JPH0221026A - Rotor supporting construction - Google Patents

Rotor supporting construction

Info

Publication number
JPH0221026A
JPH0221026A JP17335588A JP17335588A JPH0221026A JP H0221026 A JPH0221026 A JP H0221026A JP 17335588 A JP17335588 A JP 17335588A JP 17335588 A JP17335588 A JP 17335588A JP H0221026 A JPH0221026 A JP H0221026A
Authority
JP
Japan
Prior art keywords
superconducting
members
permanent magnets
permanent magnet
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17335588A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahata
良一 高畑
Mitsuhiro Ikeda
池田 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP17335588A priority Critical patent/JPH0221026A/en
Publication of JPH0221026A publication Critical patent/JPH0221026A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Abstract

PURPOSE:To stably support an axis of rotation both in its radial direction and in its thrust direction, by providing cylindrical superconducting members so disposed as to surround permanent magnets together, and repulsion members each having magnetic repulsion against each of said permanent magnets. CONSTITUTION:A first and a second permanent magnets 25, 26 are fixed on the lower end and the axial middle portion of an axis 22 of rotation, respectively. Cylindrical superconducting members 30-33 are so disposed as to surround the permanent magnets together. When each of the superconducting members 30-33 is cooled down to its critical temperature, each of said superconducting members 30-33 is put in a superconducting condition and then expresses complete diamagnetism against each of the permanent magnets 25, 26, so that the superconducting member 30 located in the bottom of its housing and the permanent magnet 25 have axial repulsion against each other, thereby urging the whole body of the axis 22 of rotation to float up. Thus, the axis of rotation can stably be supported both in its radial and thrust directions without any complex control.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、回転体を非接触で支持するように構成した回
転体支持構造に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a rotating body support structure configured to support a rotating body in a non-contact manner.

〈従来の技術〉 従来から、回転体を非接触状態で支持する構造が要望さ
れており、その利用分野としても例えばレーザビームプ
リンタのレーザビームを走査するモータスピンドルなど
種々考えられている。
<Prior Art> There has been a demand for a structure that supports a rotating body in a non-contact manner, and various fields of application are being considered, such as motor spindles for scanning laser beams in laser beam printers.

従来、転動体を用いない非接触の軸受の代表的なものと
して磁気軸受がある。これは、永久磁石どうし、もしく
は永久磁石と電磁石とを対向配置させる構造で、磁石の
吸引力もしくは反発力を利用するものである。
Conventionally, a magnetic bearing is a typical non-contact bearing that does not use rolling elements. This is a structure in which permanent magnets or a permanent magnet and an electromagnet are arranged facing each other, and the attraction or repulsion of the magnets is utilized.

ところで、磁気力の軸受作用は、吸引力を利用する場合
は吸引方向と直角方向には求心作用があって安定である
反面、吸引方向が不安定で、また反発力を利用する場合
は反発力の方向に安定な反面、反発方向と直角方向が不
安定である。そのため、実際にはラジアル支持側もしく
はスラスト支持側に電磁石を設けて、この電磁石の磁力
の制御により、安定化を図っている。
By the way, the bearing action of magnetic force is stable when using attractive force as there is a centripetal action in the direction perpendicular to the attracting direction, but it is unstable in the attracting direction, and when using repulsive force there is a repulsive force. While it is stable in the direction of , it is unstable in the direction perpendicular to the direction of repulsion. Therefore, in practice, an electromagnet is provided on the radial support side or the thrust support side, and stabilization is achieved by controlling the magnetic force of this electromagnet.

〈発明が解決しようとする課題〉 以上説明したように、従来の磁気軸受では、電磁石を制
御して安定化を図る必要があり、その制御が複雑である
点が指摘される。
<Problems to be Solved by the Invention> As explained above, in the conventional magnetic bearing, it is necessary to control the electromagnet to achieve stability, and it is pointed out that the control is complicated.

本発明はこのような事情に鑑みてなされたもので、複雑
な制御なしに回転軸をラジアル方向にもスラスト方向に
も支足的に支持できる回転体支持構造を提供することを
目的としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a rotating body support structure that can support a rotating shaft in both the radial direction and the thrust direction without complicated control.

く課題を解決するための手段〉 本発明は、このような目的を達成するために、次のよう
な構成をとる。
Means for Solving the Problems> In order to achieve the above objects, the present invention has the following configuration.

即ち、本発明にかかる回転体支持構造は、回転軸に固定
された永久磁石と、 この永久磁石を包囲するよう配置された円筒形状の超電
導部材と、 前記回転軸に固定した永久磁石の端面に軸方向で対向配
置され、当該永久磁石に対して磁気的に反発する反発部
材と、 を備えていることに特徴を有する。
That is, the rotating body support structure according to the present invention includes a permanent magnet fixed to a rotating shaft, a cylindrical superconducting member arranged to surround this permanent magnet, and an end face of the permanent magnet fixed to the rotating shaft. It is characterized in that it includes a repelling member that is arranged to face each other in the axial direction and magnetically repulses the permanent magnet.

〈作用〉 本発明の構成による作用は次のとおりである。<Effect> The effects of the configuration of the present invention are as follows.

回転軸に固定した永久磁石を包囲する超電導部材が、超
電導状態においていわゆるマイスナー効果により前記永
久磁石に対して完全反磁性を示して、両者が反発しあう
ことになり、回転軸のラジアル荷重が支えられる。
In the superconducting state, the superconducting member surrounding the permanent magnet fixed to the rotating shaft exhibits complete diamagnetic properties toward the permanent magnet due to the so-called Meissner effect, and the two repel each other, supporting the radial load of the rotating shaft. It will be done.

また、前記永久磁石とそれと軸方向で対向する超電導部
材もしくは同極性の永久磁石のような反発部材とが、軸
方向で反発するので回転体のスラスト荷重が支えられる
Further, the permanent magnet and a repelling member such as a superconducting member or a permanent magnet having the same polarity that opposes the permanent magnet in the axial direction repel in the axial direction, so that the thrust load of the rotating body is supported.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図に本発明の回転体支持構造の基本構成を示してい
る。
FIG. 1 shows the basic configuration of the rotating body support structure of the present invention.

図中、20は有底円筒形状のハウジングで、このハウジ
ング20はその開口端が上になるように基板21の下面
に取り付けられている。このハウジング20の中空内部
に回転体の支持軸としての回転軸22が収納されており
、この回転軸22の上端は基板21に形成しである孔部
23に挿通されて基板21の上方に突出されている。こ
の回転軸22の上端には支持すべき回転体としての回転
翼24が取り付けられており、この回転翼24に対して
吹きつけられるエアーにより回転軸22を回転駆動させ
るように構成している。さらに、回転軸22の下端およ
び軸方向中間部分には第1.第2の永久磁石25.26
が固定されている。
In the figure, 20 is a cylindrical housing with a bottom, and this housing 20 is attached to the lower surface of the substrate 21 with its open end facing upward. A rotating shaft 22 as a support shaft for a rotating body is housed in the hollow interior of the housing 20, and the upper end of the rotating shaft 22 is inserted into a hole 23 formed in the substrate 21 and protrudes above the substrate 21. has been done. A rotary blade 24 as a rotary body to be supported is attached to the upper end of the rotary shaft 22, and the rotary shaft 22 is configured to be rotationally driven by air blown against the rotary blade 24. Further, the lower end and the axially intermediate portion of the rotating shaft 22 are provided with a first. Second permanent magnet 25.26
is fixed.

ところで、ハウジング20の底面には円形板状の超電導
部材30が、この超電導部材30の上面にはリング状の
超電導部材31が、さらにハウジング20の軸方向中間
部分および上端寄りにもリング状の超電導部材32.3
3がそれぞれ取り付けられている。
Incidentally, a circular plate-shaped superconducting member 30 is disposed on the bottom surface of the housing 20, a ring-shaped superconducting member 31 is disposed on the top surface of this superconducting member 30, and a ring-shaped superconducting member 31 is disposed on the axially intermediate portion and near the upper end of the housing 20. Part 32.3
3 are attached to each.

本実施例において、超電導部材31.32.33の各間
には非磁性材製のスペーサ40.41が介装されている
。なお、このスペーサ40.41を無くし、例えば第2
図に示すように、超電導部材30〜33を軸方向に連続
した成形品とすることも考えられる。これらの超電導部
材は、例えば酸化物高温超電導体などが挙げられるが、
それ以外のものであってもかまわない。
In this embodiment, spacers 40, 41 made of non-magnetic material are interposed between each of the superconducting members 31, 32, 33. Note that this spacer 40.41 can be eliminated, for example, the second
As shown in the figure, it is also conceivable to make the superconducting members 30 to 33 continuous molded products in the axial direction. Examples of these superconducting members include oxide high temperature superconductors, etc.
It does not matter if it is something else.

このハウジング20は液体窒素50を充填した真空容器
60内に浸漬され、ハウジング20内部の前記各超電導
部材30〜33の温度をその臨界温度Tc以下に維持す
るようにしている。
This housing 20 is immersed in a vacuum container 60 filled with liquid nitrogen 50, and the temperature of each of the superconducting members 30 to 33 inside the housing 20 is maintained below its critical temperature Tc.

上記構成の回転体支持構造において、超電導部材30〜
33が臨界温度Tcにまで低下していない段階では、超
電導部材30〜33は常電導状態であるので、回転軸2
2に固定の永久磁石25.26は一点鎖線で示す位置に
下がっているが、超電導部材30〜33が臨界温度Tc
にまで冷やされると、当該超電導部材30〜33が超電
導状態になり前記永久磁石25゜26に対して完全反磁
性(マイスナー効果)を示すので、ハウジング底部の超
電導部材30と回転軸下端の第1の永久磁石25とが軸
方向に反発して回転軸22全体を浮上させる。一方、ハ
ウジング底部近傍の超電導部材31と回転軸下端の第1
の永久磁石25とが、また他の超電導部材32.33と
回転軸中間部分の第2の永久磁石26とがそれぞれ径方
向に反発して、超電導部材と永久磁石とを同軸状に位置
させる。なお、この状態では、第2の永久磁石26が超
電導部材32.33に対して径方向で対向せずに、両部
電導部材の軸方向中間に位置したまま保持されることに
なる。
In the rotating body support structure having the above configuration, superconducting members 30 to
33 has not decreased to the critical temperature Tc, the superconducting members 30 to 33 are in a normal conductive state, so the rotating shaft 2
The permanent magnets 25 and 26 fixed at position 2 have been lowered to the position shown by the dashed line, but the superconducting members 30 to 33 have reached the critical temperature Tc.
When the superconducting members 30 to 33 are cooled down to a temperature of The permanent magnets 25 repel in the axial direction and levitate the entire rotating shaft 22. On the other hand, the superconducting member 31 near the bottom of the housing and the first
The permanent magnet 25, the other superconducting members 32, 33, and the second permanent magnet 26 at the intermediate portion of the rotating shaft repel each other in the radial direction, so that the superconducting member and the permanent magnet are positioned coaxially. In this state, the second permanent magnet 26 does not face the superconducting members 32 and 33 in the radial direction, but is held in the axially intermediate position between the two conductive members.

このように回転軸22を浮上させて支持した状態におい
て超電導部材と永久磁石との相対位置がラジアル方向に
もスラスト方向にも安定するから、回転翼24に対しエ
アーを吹きつけるなどして回転軸22を回転駆動させた
とき複雑な制御なしに回転軸22がラジアル方向、スラ
スト方向で非接触のまま安定的に回転することになる。
When the rotating shaft 22 is floated and supported in this way, the relative position between the superconducting member and the permanent magnet is stabilized in both the radial direction and the thrust direction. When the rotary shaft 22 is driven to rotate, the rotary shaft 22 rotates stably in the radial direction and the thrust direction in a non-contact manner without complicated control.

ところで、上記回転体支持構造は18種々な機器に適用
することが可能であり、本発明の趣旨を逸脱しない範囲
で具体化できることは言うまでもない。上記回転体支持
構造は縦軸の例を挙げているが、横軸にも適用可能であ
る。また、上記実施例において、スラスト方向を支持す
るハウジング底部の超電導部材30については、回転軸
下端の第1の永久磁石25に対して反発する極性の永久
磁石としてもかまわない。
By the way, it goes without saying that the rotor support structure described above can be applied to 18 different types of equipment, and can be embodied within the scope of the spirit of the present invention. Although the rotating body support structure described above is an example of a vertical axis, it is also applicable to a horizontal axis. Furthermore, in the above embodiment, the superconducting member 30 at the bottom of the housing that supports the thrust direction may be a permanent magnet with a polarity that repels the first permanent magnet 25 at the lower end of the rotating shaft.

〈発明の効果〉 以上説明したように、本発明の回転体支持構造は、超電
導部材の永久磁石に対する完全反磁性を利用して回転軸
を支えるから、複雑な制御なしに回転軸をラジアル方向
にもスラスト方向にも安定的に支持することができ、構
成が簡単であるから製作コストを低く抑えることができ
る。また、超電導部材を外側に配置しているから、それ
の冷却対策を講じやすい。
<Effects of the Invention> As explained above, the rotating body support structure of the present invention supports the rotating shaft by utilizing the perfect diamagnetism of the superconducting member with respect to the permanent magnet, so it is possible to move the rotating shaft in the radial direction without complicated control. It can also be stably supported in the thrust direction, and the structure is simple, so manufacturing costs can be kept low. Furthermore, since the superconducting member is placed outside, it is easy to take measures to cool it.

このように、簡単な構成で優れた回転性能を発揮する回
転体支持構造を提供することができる。
In this way, it is possible to provide a rotating body support structure that exhibits excellent rotational performance with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の回転体支持構造の基本構成の一実施例
を示す縦断正面図、第2図は本発明の他の実施例にかか
る支持部分の縦断正面図である。 22・・・回転軸、  25.26・・・永久磁石、3
0〜33・・・超電導部材。
FIG. 1 is a longitudinal sectional front view showing one embodiment of the basic configuration of a rotating body support structure of the present invention, and FIG. 2 is a longitudinal sectional front view of a support portion according to another embodiment of the invention. 22...Rotating shaft, 25.26...Permanent magnet, 3
0-33...Superconducting member.

Claims (1)

【特許請求の範囲】[Claims] (1)回転軸に固定された永久磁石と、 この永久磁石を包囲するよう配置された円筒形状の超電
導部材と、 前記回転軸に固定した永久磁石の端面に軸方向で対向配
置され、当該永久磁石に対して磁気的に反発する反発部
材と、 を備えていることを特徴とする回転体支持構造。
(1) A permanent magnet fixed to a rotating shaft; a cylindrical superconducting member arranged to surround this permanent magnet; A rotating body support structure comprising: a repulsive member that magnetically repels a magnet;
JP17335588A 1988-07-11 1988-07-11 Rotor supporting construction Pending JPH0221026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17335588A JPH0221026A (en) 1988-07-11 1988-07-11 Rotor supporting construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17335588A JPH0221026A (en) 1988-07-11 1988-07-11 Rotor supporting construction

Publications (1)

Publication Number Publication Date
JPH0221026A true JPH0221026A (en) 1990-01-24

Family

ID=15958873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17335588A Pending JPH0221026A (en) 1988-07-11 1988-07-11 Rotor supporting construction

Country Status (1)

Country Link
JP (1) JPH0221026A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293320A (en) * 1987-05-27 1988-11-30 Mitsubishi Electric Corp Magnetic bearing unit
JPS6440714A (en) * 1987-08-04 1989-02-13 Shusuke Matsuzawa Bearing mechanism of high-temperature superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293320A (en) * 1987-05-27 1988-11-30 Mitsubishi Electric Corp Magnetic bearing unit
JPS6440714A (en) * 1987-08-04 1989-02-13 Shusuke Matsuzawa Bearing mechanism of high-temperature superconductor

Similar Documents

Publication Publication Date Title
US4939120A (en) Superconducting rotating assembly
US4886778A (en) Superconducting rotating assembly
JP2002528342A (en) Angular momentum control system for satellite using flywheel supported by superconductor magnetic bearing
US5120706A (en) Drive system employing frictionless bearings including superconducting matter
US5061679A (en) Drive system employing frictionless bearings including superconducting matter
JPH09261805A (en) Magnetic levitating actuator
JP3665878B2 (en) Bearing device and starting method thereof
JPH0221026A (en) Rotor supporting construction
JP3551537B2 (en) Flywheel equipment
JP4729702B2 (en) Non-contact bearing device using superconducting bearing
JP3072099U (en) Geometric arrangement of magnetic levitation force in magnetic levitation type rotary bearing device
JP2000120824A (en) Parallel link mechanism
JPH08296645A (en) Magnetic bearing device
JP3084132B2 (en) Magnetic levitation device
KR100426616B1 (en) Bearingless linear motor
JP3577559B2 (en) Flywheel equipment
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3236925B2 (en) Superconducting bearing device
JPH10299772A (en) Bearing device
JPH04271287A (en) Magnetic levitation actuator
JP3385771B2 (en) Superconducting magnetic bearing device
JP2001124078A (en) High-temperature superconductive floating shaft
JP3632101B2 (en) Power storage device
JP3616856B2 (en) Bearing device
JPH0791447A (en) Superconductive magnetic bearing device