, an oxetane group, a hydroxyl group, a blocked isocyanate group, an amino group, a half ester group, an amic group, a carboxy group, and a carbon-carbon double bond group in the chemical structure. These functional groups are functional groups (polymerizable functional groups) that can be bonded to each other by setting suitable reaction conditions, and the molecular weight of the mixed material can be improved. Suitable reaction conditions include simple heating and light irradiation, generation of reactive species such as radicals and ions (anions and cations) by heat and light irradiation, and a reaction initiator that binds between these functional groups. (Polymerization initiator) is added and heating or light irradiation is performed. A compound necessary for the polymerization reaction can be added as a curing agent, or a catalyst for the reaction can be added.

混合材料としては重合により高分子材料を形成する単量体や、上述したような重合性官能基により修飾した高分子材料が好ましいものとして挙げられる。例えば、硬化前の、エポキシ樹脂、アクリル樹脂、ウレタン樹脂などのプレポリマーが好適である。   Preferred examples of the mixed material include a monomer that forms a polymer material by polymerization and a polymer material modified with a polymerizable functional group as described above. For example, a prepolymer such as an epoxy resin, an acrylic resin, or a urethane resin before curing is suitable.

(c)表面改質剤は前述の水系有機溶媒及び混合材料を添加する際に同時に添加することもできる。表面改質剤は微小粒子に作用して、表面の疎水性を向上する作用を発揮する。例えば、疎水性基などを表面に導入できるシランカップリング剤、シリル化剤などが挙げられる。表面改質剤は1官能性の化合物で、微小粒子間を接続しないものか、2官能性の化合物で2つの微小粒子間を結合するに留まるものが望ましい。   (C) The surface modifier may be added simultaneously with the addition of the above-mentioned aqueous organic solvent and mixed material. The surface modifier acts on the fine particles and exhibits the effect of improving the surface hydrophobicity. For example, a silane coupling agent or a silylating agent that can introduce a hydrophobic group or the like onto the surface can be used. The surface modifier is preferably a monofunctional compound that does not connect between the microparticles, or a bifunctional compound that only binds between the two microparticles.

表面改質剤の添加量は特に限定しないが、微小粒子表面の一部乃至全部に付着乃至被覆できる量を添加する。また、表面改質剤が微小粒子の表面に形成する被覆は一層であってもよいことはもちろん、2層以上で微小粒子を被覆するものであってもよい。2層以上で被覆する場合には複数種類の表面改質剤にて各層を形成してもよい。   The addition amount of the surface modifier is not particularly limited, but an amount capable of adhering or covering a part or all of the surface of the fine particles is added. In addition, the surface modifier may form a single layer on the surface of the microparticles, and of course, two or more layers may cover the microparticles. When coating with two or more layers, each layer may be formed of a plurality of types of surface modifiers.

(d)その他の工程として、水系媒質や水系有機溶媒を蒸発・除去する工程を有することができる。水系媒質や水系有機溶媒は加熱したり、減圧したりすることで蒸発させることができる。   (D) As another step, a step of evaporating and removing the aqueous medium or the aqueous organic solvent can be included. The aqueous medium and the aqueous organic solvent can be evaporated by heating or reducing the pressure.

水系媒質及び水系有機溶媒を除去することで、混合材料中に微小粒子が混合乃至分散した状態とすることができる。   By removing the aqueous medium and the aqueous organic solvent, the fine particles can be mixed or dispersed in the mixed material.

参考:微小粒子含有組成物)
本微小粒子含有組成物は微小粒子が混合材料中に混合乃至分散された構成をもつ組成物である。水系媒質や水系有機溶媒を含有することもできる。混合材料に重合性官能基を導入している場合には、その重合性官能基を反応させることで、混合材料を硬化でき、微小粒子が分散された硬化物を得ることができる。ここで、用いている用語は前述の製造方法にて用いたものと同様の意味内容である。
( Reference: Composition containing fine particles)
The present fine particle-containing composition is a composition having a configuration in which fine particles are mixed or dispersed in a mixed material. An aqueous medium or an aqueous organic solvent can also be contained. When a polymerizable functional group is introduced into the mixed material, by reacting the polymerizable functional group, the mixed material can be cured, and a cured product in which fine particles are dispersed can be obtained. Here, the terminology used has the same meaning as that used in the above-described manufacturing method.

この微小粒子含有組成物はそのままで、又は、分散媒を除去した状態で、更には混合材料を反応により固化させるような反応開始剤を添加して用いることができる。例えば、コーティング剤や塗料、半導体封止材、接着剤などに添加して用いたり、適正な材料と混合した状態で固化・成形して、電子基板に用いられるワニス、プリプレグ、絶縁用のフィルムなどに用いることができる。   This fine particle-containing composition can be used as it is, or in a state where the dispersion medium is removed, and further by adding a reaction initiator that solidifies the mixed material by reaction. For example, varnishes, prepregs, insulating films, etc. used for electronic boards, added to coating agents, paints, semiconductor encapsulants, adhesives, etc., or solidified and molded in a mixed state with appropriate materials Can be used.

〔第1形態〕本形態の微小粒子含有組成物は前述の製造方法にて製造されうるものである。詳細は上記製造方法にて説明しているので、更なる説明は省略する。   [First Embodiment] The fine particle-containing composition of the present embodiment can be produced by the aforementioned production method. Since details are described in the above manufacturing method, further description is omitted.

〔第2形態〕本形態の微小粒子含有組成物は微小粒子と水系有機溶媒及び水の混合物である分散媒と混合材料と表面改質剤とを有する。微小粒子は、水系有機溶媒と水との混合物である分散媒にて分散されている。微小粒子、水系有機溶媒及び混合材料は概ね前述の製造方法にて説明したものと同じなので更なる説明は省略する。表面改質剤はシランカップリング剤又はシリル化剤からなる化合物である。また、表面改質剤を含有させる替わりに、微小粒子として、表面に表面改質官能基を導入した金属酸化物粒子を採用することができる。表面改質官能基としては、シラノール基、シリル基及びそれらのアルキルエステルから選択することができる。   [Second Embodiment] The fine particle-containing composition of the present embodiment comprises fine particles, a dispersion medium that is a mixture of an aqueous organic solvent and water, a mixed material, and a surface modifier. The fine particles are dispersed in a dispersion medium that is a mixture of an aqueous organic solvent and water. Since the fine particles, the water-based organic solvent, and the mixed material are generally the same as those described in the above production method, further description is omitted. The surface modifier is a compound comprising a silane coupling agent or a silylating agent. Further, instead of containing the surface modifier, metal oxide particles having a surface-modified functional group introduced on the surface can be employed as the fine particles. The surface modifying functional group can be selected from silanol groups, silyl groups and alkyl esters thereof.

その場合に、微小粒子として、1nm以上100nm以下(より望ましくは5nm以上50nm以下)といった直径もつナノメートルオーダーの微小粒子であって、二次粒子を形成した凝集体を含むものを採用することもできる。このような微小粒子を有していても、チクソ比を1.2以下にすることも可能になる。   In that case, a microparticle having a diameter of 1 nm or more and 100 nm or less (more desirably 5 nm or more and 50 nm or less) having a diameter of nanometer order and including an aggregate formed with secondary particles may be adopted. it can. Even with such fine particles, the thixo ratio can be reduced to 1.2 or less.

また、微小粒子としては体積平均粒径が1nm以上50nm以下の第1微小粒子と体積平均粒径が100nm以上5μm以下の第2微小粒子とを含有することが望ましい。相対的に粒径が大きい第2微小粒子の間に第1微小粒子が組み合わせられることでいわゆるベアリング効果が期待できる。第2微小粒子の体積平均粒径は、第1微小粒子の体積平均粒径に対して2倍以上8倍以下にすることが望ましい。また、第2微小粒子は、シランカップリング剤又はシリル化剤にて処理することなどで表面にシラノール基、シリル基又はそれらのアルキルエステルが導入されていることが望ましい。   The fine particles preferably include first fine particles having a volume average particle diameter of 1 nm to 50 nm and second fine particles having a volume average particle diameter of 100 nm to 5 μm. A so-called bearing effect can be expected by combining the first microparticles between the second microparticles having a relatively large particle diameter. The volume average particle size of the second microparticles is desirably 2 to 8 times the volume average particle size of the first microparticles. Moreover, it is desirable that silanol groups, silyl groups, or alkyl esters thereof are introduced on the surface of the second microparticles by treatment with a silane coupling agent or a silylating agent.

〔試験1〕
(実施例1)
微小粒子としてのシリカ微粒子を水系媒質としての水に分散させた水系スラリーとしてのコロイドシリカN−40(シリカ分40%:日産化学製)100質量部に、水系有機溶媒としてのプロピレングリコールモノメチルエーテル(沸点119℃)200質量部と、混合材料としてのエトキシ化トリメチロールプロパントリアクリレート(新中村化学工業製)40質量部と、表面改質剤としてのKBM−503(信越化学製:シランカップリング剤)2.1質量部とを配合して微小粒子含有組成物を調製した。更に、光重合開始剤としてのIRGACURE184(チバ・スペシャルティ・ケミカルズ製)2質量部を添加した。
[Test 1]
Example 1
To 100 parts by mass of colloidal silica N-40 (silica content 40%: manufactured by Nissan Chemical Co., Ltd.) as an aqueous slurry in which silica fine particles as fine particles are dispersed in water as an aqueous medium, propylene glycol monomethyl ether (as an aqueous organic solvent) 200 parts by mass of boiling point 119 ° C., 40 parts by mass of ethoxylated trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) as a mixed material, and KBM-503 (manufactured by Shin-Etsu Chemical: silane coupling agent) as a surface modifier ) 2.1 parts by mass was blended to prepare a composition containing fine particles. Further, 2 parts by mass of IRGACURE 184 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator was added.

この光重合開始剤入りの微小粒子含有組成物をガラス板に塗布し、120℃で15分間加熱した。その後、紫外線を照射することで硬い透明膜が得られた。   This fine particle-containing composition containing a photopolymerization initiator was applied to a glass plate and heated at 120 ° C. for 15 minutes. Then, the hard transparent film | membrane was obtained by irradiating with an ultraviolet-ray.

(比較例1)
コロイドシリカN−40を100質量部に、水系有機溶媒としてのイソプロパノール(沸点82.4℃)200質量部と、エトキシ化トリメチロールプロパントリアクリレート(新中村化学工業製)40質量部と、KBM−503を2.1質量部とを配合して微小粒子含有組成物を調製した。更に、IRGACURE184を2質量部を添加した。
(Comparative Example 1)
100 parts by mass of colloidal silica N-40, 200 parts by mass of isopropanol (boiling point 82.4 ° C.) as an aqueous organic solvent, 40 parts by mass of ethoxylated trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), KBM- A fine particle-containing composition was prepared by blending 503 with 2.1 parts by mass. Furthermore, 2 parts by mass of IRGACURE 184 was added.

この光重合開始剤入りの微小粒子含有組成物をガラス板に塗布し、120℃で15分間加熱した結果、シリカ微粒子が凝集して相分離を起こし、濁ったぶつぶつの膜になった。   This fine particle-containing composition containing a photopolymerization initiator was applied to a glass plate and heated at 120 ° C. for 15 minutes. As a result, the silica fine particles aggregated to cause phase separation, resulting in a cloudy and crushed film.

(実施例2)
コロイドシリカN−40を100質量部に、プロピレングリコールモノメチルエーテルを200質量部と、エトキシ化トリメチロールプロパントリアクリレートを40質量部と、KBM−503を2.1質量部とを配合した。その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロピレングリコールモノメチルエーテルの一部を除去し(合わせて約160質量部)、微小粒子含有組成物を調製した。得られた組成物に、IRGACURE184を2質量部を添加した。
(Example 2)
100 parts by mass of colloidal silica N-40, 200 parts by mass of propylene glycol monomethyl ether, 40 parts by mass of ethoxylated trimethylolpropane triacrylate, and 2.1 parts by mass of KBM-503 were blended. Then, a part of water and propylene glycol monomethyl ether was removed from the obtained fine particle-containing composition using an evaporator (a total of about 160 parts by mass) to prepare a fine particle-containing composition. To the obtained composition, 2 parts by mass of IRGACURE 184 was added.

この光重合開始剤入りの微小粒子含有組成物をガラス板に塗布し、120℃で15分間加熱した。その後、紫外線を照射することで硬い透明膜が得られた。   This fine particle-containing composition containing a photopolymerization initiator was applied to a glass plate and heated at 120 ° C. for 15 minutes. Then, the hard transparent film | membrane was obtained by irradiating with an ultraviolet-ray.

(比較例2)
コロイドシリカN−40を100質量部に、イソプロパノールを200質量部と、エトキシ化トリメチロールプロパントリアクリレートを40質量部と、KBM−503を2.1質量部とを配合した。その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロパノールの一部を除去したところ、シリカ微粒子が凝集して濁ったどろどろの組成物になった。
(Comparative Example 2)
100 parts by mass of colloidal silica N-40, 200 parts by mass of isopropanol, 40 parts by mass of ethoxylated trimethylolpropane triacrylate, and 2.1 parts by mass of KBM-503 were blended. Thereafter, when a part of water and propanol was removed from the obtained fine particle-containing composition using an evaporator, the silica fine particles were aggregated to become a turbid and muddy composition.

(実施例3)
コロイドシリカN−40を100質量部に、プロピレングリコールモノメチルエーテルを200質量部と、混合材料としてのエポキシ樹脂(YD−127:東都化成製)40質量部と、KBM−503を2.1質量部とを配合して微小粒子含有組成物を調製した。
(Example 3)
100 parts by mass of colloidal silica N-40, 200 parts by mass of propylene glycol monomethyl ether, 40 parts by mass of an epoxy resin (YD-127: manufactured by Tohto Kasei) as a mixed material, and 2.1 parts by mass of KBM-503 And a fine particle-containing composition was prepared.

その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロピレングリコールモノメチルエーテルを除去した結果、エポキシ樹脂にシリカ微粒子が分散された流動性がある透明な組成物が得られた。   Thereafter, water and propylene glycol monomethyl ether were removed from the obtained fine particle-containing composition using an evaporator, and as a result, a fluid and transparent composition in which silica fine particles were dispersed in an epoxy resin was obtained.

(比較例3)
コロイドシリカN−40を100質量部に、プロピレングリコールモノメチルエーテルを200質量部と、混合材料としてのエポキシ樹脂(YD−127:東都化成製)40質量部とを配合して微小粒子含有組成物を調製した。
(Comparative Example 3)
Mixing 100 parts by mass of colloidal silica N-40, 200 parts by mass of propylene glycol monomethyl ether, and 40 parts by mass of an epoxy resin (YD-127: manufactured by Tohto Kasei) as a mixed material, Prepared.

その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロピレングリコールモノメチルエーテルを除去した結果、エポキシ樹脂にシリカ微粒子が分散されたゲル状で透明な組成物が得られた。   Thereafter, water and propylene glycol monomethyl ether were removed from the obtained fine particle-containing composition using an evaporator. As a result, a gel-like transparent composition in which silica fine particles were dispersed in an epoxy resin was obtained.

(実施例4)
実施例3で調製した組成物100質量部に、アミン系硬化剤(HL−101:東都化成製)15質量部を配合し、室温で1日放置することで透明な硬化物を得た。
Example 4
To 100 parts by mass of the composition prepared in Example 3, 15 parts by mass of an amine curing agent (HL-101: manufactured by Tohto Kasei) was blended and allowed to stand at room temperature for 1 day to obtain a transparent cured product.

(比較例4)
コロイドシリカN−40を100質量部に、イソプロピルアルコールを200質量部と、エポキシ樹脂(YD−127)40質量部と、KBM−503を2.1質量部とを配合して微小粒子含有組成物を調製した。この組成物からエバポレータを用いて、水及びイソプロピルアルコールを除去した結果、シリカが凝集して濁ったどろどろの組成物になった。
(Comparative Example 4)
A composition containing fine particles containing 100 parts by mass of colloidal silica N-40, 200 parts by mass of isopropyl alcohol, 40 parts by mass of epoxy resin (YD-127), and 2.1 parts by mass of KBM-503. Was prepared. As a result of removing water and isopropyl alcohol from this composition using an evaporator, silica was agglomerated and became a muddy composition.

(実施例5)
実施例3で調製した組成物100質量部に、ブチルアセテート50質量部を添加して、粘度を低く調節した。その組成物100質量部にアクリル樹脂(AC4201K:日本ユピカ製)100質量部と、メラミン樹脂(ユーバン20SE−60:三井化学製)15質量部とを配合し、焼き付け用に好適な性状をもつ塗料組成物を得た。この塗料組成物をバーコータにて鉄板表面に塗布し、120℃、30分間加熱することで硬化でき、塗膜を生成した。
(Example 5)
To 100 parts by mass of the composition prepared in Example 3, 50 parts by mass of butyl acetate was added to adjust the viscosity low. 100 parts by mass of the composition is blended with 100 parts by mass of an acrylic resin (AC4201K: manufactured by Nippon Yupica) and 15 parts by mass of a melamine resin (Uban 20SE-60: manufactured by Mitsui Chemicals), and a paint having properties suitable for baking. A composition was obtained. This coating composition was applied to the surface of an iron plate with a bar coater and cured by heating at 120 ° C. for 30 minutes to form a coating film.

(比較例5)
実施例5にて調製した塗料組成物と同様の操作(シリカ微粒子だけ混合しない)にて塗料組成物を調製し、その塗料組成物を実施例5と同じ方法にて塗膜を生成した。
(Comparative Example 5)
A coating composition was prepared in the same manner as in the coating composition prepared in Example 5 (without mixing only silica fine particles), and a coating film was produced from the coating composition in the same manner as in Example 5.

実施例5及び比較例5の塗膜について、それぞれ同様にスチールウールにて擦ったところ、実施例5の塗膜に付いた傷は比較例5の塗膜よりも10分の1以下であった。   About the coating film of Example 5 and Comparative Example 5, when similarly rubbed with steel wool, the scratches on the coating film of Example 5 were 1/10 or less than the coating film of Comparative Example 5. .

(実施例6)
100質量部の市販コロイドシリカUP(シリカ分=20%)(日産化学製)に200質量部のプロピレングリコールモノメチルエーテルと、80質量部のエポキシ樹脂ZX−1059(東都化成製)と、5質量部のKBM−503(信越化学製)とを配合してナノシリカ含有有機組成物を調製した。この組成物から水及びプロピレングリコールモノメチルエーテルをエバポレータで完全に除去した結果、エポキシ樹脂に細長い形状を有するシリカ微粒子(アスペクト比10〜100の集合体)が分散された流動性がある透明な組成物が得られた。この組成物は実施例4及び5の組成物と同様の操作により透明なまま硬化させることができた。
(Example 6)
100 parts by mass of commercially available colloidal silica UP (silica content = 20%) (manufactured by Nissan Chemical), 200 parts by mass of propylene glycol monomethyl ether, 80 parts by mass of epoxy resin ZX-1059 (manufactured by Tohto Kasei), and 5 parts by mass Of KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare a nanosilica-containing organic composition. As a result of completely removing water and propylene glycol monomethyl ether from the composition with an evaporator, a transparent composition having fluidity in which silica fine particles (aggregates having an aspect ratio of 10 to 100) having an elongated shape are dispersed in an epoxy resin was gotten. This composition could be cured while being transparent by the same operation as the compositions of Examples 4 and 5.

(実施例7)
SBRラテックス(0561:JSR製)60質量部に、プロピレングリコールモノメチルエーテルを200質量部と、エポキシ樹脂(ZX−1059:東都化成製)を60質量部と、KBM−503を2.1質量部とを配合して微小粒子含有組成物を調製した。
(Example 7)
60 parts by mass of SBR latex (0561: manufactured by JSR), 200 parts by mass of propylene glycol monomethyl ether, 60 parts by mass of epoxy resin (ZX-1059: manufactured by Tohto Kasei), 2.1 parts by mass of KBM-503 Was added to prepare a composition containing fine particles.

その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロピレングリコールモノメチルエーテルを除去した結果、エポキシ樹脂にSBR微粒子が分散された流動性がある透明な組成物が得られた。   Thereafter, water and propylene glycol monomethyl ether were removed from the obtained fine particle-containing composition using an evaporator, and as a result, a fluid and transparent composition in which SBR fine particles were dispersed in an epoxy resin was obtained.

この透明な組成物は、実施例4及び5と同様の操作により、透明なまま硬化させることができた。   This transparent composition could be cured while being transparent by the same operation as in Examples 4 and 5.

(実施例8)
シリカ微粒子(SO−C1:アドマテックス製)を40質量%含有する水スラリー(アンモニア水でpH8に調節)を100質量部に、プロピレングリコールモノメチルエーテルを200質量部と、エポキシ樹脂(ZX−1059:東都化成製)を40質量部と、KBM−503を0.8質量部とを配合して微小粒子含有組成物を調製した。
(Example 8)
100 parts by mass of water slurry (adjusted to pH 8 with ammonia water) containing 40% by mass of silica fine particles (SO-C1: manufactured by Admatex), 200 parts by mass of propylene glycol monomethyl ether, and epoxy resin (ZX-1059: 40 parts by mass of Toto Kasei) and 0.8 parts by mass of KBM-503 were blended to prepare a composition containing fine particles.

その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロピレングリコールモノメチルエーテルを除去した結果、エポキシ樹脂にシリカ微粒子が分散された流動性がある組成物が得られた。   Thereafter, water and propylene glycol monomethyl ether were removed from the obtained fine particle-containing composition using an evaporator. As a result, a fluid composition in which silica fine particles were dispersed in an epoxy resin was obtained.

この組成物は、実施例4及び5と同様の操作により、硬化させることができた。   This composition could be cured by the same operation as in Examples 4 and 5.

(実施例9)
アルミナ微粒子(AO−502:アドマテックス製)を40質量%含有する水スラリーを100質量部に、プロピレングリコールモノメチルエーテルを200質量部と、エポキシ樹脂(ZX−1059:東都化成製)を40質量部と、KBM−503を0.5質量部とを配合して微小粒子含有組成物を調製した。
Example 9
100 parts by mass of water slurry containing 40% by mass of alumina fine particles (AO-502: manufactured by Admatex), 200 parts by mass of propylene glycol monomethyl ether, and 40 parts by mass of epoxy resin (ZX-1059: manufactured by Toto Kasei) And 0.5 parts by mass of KBM-503 was blended to prepare a fine particle-containing composition.

その後、得られた微小粒子含有組成物からエバポレータを用いて、水及びプロピレングリコールモノメチルエーテルを除去した結果、エポキシ樹脂にアルミナ微粒子が分散された流動性がある組成物が得られた。   Thereafter, water and propylene glycol monomethyl ether were removed from the obtained fine particle-containing composition using an evaporator. As a result, a fluid composition in which alumina fine particles were dispersed in an epoxy resin was obtained.

この組成物は、実施例4及び5と同様の操作により、硬化させることができた。   This composition could be cured by the same operation as in Examples 4 and 5.

(結果)
以上説明したように、微粒子を水系媒質中に分散させた水系スラリーに沸点が高い水系有機溶媒と表面改質剤とを添加することで、更に添加している混合材料中に微粒子を分散した状態の組成物を得ることができた。水系有機溶媒の沸点がイソプロパノールのように水より低くても(比較例1、2及び4)、表面改質剤を添加しなくても(比較例3)、添加した微粒子の分散性を保つことは困難であった。なお、微粒子を適正に分散させて添加できたことで、実施例5及び比較例5の塗膜にて検討したように、添加した微粒子の効果を十分に発揮させることができた。
(result)
As described above, by adding an aqueous organic solvent having a high boiling point and a surface modifier to an aqueous slurry in which fine particles are dispersed in an aqueous medium, the state in which the fine particles are dispersed in the added mixed material The composition was able to be obtained. Even if the boiling point of the aqueous organic solvent is lower than that of water such as isopropanol (Comparative Examples 1, 2 and 4), the dispersibility of the added fine particles should be maintained even if no surface modifier is added (Comparative Example 3). Was difficult. In addition, by being able to disperse | distribute microparticles | fine-particles appropriately and adding, as examined in the coating film of Example 5 and Comparative Example 5, the effect of the added microparticles | fine-particles was fully able to be exhibited.

また、実施例6のように微小粒子の形状を細長い形状のものとしたり、実施例7、9のように、材料としてシリカ以外のものを採用した場合でも同様に微小粒子の分散性を高いまま保つことができた。   Further, even when the shape of the fine particles is elongated as in Example 6 or when a material other than silica is employed as in Examples 7 and 9, the dispersibility of the fine particles remains high similarly. I was able to keep it.

〔試験2〕
(実施例2−1)
20質量部の市販ナノシリカA−50(日本アエロジル社製、一次粒子径約55nm)と、280質量部のプロピレングリコールモノメチルエーテルと、20質量部の水とを混合・分散させてスラリー状にした。得られたスラリーと、20質量部のエポキシ樹脂YD−127(東都化成製)と、2.1質量部のKBM−503(表面改質剤、信越化学製)とを配合して分散させた。その後、エバポレータを用いて溶媒を除去することで微小粒子含有組成物としてのナノシリカ含有有機組成物を得た。これを実施例2−1の試験試料とした。この試験試料は流動性が非常に高いものであった。また、マイクロトラック(日機装製)にて粒度分布を測定したところ、平均粒径が0.3μmとなり、微小粒子が凝集して二次粒子を形成していることが判った。
[Test 2]
(Example 2-1)
20 parts by mass of commercially available nanosilica A-50 (manufactured by Nippon Aerosil Co., Ltd., primary particle diameter of about 55 nm), 280 parts by mass of propylene glycol monomethyl ether, and 20 parts by mass of water were mixed and dispersed to form a slurry. The obtained slurry, 20 parts by mass of epoxy resin YD-127 (manufactured by Toto Kasei) and 2.1 parts by mass of KBM-503 (surface modifier, manufactured by Shin-Etsu Chemical) were mixed and dispersed. Then, the nano silica containing organic composition as a fine particle containing composition was obtained by removing a solvent using an evaporator. This was used as the test sample of Example 2-1. This test sample was very fluid. Further, when the particle size distribution was measured with Microtrac (manufactured by Nikkiso), it was found that the average particle size was 0.3 μm, and the microparticles aggregated to form secondary particles.

(比較例2−1)
100質量部の市販コロイドシリカ20L(シリカ分20%、一次粒子径約45nm;日産化学製)と、200質量部のプロピレングリコールモノメチルエーテルと、40質量部のエポキシ樹脂YD−127と、2.1質量部のKBM−503とを配合して分散させた。その後、エバポレータを用いて溶媒を除去することで微小粒子含有組成物としてのナノシリカ含有有機組成物を得た。これを比較例2−1の試験試料とした。この試験試料はマイクロトラックにて粒度分布を測定したところ、平均粒径が50nmとなり、微小粒子が凝集していないことが判った。
(Comparative Example 2-1)
100 parts by mass of commercially available colloidal silica 20L (silica content 20%, primary particle size about 45 nm; manufactured by Nissan Chemical Co., Ltd.), 200 parts by mass of propylene glycol monomethyl ether, 40 parts by mass of epoxy resin YD-127, 2.1 A part by weight of KBM-503 was blended and dispersed. Then, the nano silica containing organic composition as a fine particle containing composition was obtained by removing a solvent using an evaporator. This was used as a test sample of Comparative Example 2-1. When the particle size distribution of this test sample was measured with Microtrac, the average particle size was 50 nm, and it was found that the fine particles were not aggregated.

(比較例2−2)
20質量部の市販ナノシリカA−50と、280質量部のイソプロピルアルコールと、20質量部のエポキシ樹脂YD−127と、2.1質量部のKBM−503とを配合して分散させた。その後、エバポレータを用いて溶媒を除去することで微小粒子含有組成物としてのナノシリカ含有有機組成物を得た。これを比較例2−2の試験試料とした。比較例2−2の試験試料はシリカの凝集が著しくどろどろの流動性がないものになった。この試験試料はマイクロトラックにて粒度分布を測定できなかった。
(Comparative Example 2-2)
20 parts by mass of commercially available nanosilica A-50, 280 parts by mass of isopropyl alcohol, 20 parts by mass of epoxy resin YD-127, and 2.1 parts by mass of KBM-503 were blended and dispersed. Then, the nano silica containing organic composition as a fine particle containing composition was obtained by removing a solvent using an evaporator. This was used as a test sample of Comparative Example 2-2. The test sample of Comparative Example 2-2 was remarkably agglomerated of silica and lacked turbid fluidity. In this test sample, the particle size distribution could not be measured with Microtrac.

(比較例2−3)
20質量部の市販ナノシリカA−50と、300質量部の水とを混合・分散させてスラリー状とした。スラリーに対して、20質量部のエポキシ樹脂YD−127と、2.1質量部のKBM−503とを配合して分散させた。その後、エバポレータを用いて溶媒を除去することで微小粒子含有組成物としてのナノシリカ含有有機組成物を得た。これを比較例2−2の試験試料とした。比較例2−2の試験試料はシリカの凝集が著しくどろどろの流動性がないものになった。この試験試料はマイクロトラックにて粒度分布を測定できなかった。
(Comparative Example 2-3)
20 parts by mass of commercially available nanosilica A-50 and 300 parts by mass of water were mixed and dispersed to form a slurry. 20 parts by mass of epoxy resin YD-127 and 2.1 parts by mass of KBM-503 were blended and dispersed in the slurry. Then, the nano silica containing organic composition as a fine particle containing composition was obtained by removing a solvent using an evaporator. This was used as a test sample of Comparative Example 2-2. The test sample of Comparative Example 2-2 was remarkably agglomerated of silica and lacked turbid fluidity. In this test sample, the particle size distribution could not be measured with Microtrac.

(評価)
実施例2−1及び比較例2−1の試験試料について硬化剤としての2PHZ(四国化成製)を配合してPETフィルム上で硬化させてフィルム状の成形物を得た。この成形物の引っ張り強度を測定した結果、実施例2−1の試験試料から作成した成形物は比較例2−1の試験試料から作成した成形物よりも強度が1.3倍であった。従って、微小粒子が凝集して二次粒子を形成することで強度の向上が認められることが明らかになった。
(Evaluation)
The test samples of Example 2-1 and Comparative Example 2-1 were mixed with 2PHZ (manufactured by Shikoku Kasei) as a curing agent and cured on a PET film to obtain a film-like molded product. As a result of measuring the tensile strength of this molded product, the molded product prepared from the test sample of Example 2-1 was 1.3 times stronger than the molded product prepared from the test sample of Comparative Example 2-1. Accordingly, it has been clarified that an improvement in strength is observed when the fine particles aggregate to form secondary particles.

〔試験3〕
(試料の調製:実施例3−1)
第1微小粒子としてのシリカ微粒子を水系媒質としての水に分散させたスラリーであるコロイドシリカN−40(シリカ分40質量%;日産化学製)25質量部と、水系有機溶媒としてのプロピレングリコールモノメチルエーテル150質量部と、混合材料としてのエポキシ樹脂(ZX−1059:東都化成製)40質量部と、表面改質剤としてのKBM−503(信越化学工業製)2.1質量部とを混合・分散した。その後、エバポレータにより水及びプロピレングリコールモノメチルエーテルを除去して組成物を得た。
[Test 3]
(Sample preparation: Example 3-1)
25 parts by mass of colloidal silica N-40 (silica content 40% by mass; manufactured by Nissan Chemical Co., Ltd.), which is a slurry in which silica fine particles as first fine particles are dispersed in water as an aqueous medium, and propylene glycol monomethyl as an aqueous organic solvent 150 parts by mass of ether, 40 parts by mass of epoxy resin (ZX-1059: manufactured by Tohto Kasei) as a mixed material, and 2.1 parts by mass of KBM-503 (manufactured by Shin-Etsu Chemical) as a surface modifier are mixed. Distributed. Thereafter, water and propylene glycol monomethyl ether were removed by an evaporator to obtain a composition.

第2微小粒子として添加する体積平均粒径0.5μmのシリカ(SE2050、アドマテックス製)に対して、0.2質量%のエポキシシランを反応させて得られるシリカ微粒子40質量部と、潜在的触媒2−PHZ(四国化成製)2質量部とを得られた組成物中に混合・分散した結果、流動性のある微小粒子含有組成物が得られた。   40 parts by mass of silica fine particles obtained by reacting 0.2% by mass of epoxy silane with respect to silica having a volume average particle size of 0.5 μm added as the second fine particles (SE2050, manufactured by Admatex); As a result of mixing and dispersing in 2 parts by mass of catalyst 2-PHZ (manufactured by Shikoku Chemicals), a fluid-containing fine particle-containing composition was obtained.

(実施例3−2)
コロイドシリカN−40を25質量部と、水系有機溶媒としてのプロピレングリコールモノメチルエーテル150質量部と、混合材料としてのエポキシ樹脂(ZX−1059)40質量部と、表面改質剤としてのKBM−503を2.1質量部と体積平均粒径0.5μmのシリカSE2050(アドマテックス製)40質量部とを混合・分散した。その後、エバポレータにより水及びプロピレングリコールモノメチルエーテルを除去したところ、流動性のある微小粒子含有組成物が得られた。
(Example 3-2)
25 parts by mass of colloidal silica N-40, 150 parts by mass of propylene glycol monomethyl ether as an aqueous organic solvent, 40 parts by mass of epoxy resin (ZX-1059) as a mixed material, and KBM-503 as a surface modifier 2.1 parts by mass and 40 parts by mass of silica SE2050 (manufactured by Admatex) having a volume average particle size of 0.5 μm were mixed and dispersed. Thereafter, when water and propylene glycol monomethyl ether were removed by an evaporator, a fluid-containing fine particle-containing composition was obtained.

(比較例3−1)
コロイドシリカN−40を25質量部と、水系有機溶媒としてのイソプロパノール150質量部と、エポキシ樹脂(ZX−1059)40質量部と、KBM−503を2.1質量部と体積平均粒径0.5μmのシリカSE2050(アドマテックス製)40質量部とを混合・分散した。その後、エバポレータにより水及びイソプロパノールを除去したところ、流動性のないゲル状の微小粒子含有組成物が得られた。
(Comparative Example 3-1)
25 parts by mass of colloidal silica N-40, 150 parts by mass of isopropanol as an aqueous organic solvent, 40 parts by mass of epoxy resin (ZX-1059), 2.1 parts by mass of KBM-503, and a volume average particle size of 0. 40 parts by mass of 5 μm silica SE2050 (manufactured by Admatex) was mixed and dispersed. Thereafter, when water and isopropanol were removed by an evaporator, a gel-like fine particle-containing composition having no fluidity was obtained.

Claims (16)

水系媒質に微小粒子を分散して水系スラリーを調製する工程と、
該水系媒質よりも沸点が高く且つ前記水系媒質に混合できる水系有機溶媒を前記水系スラリーに添加する工程と、
を有し、
前記水系スラリーに添加する工程の以後に順不同で行われる、
水系有機溶媒よりも沸点が高く且つ前記水性スラリーに前記水性有機溶媒を添加した状態で溶解でき且つそのまま又は反応することで高分子とすることができる有機化合物である混合材料を該水系スラリーに添加する工程と、
前記微小粒子に作用して該微小粒子の疎水性を向上する表面改質剤を該水系スラリーに添加する工程と、
を有することを特徴とする微小粒子含有組成物の製造方法。
A step of preparing an aqueous slurry by dispersing fine particles in an aqueous medium;
Adding an aqueous organic solvent in the aqueous slurry can be mixed and the aqueous medium boiling point rather higher than the water-based medium,
Have
Performed in random order after the step of adding to the aqueous slurry,
Water-based slurry mixed material is an organic compound may be a polymer by directly or reaction can and dissolved while adding the aqueous organic solvent to the high rather and the aqueous slurry having a boiling point than the aqueous organic solvent Adding to,
Adding to the aqueous slurry a surface modifier that acts on the microparticles to improve the hydrophobicity of the microparticles;
A method for producing a composition containing fine particles, comprising:
前記水系媒質は水である請求項1に記載の微小粒子含有組成物の製造方法。   2. The method for producing a composition containing fine particles according to claim 1, wherein the aqueous medium is water. 前記表面改質剤はシランカップリング剤又はシリル化剤である請求項2に記載の微小粒子含有組成物の製造方法。   The method for producing a fine particle-containing composition according to claim 2, wherein the surface modifier is a silane coupling agent or a silylating agent. 前記微小粒子は金属酸化物又は樹脂材料から構成される請求項1〜3のいずれかに記載の微小粒子含有組成物の製造方法。   The method for producing a composition containing fine particles according to any one of claims 1 to 3, wherein the fine particles are composed of a metal oxide or a resin material. 前記水系スラリーは親水性コロイドシリカである請求項2〜4のいずれかに記載の微小粒子含有組成物の製造方法。   The method for producing a fine particle-containing composition according to claim 2, wherein the aqueous slurry is hydrophilic colloidal silica. 前記混合材料は、エポキシ基、オキセタン基、水酸基、ブロックされたイソシアネート基、アミノ基、ハーフエステル基、アミック基、カルボキシ基及び炭素-炭素二重結合基を化学構造中に有する請求項1〜5のいずれかに記載の微小粒子含有組成物の製造方法。   The mixed material has an epoxy group, oxetane group, hydroxyl group, blocked isocyanate group, amino group, half ester group, amic group, carboxy group and carbon-carbon double bond group in the chemical structure. The manufacturing method of the microparticle containing composition in any one of. 前記表面改質剤添加工程後に、前記水系媒質を蒸発除去する工程を有する請求項1〜6のいずれかに記載の微小粒子含有組成物の製造方法。   The method for producing a fine particle-containing composition according to any one of claims 1 to 6, further comprising a step of evaporating and removing the aqueous medium after the surface modifier addition step. 前記水系媒質除去工程後に、前記水系有機溶媒を蒸発除去する工程を有する請求項7に記載の微小粒子含有組成物の製造方法。   The method for producing a fine particle-containing composition according to claim 7, further comprising a step of evaporating and removing the aqueous organic solvent after the aqueous medium removing step. 前記混合材料添加工程に供される前記微小粒子は、イオン性物質含有量が所定値以下である請求項1〜8のいずれかに記載の微小粒子含有組成物の製造方法。   The method for producing a microparticle-containing composition according to any one of claims 1 to 8, wherein the microparticles subjected to the mixed material addition step have an ionic substance content of a predetermined value or less. 前記微小粒子はテトラアルコキシシランの重縮合により形成されたコロイドシリカである請求項9に記載の微小粒子含有組成物の製造方法。   The method for producing a composition containing fine particles according to claim 9, wherein the fine particles are colloidal silica formed by polycondensation of tetraalkoxysilane. 前記微小粒子は洗浄により前記イオン性物質の含有量が所定値以下に低減されている請求項9に記載の微小粒子含有組成物の製造方法。   The method for producing a composition containing fine particles according to claim 9, wherein the content of the ionic substance is reduced to a predetermined value or less by washing. 前記混合材料添加工程に供される前記微小粒子に含有されるナトリウムの量は50ppm以下である請求項9〜11のいずれかに記載の微小粒子含有組成物の製造方法。   The method for producing a microparticle-containing composition according to any one of claims 9 to 11, wherein the amount of sodium contained in the microparticles subjected to the mixed material addition step is 50 ppm or less. 前記微小粒子は一次粒子径が1nm以上100nm以下の二次粒子を形成した凝集体を含み、
製造された前記微小粒子含有組成物のチクソ比が1.2以下である請求項1〜12のいずれかに記載の微小粒子含有組成物の製造方法。
The fine particles include an aggregate in which secondary particles having a primary particle diameter of 1 nm to 100 nm are formed,
The method for producing a microparticle-containing composition according to any one of claims 1 to 12, wherein the thixotropic ratio of the produced microparticle-containing composition is 1.2 or less.
前記微小粒子は体積平均粒径が1nm以上50nm以下の第1微小粒子と体積平均粒径が100nm以上5μm以下の第2微小粒子とを含有する請求項1〜13のいずれかに記載の微小粒子含有組成物の製造方法。   The microparticle according to any one of claims 1 to 13, wherein the microparticle includes a first microparticle having a volume average particle diameter of 1 nm to 50 nm and a second microparticle having a volume average particle diameter of 100 nm to 5 µm. The manufacturing method of a containing composition. 前記第2微小粒子は、前記水系媒質蒸発除去工程後に混合・分散される請求項14に記載の微小粒子含有組成物の製造方法。   15. The method for producing a composition containing fine particles according to claim 14, wherein the second fine particles are mixed and dispersed after the aqueous medium evaporating and removing step. 前記微小粒子はアスペクト比が2以上である細長い形状をもつコロイドシリカである請求項1〜15のいずれかに記載の微小粒子含有組成物の製造方法。   The method for producing a composition containing fine particles according to any one of claims 1 to 15, wherein the fine particles are colloidal silica having an elongated shape having an aspect ratio of 2 or more.
JP2006146976A 2005-05-30 2006-05-26 Fine particle-containing composition and method for producing the same Active JP5042529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146976A JP5042529B2 (en) 2005-05-30 2006-05-26 Fine particle-containing composition and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005157657 2005-05-30
JP2005157657 2005-05-30
JP2005374857 2005-12-27
JP2005374857 2005-12-27
JP2006146976A JP5042529B2 (en) 2005-05-30 2006-05-26 Fine particle-containing composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007197655A JP2007197655A (en) 2007-08-09
JP5042529B2 true JP5042529B2 (en) 2012-10-03

Family

ID=38452565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146976A Active JP5042529B2 (en) 2005-05-30 2006-05-26 Fine particle-containing composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5042529B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191007B (en) * 2007-11-23 2010-09-08 武汉理工大学 Method for preparing resin-base composite material containing metal particle
JP5496533B2 (en) * 2009-03-31 2014-05-21 株式会社アドマテックス Thermosetting resin composition
JP5660481B2 (en) * 2009-11-18 2015-01-28 国立大学法人山形大学 Hydrophobic treatment method of inorganic oxide fine particles and method of producing dispersion, and inorganic oxide fine particles and dispersion thereof, resin composition and use
GB201100568D0 (en) * 2011-01-13 2011-03-02 Cytec Engineered Materials Ltd Particle reinforced polymer composition
TW201235403A (en) * 2011-02-10 2012-09-01 Sumitomo Bakelite Co Encapsulating resin composition for preapplication, semiconductor chip, and semiconductor device
KR101818864B1 (en) 2016-10-07 2018-01-16 연세대학교 산학협력단 Micro material array using sonic wave manufacturing device and manufacturing method thereof
KR20220152583A (en) 2016-10-14 2022-11-16 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition for sealing, electronic component device and method for producing electronic component device
JP6829462B2 (en) 2017-02-21 2021-02-10 ナミックス株式会社 Liquid epoxy resin encapsulant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287082A (en) * 1992-04-08 1993-11-02 Nitto Denko Corp Production of resin composition containing ultrafine particles dispersed therein
JPH0726061A (en) * 1993-07-16 1995-01-27 Matsushita Electric Ind Co Ltd Filler and resin composition filled therewith
JP4032503B2 (en) * 1997-05-26 2008-01-16 日産化学工業株式会社 Method for producing hydrophobic organosilica sol
JP3373164B2 (en) * 1997-12-26 2003-02-04 住友ベークライト株式会社 Method for producing prepreg and laminate
JP2000178414A (en) * 1998-12-16 2000-06-27 Tokuyama Corp Spherical silica for semiconductor encapsulant
JP2004315300A (en) * 2003-04-17 2004-11-11 Nippon Steel Chem Co Ltd Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
JP4927363B2 (en) * 2005-08-16 2012-05-09 株式会社アドマテックス Composition containing fine particles

Also Published As

Publication number Publication date
JP2007197655A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5042529B2 (en) Fine particle-containing composition and method for producing the same
JP5079450B2 (en) Dispersible silica nano hollow particles and method for producing dispersion of silica nano hollow particles
JP5795840B2 (en) Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
Rahman et al. Synthesis of silica nanoparticles by sol‐gel: size‐dependent properties, surface modification, and applications in silica‐polymer nanocomposites—a review
JP5032328B2 (en) Production of direct hydrophobic silica from aqueous colloidal silica dispersions
Yan et al. Hydrophobic modification on the surface of SiO2 nanoparticle: wettability control
JP5867426B2 (en) Method for producing boron nitride powder
JP6099297B2 (en) Inorganic powder mixture and filler-containing composition
KR101336385B1 (en) Aqueous dispersions of hydrophobic silicic acids
US20100129750A1 (en) Dispersible nanoparticles
JPWO2012077168A1 (en) Flame retardant and method for producing the same, flame retardant resin composition and method for producing the same
KR101600538B1 (en) Shear thickening fluids containing carbon nano particle and shock absorption material comprising the same
JP2017036451A (en) Coating dispersion
WO2014057976A1 (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
Wang et al. Synthesis and characterization of nanosilica/polyacrylate composite latex
JP5426869B2 (en) Method for producing mesoporous silica fine particles, mesoporous silica fine particle-containing composition, and mesoporous silica fine particle-containing molded product
JP5865466B2 (en) Silica particle material and filler-containing resin composition
JP6573482B2 (en) Zinc oxide-containing composite particles, method for producing zinc oxide-containing composite particles, ultraviolet shielding composition, and cosmetics
JP5258318B2 (en) Method for surface treatment of mesoporous silica, slurry composition for resin addition, filler for resin, and method for producing resin composition
Krysztafkiewicz et al. Amorphous magnesium silicate—synthesis, physicochemical properties and surface morphology
KR20200037420A (en) Surface-treated sol-gel silica and its manufacturing method
JP2001097710A (en) Surface-modified silica fine particles for low viscosity slurry and its use
JP5687785B2 (en) Method for surface treatment of silica particles
JP2012207112A (en) Composition for surface coat
CN101522777A (en) Compositions containing phosphonate-functional particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250