JPH0222039B2 - - Google Patents

Info

Publication number
JPH0222039B2
JPH0222039B2 JP56110022A JP11002281A JPH0222039B2 JP H0222039 B2 JPH0222039 B2 JP H0222039B2 JP 56110022 A JP56110022 A JP 56110022A JP 11002281 A JP11002281 A JP 11002281A JP H0222039 B2 JPH0222039 B2 JP H0222039B2
Authority
JP
Japan
Prior art keywords
crystal
crucible
pulling
speed
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56110022A
Other languages
Japanese (ja)
Other versions
JPS5815098A (en
Inventor
Shoichi Washitsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11002281A priority Critical patent/JPS5815098A/en
Publication of JPS5815098A publication Critical patent/JPS5815098A/en
Publication of JPH0222039B2 publication Critical patent/JPH0222039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal

Description

【発明の詳細な説明】 本発明はGaP、GaAs、InPなどの高い分解圧
を有する化合物半導体結晶を所定の形状に制御し
て、液体カプセル引上げ法により製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound semiconductor crystal having a high decomposition pressure such as GaP, GaAs, or InP by controlling it into a predetermined shape and using a liquid capsule pulling method.

揮発性物質を含む化合物半導体単結晶である
GaP単結晶は可視発光ダイオード用基板として重
要な材料であり、通常高圧中で液体カプセル法
(LEC法)によつて作られている。この方法は化
合物の原料融液の表面をB2O3などの不活性液体
で覆い、さらにその上から化合物の分解圧以上の
不活性ガスで加圧しながら単結晶引上げを行なう
ものである。LEC法においても結晶直径の制御
は重要な問題である。直径制御方法としては光学
法および重量法が一般的であり、シリコンや酸化
物単結晶に適用されている。LEC法においては
さらにX線法も提案されている。しかし高圧容器
を用いるLEC法では、のぞき窓が揮発物のため
しだいに曇ることや、装置の構造上、光学法やX
線法はその装置の取付けおよび取扱いが容易でな
いこと、さらにX線法では安全性に問題があるな
ど工業的には適当とは言えない。一方重量法では
このような問題点は少なく比較的容易に取扱うこ
とができる。Bardsleyらは“automated
czochralski growth of − compounds”
(Inst.Phys.Conf.Ser.No.24、1975、P355)で−
族化合物単結晶の引上げで重量法による直径制
御に一応成功している。
Compound semiconductor single crystal containing volatile substances
GaP single crystal is an important material as a substrate for visible light-emitting diodes, and is usually made under high pressure by the liquid encapsulation method (LEC method). In this method, the surface of a raw material melt of a compound is covered with an inert liquid such as B 2 O 3 , and then a single crystal is pulled while pressurizing the surface with an inert gas at a pressure higher than the decomposition pressure of the compound. Control of crystal diameter is also an important issue in the LEC method. Optical methods and gravimetric methods are commonly used as diameter control methods, and are applied to silicon and oxide single crystals. In addition to the LEC method, an X-ray method has also been proposed. However, with the LEC method, which uses a high-pressure container, the viewing window gradually becomes cloudy due to volatile substances, and the structure of the device makes it difficult to use the optical method or
The ray method is not suitable for industrial use because the equipment is not easy to install and handle, and the X-ray method has safety problems. On the other hand, the gravimetric method has fewer such problems and can be handled relatively easily. Bardsley et al.
czochralski growth of − compounds”
(Inst.Phys.Conf.Ser.No.24, 1975, P355) −
We have succeeded in controlling the diameter by gravimetric method by pulling single crystals of group compounds.

ところで、単結晶を引上げる場合、融液の減少
に伴つて、ルツボ内の熱環境が変化し、結晶成長
に悪影響を及ぼすのを防ぐため適当な時点からル
ツボを上昇させ、同時に結晶成長速度を一定に保
つよう、引上げ速度も増加させる方法が行なわれ
ている。これは肩部育成後、定径部になつた適当
な時点から開始される場合が多い。たとえば、第
1図aに示すように、あらかじめ所定の速度にな
るように設定したルツボ移動用モータの電源を入
れ、その後第1図bに示すように引上げ速度を増
加させる。ところがLEC法ではこの時に第1図
cに示すように引上げ結晶の重量が見かけ上急に
大きく変動するという欠点がある。これは直径自
動制御に影響を与え、融液温度が大きく変動する
ため、直径制御精度を悪化させるという問題があ
る。そのため、より精密な直径制御を行うために
は、この障害を取り除く必要がある。
By the way, when pulling a single crystal, the thermal environment inside the crucible changes as the melt decreases, and in order to prevent it from adversely affecting crystal growth, it is necessary to raise the crucible from an appropriate point and at the same time reduce the crystal growth rate. A method has been used in which the pulling speed is also increased to keep it constant. This is often started at an appropriate point after the shoulder area has grown and the area has reached a constant diameter. For example, as shown in FIG. 1a, a crucible moving motor, which has been set in advance to a predetermined speed, is turned on, and then the pulling speed is increased as shown in FIG. 1b. However, the LEC method has a drawback in that the weight of the pulled crystal appears to fluctuate significantly at this time, as shown in Figure 1c. This affects automatic diameter control, and the temperature of the melt fluctuates greatly, resulting in a problem of deterioration of diameter control accuracy. Therefore, in order to perform more precise diameter control, it is necessary to eliminate this obstacle.

本発明は上記した点に鑑みなされたもので、
LEC法により化合物半導体単結晶を製造する際
に、上記欠点を取り除き、直径自動制御を円滑に
行なわしめ、高精度に所定の形状に制御された化
合物半導体単結晶を製造する方法を提供するもの
である。
The present invention has been made in view of the above points,
The present invention provides a method for manufacturing compound semiconductor single crystals that eliminates the above drawbacks when manufacturing compound semiconductor single crystals by the LEC method, performs automatic diameter control smoothly, and manufactures compound semiconductor single crystals that are precisely controlled in a predetermined shape. be.

本発明の概要は以下の通りである。前記引上げ
結晶の重量変動の原因は液体カプセルである
B2O3が高温溶融状態でも粘性が高く、引上げ結
晶全体がB2O3層で被覆されているため、ルツボ
上昇および引上げ速度の変化に追従できず結晶に
力をおよぼすためと考えられた。そこでこのルツ
ボ上昇速度および引上げ速度を第2図a,bに示
すようにゆつくりと変化させるようにしたとこ
ろ、第2図cに示すように、引上げ結晶の重量変
動は十分小さくなり、直径自動制御に影響を与え
ないことが分かつた。この立ち上がり時間は〜数
分から〜数十分の範囲で行つてみたが、この程度
の時間では結晶成長プロセスの熱環境の変化はさ
らにゆつくりしているため、結晶成長にはまつた
く影響を与えず、重量変動が少くなつた分だけ直
径精度が向上できることが分つた。
The outline of the present invention is as follows. The cause of the weight fluctuation of the pulled crystal is the liquid capsule.
This is thought to be due to the fact that B 2 O 3 has high viscosity even in its high-temperature molten state, and the entire pulled crystal is covered with three layers of B 2 O, so it is unable to follow the changes in crucible elevation and pulling speed and exerts force on the crystal. . Therefore, when the crucible rising speed and the pulling speed were slowly changed as shown in Figure 2 a and b, the weight fluctuation of the pulled crystal became sufficiently small as shown in Figure 2 c, and the diameter was automatically adjusted. It was found that this had no effect on control. The rise time was set in the range of several minutes to several tens of minutes, but at this time, the thermal environment during the crystal growth process changes more slowly, so it does not have a direct effect on the crystal growth. First, it was found that diameter accuracy could be improved by reducing weight fluctuations.

そこで前記目的を達成するために本発明の単結
晶の製造方法では、ルツボ上昇速度および引上げ
速度制御装置を備え、ルツボ上昇を開始するにあ
たり、ルツボ上昇速度と引上げ速度を同期させて
徐々にあらかじめ設定した値まで変化させること
を特徴とするものである。
Therefore, in order to achieve the above object, the single crystal manufacturing method of the present invention is equipped with a crucible lifting speed and pulling speed control device, and when starting crucible lifting, the crucible lifting speed and pulling speed are synchronized and gradually set in advance. It is characterized by being able to change up to a certain value.

以下本発明の一実施例を図面にもとずき説明す
る。第3図は本発明による機能を具備したGaP単
結晶製造装置の一例である。図中、1:GaP融
液、2:液体カプセル、3:種結晶、4:GaP結
晶、5:ルツボ、6:引上げ軸、7:引上げモー
タ、8:引上げ速度制御器、9:ルツボ上昇軸、
10:ルツボ上昇モータ、11:ルツボ上昇速度
制御器、12:プログラム信号発生器、13:分
配器、14:重量検出器、15:目標重量設定
器、16:直径制御装置、17:加熱装置、1
8:ヒーターである。内径96mmφのルツボ5に
GaP原料1を600gと液体カプセル(B2O3)2を
180gチヤージしたのち窒素ガスにて加圧(〜60
Kg/cm2)し融解させた。次に(100)方位の種結
晶3をGaP融液1に接触させて、引上げ速度を12
mm/hに設定したのち引上げを開始して所定径52
mmφになるように肩部を育成した。ここで第1図
に示すように、あらかじめルツボ上昇速度制御装
置11により、速度を3.5mm/hに設定しておき、
肩部育成後t=t0の時点でルツボ上昇を開始し、
同時に引上げ速度を15.5mm/hに増加したとこ
ろ、結晶重量は0.5〜1gr/minの変動を生じた。
第3図に示すような制御系(14〜18)により直径
制御を行つたところ得られた結晶の直径変動は±
3mmであつた。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is an example of a GaP single crystal manufacturing apparatus equipped with the functions according to the present invention. In the figure, 1: GaP melt, 2: liquid capsule, 3: seed crystal, 4: GaP crystal, 5: crucible, 6: pulling shaft, 7: pulling motor, 8: pulling speed controller, 9: crucible raising axis ,
10: Crucible lifting motor, 11: Crucible lifting speed controller, 12: Program signal generator, 13: Distributor, 14: Weight detector, 15: Target weight setting device, 16: Diameter control device, 17: Heating device, 1
8: It is a heater. In crucible 5 with an inner diameter of 96mmφ
600g of GaP raw material 1 and liquid capsule (B 2 O 3 ) 2
After charging 180g, pressurize with nitrogen gas (~60
Kg/cm 2 ) and melted. Next, the seed crystal 3 with the (100) orientation is brought into contact with the GaP melt 1, and the pulling rate is increased to 12
mm/h and then start pulling to the specified diameter of 52 mm/h.
The shoulder was grown to have a diameter of mmφ. Here, as shown in FIG. 1, the speed is set in advance to 3.5 mm/h by the crucible rising speed control device 11,
After shoulder development, the crucible begins to rise at t = t 0 ,
At the same time, when the pulling speed was increased to 15.5 mm/h, the crystal weight varied from 0.5 to 1 gr/min.
When the diameter was controlled by the control system (14 to 18) as shown in Figure 3, the variation in the diameter of the crystal obtained was ±
It was 3mm.

これに対して第2図に示すようにプログラム信
号発生器12、分配器13によりt=t0からt=
t1(t1−t0=15分)にかけて、ルツボ上昇速度と引
上げ速度を同期させて徐々に増加し、最終値に設
定したところ、結晶重量の変動は〜0.1gh/min
以下に減少した。そして前と同様にして引上げを
行つたところ、得られた結晶の直径変動は±1mm
以下になつた。
On the other hand, as shown in FIG.
Over t 1 (t 1t 0 = 15 minutes), the crucible lifting speed and pulling speed were synchronized and gradually increased, and when set to the final value, the crystal weight fluctuation was ~0.1gh/min.
It decreased to below. Then, when pulling was carried out in the same manner as before, the diameter variation of the obtained crystal was ±1 mm.
It became the following.

以上説明したような方法により、直径52mmφ、
500gのGaP単結晶を安定に製造することができ
た。また、必ずしも実施例で示したような速度を
直線的に増加させる方法に限定されるものではな
く、ようするに実質的に直径制御に障害となる結
晶重量の変動を除去できれば良い。
By the method explained above, diameter 52mmφ,
We were able to stably produce 500g of GaP single crystal. Furthermore, the method is not necessarily limited to the method of linearly increasing the speed as shown in the embodiments, but it is sufficient as long as it can substantially eliminate fluctuations in crystal weight that would be a hindrance to diameter control.

以上の様に本発明によれば、LEC法において、
次のような効果がある。
As described above, according to the present invention, in the LEC method,
It has the following effects.

(1) きわめて高精度な直径制御を安定に行うこと
ができる。
(1) Extremely precise diameter control can be performed stably.

(2) 直径精度が向上したことにより原料からのウ
エハーの収率が従来の方法に較べて〜10%以上
向上した。
(2) Due to improved diameter accuracy, the yield of wafers from raw materials was improved by more than 10% compared to conventional methods.

(3) 本発明を工業的に適用することにより生産性
が向上する。
(3) Productivity is improved by industrially applying the present invention.

尚、本発明の方法は、液体カプセル引上げ法を
適用できる他の単結晶、例えばGaAs、InP、
GaSb等においても同様に適用できるものであり、
その得る効果も大きい。
Note that the method of the present invention can be applied to other single crystals to which the liquid capsule pulling method can be applied, such as GaAs, InP,
It can be similarly applied to GaSb etc.
The benefits are also great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法の動作を、第2図は本発明
の方法の動作を夫々説明するための図で、a,
b,cは各々、ルツボ上昇速度、引上げ速度、結
晶重量変化量の変化を示すもので、第3図は本発
明の一実施例を説明するための構成図である。 1:GaP融液、2:液体カプセル、3:種結
晶、4:GaP結晶、5:ルツボ、6:引上げ軸、
7:引上げモーター、8:引上げ速度制御器、
9:ルツボ上昇軸、10:ルツボ上昇モーター、
11:ルツボ上昇速度制御器、12:プログラム
信号発生器、13:分配器、14:重量検出器、
15:目標重量設定器、16:直径制御装置、1
7:加熱装置、18:ヒーター。
FIG. 1 is a diagram for explaining the operation of the conventional method, and FIG. 2 is a diagram for explaining the operation of the method of the present invention.
b and c indicate changes in the crucible lifting speed, pulling speed, and amount of change in crystal weight, respectively. FIG. 3 is a configuration diagram for explaining one embodiment of the present invention. 1: GaP melt, 2: liquid capsule, 3: seed crystal, 4: GaP crystal, 5: crucible, 6: pulling shaft,
7: Pulling motor, 8: Pulling speed controller,
9: Crucible lifting axis, 10: Crucible lifting motor,
11: Crucible rising speed controller, 12: Program signal generator, 13: Distributor, 14: Weight detector,
15: Target weight setting device, 16: Diameter control device, 1
7: heating device, 18: heater.

Claims (1)

【特許請求の範囲】[Claims] 1 ルツボに収容された化合物半導体原料融液
に、液体カプセルであるB2O3液体を介して種子
結晶を接触させ、その種子結晶を引上げて結晶成
長を開始するに当り、その引上げ結晶の重量を検
出しながら引上げを行う化合物半導体単結晶の製
造方法において、結晶成長開始時点から所定の時
点迄ルツボを上昇させずに一定の引上げ速度で成
長せしめ、所定の時点から予め設定された時点迄
ルツボの上昇速度と引上げ速度を同期させて徐々
に速めて成長せしめ、予め設定された時点から成
長終了時点迄ルツボの上昇速度と引上げ速度を同
期させて一定の速度にして成長せしめることを特
徴とする化合物半導体結晶の製造方法。
1. When a seed crystal is brought into contact with the compound semiconductor raw material melt housed in a crucible via a B 2 O 3 liquid that is a liquid capsule and the seed crystal is pulled up to start crystal growth, the weight of the pulled crystal is In a method for producing a compound semiconductor single crystal in which pulling is performed while detecting The crucible is grown at a constant speed by synchronizing the rising speed and the pulling speed of the crucible from a preset point to the end of growth. A method for manufacturing compound semiconductor crystals.
JP11002281A 1981-07-16 1981-07-16 Production of single crystal Granted JPS5815098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002281A JPS5815098A (en) 1981-07-16 1981-07-16 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002281A JPS5815098A (en) 1981-07-16 1981-07-16 Production of single crystal

Publications (2)

Publication Number Publication Date
JPS5815098A JPS5815098A (en) 1983-01-28
JPH0222039B2 true JPH0222039B2 (en) 1990-05-17

Family

ID=14525126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002281A Granted JPS5815098A (en) 1981-07-16 1981-07-16 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS5815098A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493770A (en) * 1966-03-01 1970-02-03 Ibm Radiation sensitive control system for crystal growing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493770A (en) * 1966-03-01 1970-02-03 Ibm Radiation sensitive control system for crystal growing apparatus

Also Published As

Publication number Publication date
JPS5815098A (en) 1983-01-28

Similar Documents

Publication Publication Date Title
JPH024556B2 (en)
EP0751242B1 (en) Process for bulk crystal growth
JPH0222039B2 (en)
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JP2952548B2 (en) Semiconductor single crystal manufacturing equipment
JPS6042198B2 (en) Manufacturing method of Gap crystal
US20050211157A1 (en) Process control system for controlling a crystal-growing apparatus
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2622274B2 (en) Single crystal growth method
JPH09309791A (en) Method for producing semiconducting single crystal
JP2681114B2 (en) Single crystal manufacturing method
JPS6036393A (en) Production of gaas single crystal
JP3200204B2 (en) Method for producing group III-V single crystal
JP3132034B2 (en) Method for growing compound semiconductor crystal
JPH0341432B2 (en)
JPS5935879B2 (en) Method for manufacturing compound semiconductor single crystal
JPS63176396A (en) Production of compound semiconductor single crystal and apparatus therefor
JPS62217000A (en) Production of iii-v compound semiconductor crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JPS62197399A (en) Method for growing compound single crystal
JPH04160091A (en) Production of single crystal
JPH0459694A (en) Production of compound semiconductor single crystal
JPS6335408A (en) Synthesis of polycrystalline indium phosphide
JPH0742196B2 (en) Single crystal growth method