JPH02209438A - Manufacture of aluminum alloy material - Google Patents

Manufacture of aluminum alloy material

Info

Publication number
JPH02209438A
JPH02209438A JP2899089A JP2899089A JPH02209438A JP H02209438 A JPH02209438 A JP H02209438A JP 2899089 A JP2899089 A JP 2899089A JP 2899089 A JP2899089 A JP 2899089A JP H02209438 A JPH02209438 A JP H02209438A
Authority
JP
Japan
Prior art keywords
alloy material
treatment
alloy
aluminum alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2899089A
Other languages
Japanese (ja)
Inventor
Yoshimasa Okubo
喜正 大久保
Kazuhisa Shibue
渋江 和久
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2899089A priority Critical patent/JPH02209438A/en
Publication of JPH02209438A publication Critical patent/JPH02209438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the Al-Si-Fe series alloy material having excellent ductility by subjecting shaped goods formed with Al-Si-Fe series alloy powder as raw material to solution treatment, quenching and artificial aging treatment. CONSTITUTION:The molten metal of an Al-Si-Fe series alloy contg., by weight, 15 to 35% Si and 0.3 to 9% Fe is rapidly cooled and is pulverized by an atomizing method, etc., and the powder is packed into an Al can or the like. The inside of the Al can is subjected to vacuum deaerating treatment and is thereafter forming by an extrusion or hot pressing method into the desired shape. The shaped goods are successively subjected to solution treatment at 460 to 500 deg.C, are thereafter to quenching treatment by using water or hot water and are successively to natural aging treatment or artificial aging treatment for the time shorter than that required for obtaining the maximum hardness at <=185 deg.C. The Al-Si-Fe alloy material having good tensile strength, elongation and fatigue resistance and having excellent workability can be obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は、アルミニウム合金材の製造法の改良に係り、
特に、Af−3i−Fe系粉末合金から得られる材料の
延性を改善する手法に関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to an improvement in the manufacturing method of an aluminum alloy material,
In particular, it relates to a method for improving the ductility of materials obtained from Af-3i-Fe powder alloys.

(背景技術) 内燃機関のシリンダーブロック、シリンダーライナーや
ピストン、更にはコンプレッサのベーン材等においては
、耐摩耗性、低熱膨張特性、高温強度或いは耐熱性に優
れる等の特性が必要とされており、そのため、近年、こ
れらの材料を軽量なアルミニウム(A2)合金にて製作
すべく、ケイ素(St)を合金成分として多量に含む/
1−3i系粉末合金が提案され、本願出願人も、先にそ
のような特性を満足するAf−3t−Fe系粉末合金(
特公昭63−16459号公報参照)を明らかにした。
(Background Art) Cylinder blocks, cylinder liners and pistons of internal combustion engines, as well as compressor vane materials, etc., require characteristics such as excellent wear resistance, low thermal expansion characteristics, high-temperature strength, and heat resistance. Therefore, in recent years, in order to manufacture these materials from lightweight aluminum (A2) alloys, materials containing a large amount of silicon (St) as an alloy component have been developed.
1-3i powder alloy has been proposed, and the applicant has previously developed an Af-3t-Fe powder alloy (
(See Japanese Patent Publication No. 63-16459).

ところで、このようなStを多量に含むアルミニウム合
金にあっては、Stが凝固時に析出してしまうために、
鋳造することが困難であるところから、通常、その合金
溶湯を噴霧法等によって急冷凝固せしめて、粉状やフレ
ーク状の合金粉末を得、次いでこの合金粉末から目的と
する形状の合金材を成形することが行なわれている。よ
り詳細には、得られた粉末から直接に成形操作を行なう
ことが困難であるため、先ず、合金粉末を分級の後、必
要に応じて予備圧縮して、所定の缶に封入し、次いでこ
の缶封入物に対して真空脱気処理を施し、しかる後、か
かる脱気処理の施されてなる缶封入物に対して、押出成
形やホットプレス等の成形操作を施し、更に鍛造等の成
形加工を施して、目的とする形状の合金材とするのであ
る。
By the way, in such aluminum alloys containing a large amount of St, since St precipitates during solidification,
Since it is difficult to cast, the molten alloy is usually rapidly cooled and solidified by a spraying method to obtain powder or flake alloy powder, and then the alloy material in the desired shape is formed from this alloy powder. things are being done. More specifically, since it is difficult to perform a molding operation directly from the obtained powder, the alloy powder is first classified, pre-compressed if necessary, and sealed in a designated can. The contents of the can are subjected to vacuum deaeration treatment, and then the can contents subjected to such deaeration treatment are subjected to a forming operation such as extrusion molding or hot pressing, and further molding processing such as forging. The alloy material is then processed to form the desired shape.

しかしながら、上記のような通常の成形操作に従って成
形して得られるAj2−3t−Fe系合金材料は、0.
3〜0.7%程度の伸び率しがなく、切断加工や切削加
工中に材料が割れたり、材料の縁が欠けたりする不都合
があった。
However, the Aj2-3t-Fe alloy material obtained by molding according to the above-mentioned normal molding operation has a 0.
There was no elongation rate of about 3 to 0.7%, and there was a problem that the material would crack during cutting or machining, or the edges of the material would be chipped.

(解決課B) 本発明は、かかる事情を背景にして為されたものであっ
て、その解決課題とするところは、AffiSi−Fe
系合金材料において、その延性を改善せしめることにあ
る。
(Solution Division B) The present invention was made against the background of the above circumstances, and the problem to be solved is that AffiSi-Fe
The objective is to improve the ductility of alloy materials.

(解決手段) そこで、本発明にあっては、前記課題を解決するため、
Si:15〜35重量%、Fe:0.3〜9重量%を主
要合金成分として含むアルミニラ1、合金粉末から得ら
れた成形品を、460 ’C〜500℃で溶体化処理し
た後、水又は温水焼き入れを行ない、そして自然時効を
行なうようにしたのであり、或いはまた、460℃〜5
00℃で溶体化処理した後、水又は温水焼き入れを行な
い、更に185℃以下の温度において、最高硬度を得る
に必要な時間より短い時間の人工時効処理を行なうよう
にしたのである。
(Solution Means) Therefore, in the present invention, in order to solve the above problems,
A molded product obtained from Aluminum 1 alloy powder containing 15 to 35% by weight of Si and 0.3 to 9% by weight of Fe as main alloy components was solution-treated at 460'C to 500°C, and then treated with water. Alternatively, hot water quenching and natural aging were performed;
After solution treatment at 00°C, water or hot water quenching is performed, followed by artificial aging treatment at a temperature of 185°C or less for a time shorter than that required to obtain maximum hardness.

(作用・効果) 要するに、上記の如き本発明に係るアルミニウム合金材
の製造法に従って、合金粉末から得られた成形品に対し
て、特定条件下の熱処理を施すことによって、初めて、
A/2−3i−Fe系合金材の延性を有利に向上せしめ
ることが出来たのであり、以てかかる合金材に切断加工
や切削加工を施して、コンロッド等の各種部品や部材を
製造する際に、材料に割れや欠けが生じることを効果的
に防止し得ることとなり、その結果、加工性の大幅な向
上が達成されるようになったのである。
(Function/Effect) In short, by applying heat treatment under specific conditions to a molded product obtained from alloy powder according to the method for producing an aluminum alloy material according to the present invention as described above, for the first time,
We were able to advantageously improve the ductility of the A/2-3i-Fe alloy material, which makes it easier to manufacture various parts and members such as connecting rods by cutting or machining the alloy material. In addition, it has become possible to effectively prevent the occurrence of cracks and chips in the material, and as a result, a significant improvement in workability has been achieved.

一方、St及びFeを主要合金成分とする合金組成から
得られる良好な耐摩耗性、低熱膨張性、高温強度並びに
耐熱性等の特性は、本発明に従う製造法によっては、何
等損なわれることがないところから、それらの各性能が
要求される各種部材に、本発明のアルミニウム合金材を
使用し得るのであり、それら部材、延いてはそれら部材
が使用される機械・機関等の軽量化並びに高速化が有利
に図られ得るのである。
On the other hand, the properties such as good wear resistance, low thermal expansion, high temperature strength, and heat resistance obtained from the alloy composition containing St and Fe as the main alloy components are not impaired in any way by the manufacturing method according to the present invention. Therefore, the aluminum alloy material of the present invention can be used in various parts that require each of these performances, and these parts, as well as the machines and engines in which they are used, can be made lighter and faster. can be advantageously achieved.

さらに、本発明に従う製造法においては、新たな工程を
加えることなく、換言すれば、何等新たな設備投資をす
る必要なく、上記の効果を得ることが出来るといった利
点もある。
Furthermore, the manufacturing method according to the present invention has the advantage that the above effects can be obtained without adding any new steps, in other words, without any new equipment investment.

(具体的構成) ところで、本発明におけるアルミニウム合金材は、ケイ
素(St)及び鉄(Fe)を主要合金成分とするもので
あり、Stが、15〜35重量%、Feが0.3〜9重
量%の割合で含まれているものである。
(Specific structure) By the way, the aluminum alloy material in the present invention has silicon (St) and iron (Fe) as main alloy components, and St is 15 to 35% by weight and Fe is 0.3 to 9% by weight. It is contained in a proportion of % by weight.

かかる主要合金成分のうち、Stは、その添加によって
、目的とする合金材の耐摩耗性、1耐焼付性を著しく向
上させ、また熱膨張係数を低下せしめるものであり、そ
の添加量が15%未満では充分な効果が得られず、一方
、35%を越えるようになると切削性を低下せしめ、切
削バイトの寿命に悪影響をもたらし、また被切削面の面
粗度が粗くなる等の問題を生ずるようになる。更に、F
eは、合金材の耐熱性を向上させ、また高温強度を高め
る効果を奏するものであり、その添加量が0゜3%未満
では充分な効果を発揮し得す、9%を越える量で添加す
ると、効果が飽和し、且つ延性の低下が著心くなる。
Among these main alloy components, the addition of St significantly improves the wear resistance and seizure resistance of the target alloy material, and also lowers the coefficient of thermal expansion, and the addition amount is 15%. If it is less than 35%, no sufficient effect will be obtained, whereas if it exceeds 35%, the cutting performance will decrease, the life of the cutting tool will be adversely affected, and the surface roughness of the surface to be cut will become rough. It becomes like this. Furthermore, F
e has the effect of improving the heat resistance and high-temperature strength of the alloy material, and when added in an amount of less than 0.3%, a sufficient effect can be achieved, but when added in an amount exceeding 9%. Then, the effect becomes saturated and the ductility decreases significantly.

また、これら側合金成分の他にも、目的とする合金材に
必要とされる性能に応じて、銅(Cu)、マグネシウム
(Mg)、マンガン(Mn)、ニッケル(Ni)等が、
適宜に含有せしめられ得ることは言うまでもない。なお
、Cuは、Mgと共存して、合金材に時効硬化性を付与
し、常温強度、耐摩耗性を向上せしめる効果を有し、更
に固溶硬化せしめられることにより、合金材の高温強度
を向上させる特徴を有するものであり、0.5〜10%
の割合において含有せしめられ、また、Mgは、Cuと
共に合金材に時効硬化性を付与し、且つ常温強度、耐摩
耗性を向上せしめ、Cuと同じく、固溶硬化せしめられ
ることにより合金材の高温強度を向上させる効果を有し
、0.3〜6%の割合において含有せしめられることと
なる。更に、Mnは、合金材の耐熱性を向上させ、その
高温強度を高めるものであり、0.3〜4%の割合で含
有せしめられる。そしてまた、Niは、主要合金成分た
るFeと協働して、合金材の耐熱性を向上させ、また高
温強度を高める効果を奏するものであり、0.3〜9%
の割合で含有せしめられるものである。
In addition to these side alloy components, depending on the performance required for the target alloy material, copper (Cu), magnesium (Mg), manganese (Mn), nickel (Ni), etc.
It goes without saying that it can be contained as appropriate. In addition, Cu coexists with Mg and has the effect of imparting age hardenability to the alloy material, improving room temperature strength and wear resistance, and further improves the high temperature strength of the alloy material by solid solution hardening. 0.5-10%
In addition, along with Cu, Mg imparts age hardenability to the alloy material and improves room temperature strength and wear resistance. It has the effect of improving strength, and is contained in a proportion of 0.3 to 6%. Furthermore, Mn improves the heat resistance of the alloy material and increases its high temperature strength, and is contained in a proportion of 0.3 to 4%. Furthermore, Ni works with Fe, the main alloy component, to improve the heat resistance of the alloy material and to increase the high-temperature strength.
It is contained in a proportion of .

そして、このような合金成分を含むアルミニウム合金溶
湯から、アルミニウム合金粉末を形成するに際しては、
従来と同様に、合金溶湯を急冷凝固させることか望まし
い。冷却速度が速いほど、Stの析出を抑えることが出
来、最終製品のSi粒子のサイズが微細となって、切削
性や耐摩耗性を向上せしめることが出来るためである。
When forming aluminum alloy powder from molten aluminum alloy containing such alloy components,
It is desirable to rapidly solidify the molten alloy as in the past. This is because the faster the cooling rate, the more the precipitation of St can be suppressed, the size of the Si particles in the final product becomes finer, and the machinability and wear resistance can be improved.

その角、冷速度は、望ましくは、通常、100”C/秒
以上の冷却速度が採用され、具体的には、アトマイズ法
や急冷凝固法(スプラット・クーリング)等が適用され
る。特に、前者においては、合金溶湯のアトマイズ処理
により、平均粒径が200μm以下のアルミニウム合金
粉末を取得することが出来るのである。
As for the angle and the cooling rate, a cooling rate of 100"C/sec or more is preferably adopted, and specifically, an atomization method, a rapid solidification method (splat cooling), etc. are applied. In particular, the former In this method, aluminum alloy powder having an average particle size of 200 μm or less can be obtained by atomizing the molten alloy.

そして、本発明に従うアルミニウム合金材の製造法にあ
っては、先ず、このようにして得られたアルミニウム合
金粉末(フレーク状態のものをも含む)を、従来と同様
に、分級−封缶乃至は分級予備圧縮−封缶の後に、真空
脱気処理−成形操作の一連の過程を経て、目的とする形
状のアルミニウム合金材に成形することとなる。なお、
成形操作に先立って行なわれる真空脱気処理は、最終成
形品に膨れ等の欠陥が生じることを防止することを目的
とするものである。
In the method for producing an aluminum alloy material according to the present invention, the aluminum alloy powder thus obtained (including those in flake form) is first classified, sealed, or sealed in a conventional manner. After classification, pre-compression and can sealing, a series of vacuum degassing treatment and molding operations are performed to form the aluminum alloy material into the desired shape. In addition,
The purpose of the vacuum degassing treatment performed prior to the molding operation is to prevent defects such as blisters from occurring in the final molded product.

また、脱気処理の施されたアルミニウム合金粉末充填封
入缶に対して、引き続いて行なわれる、押出成形やホッ
トプレス等の各種成形操作も、従来通りに行なわれる。
Further, various subsequent molding operations such as extrusion molding and hot pressing are performed on the deaerated aluminum alloy powder filled and sealed can in the conventional manner.

例えば、押出成形を行なう場合には、前記脱気処理缶を
400〜480℃の温度に加熱し、押出比:4以上で熱
間押出しを行なうことにより、目的とする形状のアルミ
ニウム合金材を得ることが出来、更に必要に応じて、そ
の押出物には鍛造等の加工が施される。
For example, in the case of extrusion molding, the degassing can is heated to a temperature of 400 to 480°C and hot extrusion is performed at an extrusion ratio of 4 or more to obtain an aluminum alloy material in the desired shape. The extrudate can be further processed, such as forging, if necessary.

このようにして目的とする形状の合金材(素材)を得る
ことが出来るのであるが、本発明に従えば、かかる合金
材に対して、以下に説明するような、特定の条件の、溶
体化処理−焼入れ一時効硬化処理といった一連の熱処理
操作が連続して施されることとなるのである。そして、
この特定条件下の一連の熱処理を実施することにより、
目的とする合金材の延性の著しい改善を図ることが出来
るのである。
In this way, it is possible to obtain an alloy material (material) in the desired shape.According to the present invention, the alloy material is subjected to solution treatment under specific conditions as described below. Treatment - A series of heat treatment operations such as quenching and temporary hardening treatment are performed continuously. and,
By performing a series of heat treatments under this specific condition,
This makes it possible to significantly improve the ductility of the target alloy material.

即ち、かかる特定の一連の熱処理においては、先ず、上
述の如き押出成形やホットプレス等の成形操作が終了し
た合金材を460℃〜500℃の温度下で保持して、か
かる合金材に溶体化処理を施すようにする。その保持時
間は、合金成分が充分に固溶体中に溶解される程度の時
間とされ、般に30分〜24時間の範囲内で選択される
が、より具体的な溶体化処理温度や保持時間は、その合
金組成や合金材の形状及び断面積の大きさ等に応じて、
適宜に決定されるところとなる。なお、この溶体化処理
温度が460℃未満では、合金材に十分な強度を持たせ
ることが出来ず、一方、500℃を越えるようになると
合金材の伸びが低下することとなる。
That is, in this specific series of heat treatments, first, the alloy material that has been subjected to extrusion molding, hot pressing, etc. as described above is held at a temperature of 460°C to 500°C, and the alloy material is solutionized. to be processed. The holding time is determined to be enough time for the alloy components to be sufficiently dissolved in the solid solution, and is generally selected within the range of 30 minutes to 24 hours, but the more specific solution treatment temperature and holding time may vary. , depending on the alloy composition, the shape of the alloy material, the size of the cross-sectional area, etc.
A decision will be made as appropriate. Note that if the solution treatment temperature is less than 460°C, the alloy material cannot have sufficient strength, while if it exceeds 500°C, the elongation of the alloy material will decrease.

次いで、溶体化処理の後、水又は温水を媒体として焼き
入れが行なわれる。その際、合金材に十分な強度を持た
せるためには、なるべく急速に冷却するのがよいが、合
金材が複雑な断面形状を持つ場合などには、残留応力の
発生を抑制すべく、温水を使用することも有効である。
Next, after solution treatment, quenching is performed using water or hot water as a medium. At this time, in order to give the alloy material sufficient strength, it is best to cool it as quickly as possible, but if the alloy material has a complex cross-sectional shape, hot water It is also effective to use

また、焼入れ方法としては、媒体中に合金材を投入する
他、合余材に媒体を噴霧するなど、公知の手法が何れも
用いられることは言うまでもない。要するに、合金材の
合金組成や形状等に応じて、焼入れ速度が適宜に決定さ
れるのであり、必要に応じた媒体温度や焼入れ方法が決
定されればよい。
Further, as a hardening method, it goes without saying that any known method can be used, such as adding an alloy material into a medium or spraying a medium onto a residual material. In short, the quenching rate is appropriately determined depending on the alloy composition, shape, etc. of the alloy material, and the medium temperature and quenching method may be determined as necessary.

さらに、かかる溶体化処理及び焼入れの施された合金材
に対して、引き続いて、自然時効処理乃至は185 ”
C以下の温度において最高硬度を得るに必要な時間より
短い時間の人工時効処理(以下、亜時効処理という)を
行なうことにより、一連の熱処理が終了する。なお、亜
時効処理温度が185℃を越すと、昇温中に、或いは昇
温後ごく短時間で、合金材が最高硬度に達して、続いて
軟化が始まるため、合金材の強度、特に疲労強度が低下
することとなるうえ、そのような軟化により、合金材の
伸びが向上することはなく、自然時効を経た合金材及び
亜時効処理を施された合金材よりも低い伸び率となる。
Furthermore, the alloy material subjected to such solution treatment and quenching is subsequently subjected to natural aging treatment or 185"
The series of heat treatments is completed by performing artificial aging treatment (hereinafter referred to as sub-aging treatment) at a temperature of C or less for a time shorter than the time required to obtain the maximum hardness. Furthermore, if the sub-aging treatment temperature exceeds 185°C, the alloy material will reach its maximum hardness during the temperature rise or in a very short time after the temperature rise, and then it will begin to soften, which will affect the strength of the alloy material, especially fatigue. In addition to reducing the strength, such softening does not improve the elongation of the alloy material, resulting in a lower elongation rate than that of the naturally aged alloy material and the sub-aged alloy material.

また、亜時効処理におけるより具体的な処理温度は、合
金材の合金組成や材料形状によって適宜に決定され、同
様に、自然時効処理及び亜時効処理における処理時間も
、合金材の合金組成や材料形状、更には時効処理温度に
より適宜に決定されることとなる。
In addition, the more specific treatment temperature in sub-aging treatment is appropriately determined depending on the alloy composition and material shape of the alloy material, and similarly, the treatment time in natural aging treatment and sub-aging treatment also depends on the alloy composition and material shape of the alloy material. It will be determined appropriately depending on the shape and the aging treatment temperature.

以上述べた全工程を経た合金材は、コンロッド等の素材
として供されることとなるが、かかる本発明にて得られ
るアルミニウム合金材は、伸び率が著しく改善されてい
るところから、切断加工や切削加工中に材料が割れたり
、材料の縁が欠けたりするようなことがなくなったので
ある。
The alloy material that has gone through all the steps described above will be used as a material for connecting rods, etc. The aluminum alloy material obtained by the present invention has a significantly improved elongation rate, so it cannot be cut or processed. This means that the material no longer cracks or the edges of the material are chipped during the cutting process.

(実施例) 以下に、本発明の幾つかの実施例を示し、本発明を更に
具体的に明らかにすることとするが、本発明が、そのよ
うな実施例の記載によって、何等の制約をも受けるもの
でないことは、言うまでもないところである。
(Examples) Below, some examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited in any way by the description of such examples. Needless to say, it is not something that can be accepted.

また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修正
、改良等を加え得るものであることが、理解されるべき
である。
In addition to the following examples and the above-mentioned specific description, the present invention includes various changes, modifications, and changes based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. It should be understood that improvements and the like may be made.

先ず、Si:17重量%、Fe:6重量%、Cu:4.
5重量%、Mg:0.5重量%、Mn:0.4重量%の
各合金成分を含み、残余がA!及び不可避的不純物から
なるAffi−3t−Fe系合金を溶製し、アトマイズ
法によりアルミニウム合金粉末を製造した。次いで、こ
の得られた合金粉末を使用し、この合金粉末をA1缶に
充填して封缶した後、脱気温度480℃で2時間の脱気
処理を行ない、更に成形温度450℃1押出比15にて
押出成形を行ない、1日間φの棒材を成形した。
First, Si: 17% by weight, Fe: 6% by weight, Cu: 4.
5% by weight, Mg: 0.5% by weight, Mn: 0.4% by weight, and the remainder is A! An Affi-3t-Fe-based alloy consisting of and unavoidable impurities was melted and an aluminum alloy powder was produced by an atomization method. Next, using the obtained alloy powder, after filling an A1 can with the alloy powder and sealing the can, a deaeration treatment was performed at a deaeration temperature of 480°C for 2 hours, and then a molding temperature of 450°C and an extrusion ratio of 1. Extrusion molding was carried out at No. 15, and a rod having a diameter of φ was molded for one day.

かくして得られた棒材に対して、第1表に示される、各
種の熱処理を行ない、しかる後、引張特性と疲労強度を
調べた。その試験結果を、各試験材料の熱処理条件と共
に、下記第1表にまとめて示す。なお、各側における溶
体化処理は、何れも2時間かけて行なった。
The bars thus obtained were subjected to various heat treatments shown in Table 1, and then their tensile properties and fatigue strength were examined. The test results are summarized in Table 1 below, along with the heat treatment conditions for each test material. Note that the solution treatment on each side was performed for 2 hours.

第1表 かかる第1表の結果より明らかなように、溶体化処理温
度が460 ’Cより低い合金材(比較例:No、 1
.3.5.10)は、何れも引張強さが十分でなく、ま
た、溶体化処理温度が500℃より高い合金材(比較例
: No、 2.4.9.14)では、伸びが低いこと
が認められる。
Table 1 As is clear from the results in Table 1, alloy materials whose solution treatment temperature is lower than 460'C (Comparative example: No. 1)
.. 3.5.10), none of them have sufficient tensile strength, and the alloy material whose solution treatment temperature is higher than 500°C (comparative example: No, 2.4.9.14) has low elongation. It is recognized that

また、時効処理の点から見ると、No、 5〜9の合金
材は、最高硬度を得るべく時効処理がなされたため、引
張強さは十分であるものの、伸びが低く、また、No、
 10〜14の合金材では、過時効処理を施したため、
引張強さが低下し、疲労強度も低くなっている。その上
、伸び率も十分に得られない結果となっていることが判
る。
In addition, from the perspective of aging treatment, alloy materials No. 5 to 9 were aged to obtain the highest hardness, so although the tensile strength was sufficient, the elongation was low.
For alloy materials No. 10 to 14, since over-aging treatment was applied,
Tensile strength has decreased, and fatigue strength has also decreased. Furthermore, it can be seen that the elongation rate was not sufficiently obtained.

一方、本発明に合致するように、溶体化処理温度が良好
に保たれ、且つ時効処理が自然時効処理乃至は亜時効処
理にて行われた合金材(No、15〜20)にあっては
、何れも55 Kgf/s”以上の良好な引張強さを有
しており、伸びも1.2%以上であり、且つ十分な疲労
強度を有していることが判る。
On the other hand, in accordance with the present invention, the alloy materials (No. 15 to 20) in which the solution treatment temperature was maintained well and the aging treatment was performed by natural aging treatment or sub-aging treatment It can be seen that all of them have a good tensile strength of 55 Kgf/s" or more, an elongation of 1.2% or more, and sufficient fatigue strength.

また、上記の試験に使用したものと同じ合金から、同様
の工程を経て、同じ<18mmφの棒材を押出成形し、
更に、かかる棒材をコンロッド形状に鍛造した後、上記
第1表に示されるものと同様の熱処理を、それぞれの棒
材に施した。そして、このようにして得られた各種の合
金材に対して、それぞれ、大端部、小端部のビン穴加工
、及び大端連結部のボルト穴加工等の機械加工を行なっ
たところ、本発明に従う熱処理を施したNo、 15〜
20の各合金材にあっては、割れや欠は等が生じること
なく、良好な切削加工性を有していることが認められた
In addition, from the same alloy used in the above test, the same bar material of <18 mmφ was extruded through the same process,
Furthermore, after forging these bars into connecting rod shapes, each bar was subjected to the same heat treatment as shown in Table 1 above. After machining the various alloy materials obtained in this way, such as machining bottle holes at the large end and small end, and machining bolt holes at the large end connection, the results were as follows. No. 15 ~ subjected to heat treatment according to the invention
Each of the alloy materials No. 20 was found to have good machinability without any cracks or chips.

出願人  住友軽金属工業株式会社Applicant: Sumitomo Light Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)Si:15〜35重量%、Fe:0.3〜9重量
%を主要合金成分として含むアルミニウム合金粉末から
得られた成形品を、460℃〜500℃の温度で溶体化
処理した後、水または温水焼入れを行ない、そして自然
時効を行なうことを特徴とするアルミニウム合金材の製
造法。
(1) A molded product obtained from an aluminum alloy powder containing 15 to 35% by weight of Si and 0.3 to 9% by weight of Fe as main alloy components is solution-treated at a temperature of 460°C to 500°C. A method for producing an aluminum alloy material, characterized by performing water or hot water quenching, and natural aging.
(2)Si:15〜35重量%、Fe:0.3〜9重量
%を主要合金成分として含むアルミニウム合金粉末から
得られた成形品を、460℃〜500℃の温度で溶体化
処理した後、水または温水焼入れを行ない、更に185
℃以下の温度において、最高硬度を得るに必要な時間よ
り短い時間の人工時効処理を行なうことを特徴とするア
ルミニウム合金材の製造法。
(2) After solution-treating a molded article obtained from aluminum alloy powder containing 15 to 35% by weight of Si and 0.3 to 9% by weight of Fe as main alloy components at a temperature of 460°C to 500°C. , water or hot water quenching, and further 185
A method for producing an aluminum alloy material, characterized by performing an artificial aging treatment at a temperature below ℃ for a time shorter than that required to obtain maximum hardness.
JP2899089A 1989-02-08 1989-02-08 Manufacture of aluminum alloy material Pending JPH02209438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2899089A JPH02209438A (en) 1989-02-08 1989-02-08 Manufacture of aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2899089A JPH02209438A (en) 1989-02-08 1989-02-08 Manufacture of aluminum alloy material

Publications (1)

Publication Number Publication Date
JPH02209438A true JPH02209438A (en) 1990-08-20

Family

ID=12263852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2899089A Pending JPH02209438A (en) 1989-02-08 1989-02-08 Manufacture of aluminum alloy material

Country Status (1)

Country Link
JP (1) JPH02209438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663025A (en) * 2020-06-09 2020-09-15 福耀汽车铝件(福建)有限公司 Aging treatment method of aluminum alloy bright decorative strip, vehicle body bright decorative strip and aging equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663025A (en) * 2020-06-09 2020-09-15 福耀汽车铝件(福建)有限公司 Aging treatment method of aluminum alloy bright decorative strip, vehicle body bright decorative strip and aging equipment

Similar Documents

Publication Publication Date Title
US7892482B2 (en) Material on the basis of an aluminum alloy, method for its production, as well as use therefor
US4975243A (en) Aluminum alloy suitable for pistons
FR2573777A1 (en) HEAT-RESISTANT HEAT-RESISTANT ALUMINUM ALLOY AND METHOD FOR MANUFACTURING CARRIER COMPONENT THEREOF
US6399020B1 (en) Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom
JPS6210237A (en) Aluminum alloy for hot forging
US5162065A (en) Aluminum alloy suitable for pistons
US5055255A (en) Aluminum alloy suitable for pistons
JPS60208443A (en) Aluminum alloy material
JP2017222893A (en) Aluminum alloy forging article and manufacturing method therefor
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JP2789035B2 (en) Method for producing aluminum / silicon alloy article
US4992117A (en) Heat resistant aluminum alloy excellent in tensile strength, ductility and fatigue strength
JPH0457738B2 (en)
JPH02209438A (en) Manufacture of aluminum alloy material
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
JPH02236242A (en) Manufacture of aluminum alloy material
JPS61259830A (en) Production of wear resistant aluminum alloy extrudate having excellent machineability
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility
JPH02209437A (en) Manufacture of aluminum alloy material
JPH0557346B2 (en)
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPH1161310A (en) Aluminum alloy and its production
JPH06145864A (en) Production of heat resistant aluminum alloy for automotive engine and parts made of heat resistant aluminum alloy