JPH0221144B2 - - Google Patents

Info

Publication number
JPH0221144B2
JPH0221144B2 JP56135726A JP13572681A JPH0221144B2 JP H0221144 B2 JPH0221144 B2 JP H0221144B2 JP 56135726 A JP56135726 A JP 56135726A JP 13572681 A JP13572681 A JP 13572681A JP H0221144 B2 JPH0221144 B2 JP H0221144B2
Authority
JP
Japan
Prior art keywords
film
layer
sio
interlayer insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56135726A
Other languages
Japanese (ja)
Other versions
JPS5837927A (en
Inventor
Masanori Fukumoto
Shigenobu Akyama
Koichi Kugimya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56135726A priority Critical patent/JPS5837927A/en
Publication of JPS5837927A publication Critical patent/JPS5837927A/en
Publication of JPH0221144B2 publication Critical patent/JPH0221144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals

Description

【発明の詳細な説明】 本発明は、レーザーアニール等の様な瞬時高温
熱処理を用いて製造する、多層構造の半導体装置
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer semiconductor device using instantaneous high-temperature heat treatment such as laser annealing.

多層構造を有する半導体装置のうち、特に、第
二層目以上の層に能動素子領域を有する半導体装
置の製造工程においては、能動素子領域となる半
導体膜を能動素子を形成するのに適する単結晶に
近い膜にするため、その半導体膜にレーザーアニ
ール等の瞬時高温熱処理を施すという手段が用い
られる。
Among semiconductor devices having a multilayer structure, especially in the manufacturing process of a semiconductor device having an active element region in the second layer or higher, the semiconductor film that becomes the active element region is formed using a single crystal film suitable for forming an active element. In order to obtain a film close to that of the semiconductor film, a method is used in which the semiconductor film is subjected to instantaneous high-temperature heat treatment such as laser annealing.

第1図は、多層構造を有する半導体装置におい
て第二層目の能動素子領域となるべき半導体膜を
レーザーアニールする場合の断面図である。第1
図はMOS型デバイスの断面図であり、1はシリ
コン基板、2はSiO2膜、3はソース、ドレイン、
4は多結晶シリコンゲート電極、5は金属配線、
6は層間絶縁膜、7はSiO2膜、8は2層目のシ
リコン膜、9が第1層目の能動領域、8が第2層
目の能動領域である。第1図において層間絶縁膜
である厚いSiO2膜6上に被着したシリコン膜8
を単結晶に近づけるため、8の表面にレーザー光
10を照射し、温度を上昇させるのであるが、レ
ーザー光10の部は膜8及び6を透過し、第1層
9に達する。特に、第2層目の素子分離領域を構
成するSiO2膜7が存在する場合は、レーザー光
10が大部分透過して第1層9に達し、第1層を
構成するすでに完成した素子を極く短時間ではあ
るが、1000℃以上に昇温させることになる。この
様な場合、高温の影響で多結晶シリコンゲート4
を持つFETの特性が変化したり、第1層目の金
属配線5とシリコン基板1の一部に形成されたソ
ース・ドレイン領域3との合金化反応が進んでソ
ース・ドレイン接合を破壊する等という問題点が
存在する。
FIG. 1 is a cross-sectional view when laser annealing a semiconductor film to become a second layer active element region in a semiconductor device having a multilayer structure. 1st
The figure is a cross-sectional view of a MOS type device, where 1 is a silicon substrate, 2 is a SiO 2 film, 3 is a source, a drain,
4 is a polycrystalline silicon gate electrode, 5 is a metal wiring,
6 is an interlayer insulating film, 7 is a SiO 2 film, 8 is a second layer silicon film, 9 is a first layer active region, and 8 is a second layer active region. In FIG. 1, a silicon film 8 is deposited on a thick SiO 2 film 6, which is an interlayer insulating film.
In order to make the layer closer to a single crystal, the surface of the layer 8 is irradiated with a laser beam 10 to raise the temperature, but a portion of the laser beam 10 passes through the films 8 and 6 and reaches the first layer 9. In particular, when the SiO 2 film 7 that constitutes the second layer element isolation region is present, most of the laser beam 10 passes through and reaches the first layer 9, damaging the already completed elements that constitute the first layer. Although it is only for a very short time, the temperature will be raised to over 1000℃. In such a case, the polycrystalline silicon gate 4 may be damaged due to the high temperature.
The characteristics of the FET may change, or the alloying reaction between the first-layer metal wiring 5 and the source/drain region 3 formed on a part of the silicon substrate 1 may progress and destroy the source/drain junction. There is a problem.

こうした、レーザー光による能動素子領域の不
必要な昇温を防止するため、レーザー光のSiO2
膜透過を阻止する一つの方法として、半導体装置
を第2図に示される構造に改良するという考え方
がある。この方法における改良点は、層間絶縁膜
16,16′の境界にMo,W等の高融点金属膜
20を設けたことである。高融点金属膜20は、
赤外から波長約3000Å附近の紫外領域にわたつて
70%程度の比較的高い反射率を持つので通常のア
ニールに使用する波長のレーザー光21を、第2
層領域を構成するSiO2膜7又はシリコン膜8に
照射しても、光は膜7,8及び16′を透過した
後、高融点金属膜20の表面で大部分反射され
る。従つて第1層9に達する光エネルギー量は非
常に小さく、温度上昇がおさえられるのである。
In order to prevent unnecessary temperature rise of the active element area due to laser light, SiO 2
One way to prevent membrane permeation is to improve the structure of the semiconductor device as shown in FIG. 2. An improvement in this method is that a high melting point metal film 20 such as Mo or W is provided at the boundary between the interlayer insulating films 16 and 16'. The high melting point metal film 20 is
From infrared to ultraviolet wavelengths around 3000Å
Since it has a relatively high reflectance of about 70%, the laser beam 21 of the wavelength used for normal annealing is
Even when the SiO 2 film 7 or the silicon film 8 constituting the layer region is irradiated, most of the light is reflected by the surface of the high melting point metal film 20 after passing through the films 7, 8 and 16'. Therefore, the amount of light energy reaching the first layer 9 is very small, and the temperature rise can be suppressed.

しかるに、絶縁膜と金属の密着強度は、半導体
と絶縁膜との密着強度と比較して弱い。Mo,W
等の高融点金属膜20と、層間絶縁膜16,1
6′は、温度を1000℃程度にしても、金属とSiO2
との反応による中間層をほとんどつくらずに接触
しており膜の密着強度は膜のはく離が生ずるため
に必要な剪断応力に換算した値で109dyne/cm2
桁である。一方、絶縁膜16′、金属膜20にレ
ーザー光が入射し、16′,20が1000℃付近ま
で急激に温度上昇した場合に、膜16′と膜20
の熱膨張係数の差によつて16′,20の膜界面
に生じる熱歪の応力は109dyne/cm2〜1010dyne/
cm2の間にあり、膜の密着力を越えることがある。
このため、絶縁膜16′と高融点金属膜20の界
面ではく離が起こるという欠点がある。層間絶縁
膜16′の膜厚を厚くしたり、あるいは、2層以
上の多層能動素子領域を構成するために、層間絶
縁膜と高融点金属膜の積層構造をくり返し使用す
ると、レーザー光照射による温度上昇に伴い一つ
の層間絶縁膜一金属膜界面に加わる応力が増々大
きくなり、はく離する確率が増える。
However, the adhesion strength between an insulating film and a metal is weaker than the adhesion strength between a semiconductor and an insulating film. Mo,W
etc., and interlayer insulating films 16 and 1.
6' is metal and SiO 2 even if the temperature is about 1000℃.
The adhesion strength of the film is on the order of 10 9 dyne/cm 2 , which is the value converted to the shear stress required to cause the film to peel. On the other hand, when the laser beam is incident on the insulating film 16' and the metal film 20, and the temperature of the films 16' and 20 rises rapidly to around 1000°C, the film 16' and the metal film 20
The thermal strain stress generated at the film interface between 16' and 20 due to the difference in thermal expansion coefficients is 109 dyne/ cm2 to 1010 dyne/cm2.
cm 2 and may exceed the adhesion of the membrane.
Therefore, there is a drawback that peeling occurs at the interface between the insulating film 16' and the high melting point metal film 20. If the thickness of the interlayer insulating film 16' is increased or if a laminated structure of an interlayer insulating film and a high melting point metal film is used repeatedly to configure a multilayer active element region with two or more layers, the temperature due to laser light irradiation may increase. As the temperature rises, the stress applied to the interlayer insulating film-metal film interface increases, and the probability of peeling increases.

以上に述べた様に、絶縁膜と高融点金属膜界面
のはく離現象は、多層構造を有する半導体装置の
製造工程上大きな障害となるものである。
As described above, the peeling phenomenon at the interface between the insulating film and the high melting point metal film is a major hindrance in the manufacturing process of semiconductor devices having a multilayer structure.

本発明は、上記に述べた欠点を除去しようとす
るものであり、以下図面と共に本発明の詳細を説
明明する。
The present invention seeks to eliminate the above-mentioned drawbacks and will be explained in detail below in conjunction with the drawings.

第3図は本発明の内容を説明するための半導体
装置断面図である。第3図において第1,2図と
同一のものには同一番号を付している。この半導
体装置における層間絶縁膜部の製造方法を説明す
ると、まず第1層目能動領域9を形成した後、層
間絶縁膜36を形成する。絶縁膜36上に膜厚
500〜1000Åの薄いTi40を被着する。次に第2
の層間絶縁膜36′をTi膜40上に形成した後、
第2層目の能動素子を形成すべきシリコン膜38
及び素子分離用絶縁膜37を選択的に形成する。
最後に、レーザー光42を照射して、膜38を単
結晶化する。
FIG. 3 is a cross-sectional view of a semiconductor device for explaining the content of the present invention. In FIG. 3, the same parts as in FIGS. 1 and 2 are given the same numbers. To explain the method of manufacturing the interlayer insulating film portion in this semiconductor device, first, the first layer active region 9 is formed, and then the interlayer insulating film 36 is formed. Film thickness on the insulating film 36
Deposit a thin Ti40 layer of 500-1000 Å. Then the second
After forming the interlayer insulating film 36' on the Ti film 40,
Silicon film 38 where the second layer of active elements is to be formed
Then, an element isolation insulating film 37 is selectively formed.
Finally, the film 38 is made into a single crystal by irradiation with laser light 42.

以上に説明した本発明における製造工程で、第
1,2図と異なる点は、層間絶縁膜36,36′
の中間に存在する金属として、Mo,W等の高融
点金属の代わりにTiを用いることである。Tiは、
融点1668±10℃で高温の熱処理に耐える。また、
TiはMo,Wと同じく光に対する反射率が大きい
からレーザー光照射による下層能動素子領域の温
度上昇を防ぐ。しかもTiはSiO2膜と500℃程度の
温度で反応し、TiとSiO2との相平衡に基くTiの
酸化層からなる転移層を形成するという性質を持
つている。従つて、第3図の半導体装置の製造工
程においてレーザー光42を照射すると、膜3
6′,40の温度が、500℃程度は上昇するから、
膜36,36′の境界にTi40を含む転移層41
が形成され、膜36とTi40の密着強度が著し
く増加する。第3図の例では、シリコン膜8のレ
ーザー照射工程を同時に、TiとSiO2との転移層
形成に利用できるという利点があるが、第2の層
間絶縁膜36′を形成した後、転移層形成だけを
目的として膜36′の上からレーザー光照射又は
通常の熱処理を行なつてもよい。
In the manufacturing process of the present invention explained above, the difference from FIGS. 1 and 2 is that the interlayer insulating films 36, 36'
The idea is to use Ti instead of high melting point metals such as Mo and W as the metal that exists between the two. Ti is
It has a melting point of 1668±10℃ and can withstand high temperature heat treatment. Also,
Like Mo and W, Ti has a high reflectance to light, so it prevents temperature rise in the lower active element region due to laser beam irradiation. Moreover, Ti has the property of reacting with the SiO 2 film at a temperature of about 500°C, forming a transition layer consisting of an oxidized layer of Ti based on the phase equilibrium between Ti and SiO 2 . Therefore, when the laser beam 42 is irradiated in the manufacturing process of the semiconductor device shown in FIG.
Since the temperature at 6', 40 rises by about 500℃,
A transition layer 41 containing Ti 40 at the boundary between the films 36 and 36'
is formed, and the adhesion strength between the film 36 and the Ti 40 increases significantly. The example shown in FIG. 3 has the advantage that the laser irradiation process of the silicon film 8 can be used to form a transition layer between Ti and SiO 2 at the same time, but after forming the second interlayer insulating film 36', the transition layer is Laser light irradiation or conventional heat treatment may be performed on the film 36' for the sole purpose of formation.

なお、第3図において、第1層と第2層の電気
的接続は金属膜40、層間絶縁膜36,36′の
一部を開口し、この開口部に金属又は半導体を埋
込めばよい。
In FIG. 3, electrical connection between the first layer and the second layer can be achieved by opening a portion of the metal film 40 and the interlayer insulating films 36, 36', and filling the opening with a metal or semiconductor.

以上の様に本発明では、多層構造を有する半導
体装置において層間絶縁膜の中間に反射率の高い
金属膜が設けられているので、レーザー光照射時
に光エネルギーが反射されて下層能動素子領域に
おいて素子特性の劣化、電極と半導体基板の反応
による接合破壊が生じない。さらに、金属膜とし
て、SiO2膜と容易に反応し転移層を形成するTi
等を用いるので、SiO2膜と金属との密着強度が
大きく、瞬時熱処理時に大きい応力が生じてもは
く離がないという特徴をもつている。この様に本
発明は多層構造の能動素子領域をもつ半導体装置
の製造にその効果を発揮するものである。
As described above, in the present invention, a metal film with high reflectance is provided between the interlayer insulating films in a semiconductor device having a multilayer structure. No deterioration of characteristics or bond breakdown due to reaction between the electrode and the semiconductor substrate. Furthermore, as a metal film, Ti, which easily reacts with the SiO 2 film and forms a transition layer, is used.
etc., the adhesion strength between the SiO 2 film and the metal is high, and it has the characteristic that it does not peel off even if large stress is generated during instantaneous heat treatment. In this way, the present invention exhibits its effects in manufacturing a semiconductor device having an active element region having a multilayer structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の方法で製造した多
層の能動素子領域をもつ半導体装置の断面図、第
3図は本発明の一実施例の方法で製造した多層の
能動素子領域をもつ半導体装置の断面図である。 1……シリコン基板、9……第一層目の能動素
子領域、20……Mo,W等の高融点金属膜、3
6,36′……層間絶縁膜SiO2、7,17,37
……第2層目領域のSiO2、40……Ti膜、41
……SiO2膜36,36′とTi膜40の間の転移
層、42……レーザー光。
1 and 2 are cross-sectional views of a semiconductor device having a multilayer active device region manufactured by a conventional method, and FIG. 3 is a cross-sectional view of a semiconductor device having a multilayer active device region manufactured by a method according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the device. 1...Silicon substrate, 9...First layer active element region, 20...High melting point metal film such as Mo, W, etc., 3
6, 36'... Interlayer insulating film SiO 2 , 7, 17, 37
...SiO 2 in the second layer region, 40...Ti film, 41
...transition layer between the SiO 2 films 36, 36' and the Ti film 40, 42...laser light.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の半導体素子層上に第1の層間SiO2
を被着する工程と、前記第1の層間SiO2膜の上
にTi膜を形成し、このTi膜上に第2の層間SiO2
膜を被着する工程と、前記第2の層間SiO2膜上
に第2の半導体素子形成用膜を形成し、この形成
用膜にレーザ光を照射し、前記SiO2膜とTi膜と
を反応させる工程とを備えたことを特徴とする半
導体装置の製造方法。
1 A step of depositing a first interlayer SiO 2 film on the first semiconductor element layer, forming a Ti film on the first interlayer SiO 2 film, and depositing a second interlayer SiO 2 film on the Ti film. 2
A step of depositing a film, forming a second semiconductor element forming film on the second interlayer SiO 2 film, and irradiating this forming film with laser light to separate the SiO 2 film and the Ti film. A method for manufacturing a semiconductor device, comprising a step of causing a reaction.
JP56135726A 1981-08-28 1981-08-28 Manufacture of semiconductor device Granted JPS5837927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135726A JPS5837927A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135726A JPS5837927A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5837927A JPS5837927A (en) 1983-03-05
JPH0221144B2 true JPH0221144B2 (en) 1990-05-11

Family

ID=15158441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135726A Granted JPS5837927A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5837927A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074463A (en) * 1983-09-29 1985-04-26 Fujitsu Ltd Trimming method for resistance film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111213A (en) * 1980-01-07 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of thin film semiconductor device
JPS56126956A (en) * 1980-03-11 1981-10-05 Fujitsu Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111213A (en) * 1980-01-07 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of thin film semiconductor device
JPS56126956A (en) * 1980-03-11 1981-10-05 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS5837927A (en) 1983-03-05

Similar Documents

Publication Publication Date Title
US5739046A (en) Method of making a reliable barrier layer
JPH024131B2 (en)
JPH0221144B2 (en)
JPS63314862A (en) Manufacture of thin-film transistor
JPS6042855A (en) Semiconductor device
JPS61174767A (en) Semiconductor element electrode
JPH04196364A (en) Manufacture of photovoltage device
JPS6262056B2 (en)
JPS5928328A (en) Preparation of semiconductor device
JPS6185815A (en) Method for formation of polycrystalline silicon film
JPH0779080B2 (en) Method for converting a polycrystalline or amorphous semiconductor material into a single crystal semiconductor material
JPH0335821B2 (en)
JPH0214791B2 (en)
JPS60211880A (en) Manufacture of photoelectric conversion device
JP2603623B2 (en) Manufacturing method of three-dimensional semiconductor integrated circuit
JPH0419707B2 (en)
JPH01287964A (en) Manufacture of semiconductor device
JPS60253266A (en) Semiconductor device
JPH0117252B2 (en)
JPH02271631A (en) Manufacture of semiconductor device
JPS6054277B2 (en) Single crystallization method for non-single crystal semiconductor layer
JPS6037150A (en) Manufacture of semiconductor device
JPS6290930A (en) Forming method for electrode of compound semiconductor element
JPS60124880A (en) Photoelectric conversion semiconductor device
JPH05251380A (en) Manufacture of semiconductor device