JPH0220895B2 - - Google Patents

Info

Publication number
JPH0220895B2
JPH0220895B2 JP58098592A JP9859283A JPH0220895B2 JP H0220895 B2 JPH0220895 B2 JP H0220895B2 JP 58098592 A JP58098592 A JP 58098592A JP 9859283 A JP9859283 A JP 9859283A JP H0220895 B2 JPH0220895 B2 JP H0220895B2
Authority
JP
Japan
Prior art keywords
combustion
output
oxygen concentration
color sensor
consumption rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58098592A
Other languages
Japanese (ja)
Other versions
JPS59221520A (en
Inventor
Nobuyuki Tanaka
Nobutoshi Gako
Chuji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58098592A priority Critical patent/JPS59221520A/en
Publication of JPS59221520A publication Critical patent/JPS59221520A/en
Publication of JPH0220895B2 publication Critical patent/JPH0220895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は、燃焼機器の燃料消費速度に対応して
不完全燃焼状態の検知装置を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an apparatus for detecting incomplete combustion in response to the fuel consumption rate of combustion equipment.

燃焼器具を密閉度の高い部屋で燃焼させた場合
時間経過と共に酸素濃度は減少し、さらに酸素不
足の状態に陥いると、燃焼器具は不完全燃焼を起
し、排ガス中には不燃ガスや一酸化炭素が増加し
てくるために生理上有害となり、時には死亡につ
ながる危険な雰囲気をかもし出していた。
When a combustion appliance is burned in a tightly closed room, the oxygen concentration decreases over time, and if oxygen becomes insufficient, the combustion appliance will undergo incomplete combustion, and the exhaust gas will contain incombustible gas and other gases. The increase in carbon oxide created a dangerous atmosphere that was physiologically harmful and could even lead to death.

このため空気中の酸素濃度を燃焼炎から検知す
る後述するような色センサを用いてこのような事
故を未然に防ぐ装置(特願昭56−73868号)が考
えられている。
For this reason, a device (Japanese Patent Application No. 73868/1983) has been proposed to prevent such accidents by using a color sensor as described below that detects the oxygen concentration in the air from the combustion flame.

しかし、燃料消費速度が変化した場合、色セン
サの出力が変化し、そのため、色センサによる一
定の酸素濃度検知が正確にできないという欠点を
有していた。
However, when the fuel consumption rate changes, the output of the color sensor changes, which has the disadvantage that the color sensor cannot accurately detect a constant oxygen concentration.

本発明は上記の点に鑑みなされたもので、燃料
消費速度が変化しても、一定の酸素濃度による不
完全燃焼検知が行なえる装置を提供するものであ
る。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a device that can detect incomplete combustion based on a constant oxygen concentration even if the fuel consumption rate changes.

本発明者は、上記発明に先立つて燃料消費速度
が変化した場合、燃焼炎から発生する光の波長の
変化を検出する色センサの出力と酸素濃度の関係
が一定の関係で変化することを発見した。
Prior to the above invention, the present inventor discovered that when the fuel consumption rate changes, the relationship between the output of a color sensor that detects changes in the wavelength of light generated from combustion flame and oxygen concentration changes in a constant relationship. did.

第1図は上記事実を裏付けるために用いた実験
装置の概略説明図で、1は密閉室、2は燃焼器
具、3はその燃焼炎、4は上述した色センサ、5
はO2センサ、6は色センサ4の出力を増幅する
増幅器、7はO2濃度メータ、8は記録計である。
Figure 1 is a schematic explanatory diagram of the experimental equipment used to prove the above fact, in which 1 is a sealed chamber, 2 is a combustion appliance, 3 is its combustion flame, 4 is the color sensor mentioned above, and 5
is an O 2 sensor, 6 is an amplifier that amplifies the output of the color sensor 4, 7 is an O 2 concentration meter, and 8 is a recorder.

第2図は気化式燃焼器の正面図であつて、2は
油タンク9を8側に備えた燃焼器本体である。1
0は油タンク9と連通した気化器で液体灯油を気
化ガスに変換する。11はこの気化ガスを燃焼さ
せるブンゼン式のバーナで、当該気化ガスはここ
で還元炎12、酸化炎13からなる青炎として燃
焼する。14はバーナ11を囲繞する如く設けら
れた炉で上方に排気口15を有する。この排気口
15からの熱気16は本体2内の後部に設けられ
たフアン(図示せず)で温風として本体2前面に
送風される。17は上記炉14の酸化炎13に対
応した位置に穿設された透視窓で、その外周部に
は断熱材18を介して〓字状の素子取付アングル
19がビス20でもつて締着されている。21は
上記アングル19に挿通固定された保護管でその
一端に色センサ4が設けられている。この保護管
21は素子4の保護と同時にその性能を向上させ
るため外部からの光をしや断する役目も兼ねてい
る。22は素子4のリード線である。なお素子4
の取り付け位置(X…高さ)はバーナ面上から10
〜50mmの適当な位置にするが、青炎との関係で最
適位置を選べばよい。
FIG. 2 is a front view of the vaporization type combustor, and 2 is a combustor main body equipped with an oil tank 9 on the 8 side. 1
0 is a vaporizer communicating with the oil tank 9, which converts liquid kerosene into vaporized gas. Reference numeral 11 denotes a Bunsen-type burner that burns this vaporized gas, where the vaporized gas is burned as a blue flame consisting of a reducing flame 12 and an oxidizing flame 13. A furnace 14 is provided to surround the burner 11 and has an exhaust port 15 above. The hot air 16 from the exhaust port 15 is blown to the front of the main body 2 as warm air by a fan (not shown) provided at the rear inside the main body 2. Reference numeral 17 denotes a see-through window bored at a position corresponding to the oxidizing flame 13 of the furnace 14, and a square-shaped element mounting angle 19 is fastened with screws 20 to the outer periphery of the window through a heat insulating material 18. There is. Reference numeral 21 denotes a protective tube inserted into and fixed to the angle 19, and a color sensor 4 is provided at one end of the protective tube. This protection tube 21 serves to protect the element 4 and also to block light from the outside in order to improve its performance. 22 is a lead wire of the element 4. Note that element 4
The installation position (X...height) is 10 from the top of the burner surface.
Set it at an appropriate position of ~50mm, but choose the optimal position in relation to the blue flame.

色センサの構造及び等価回路を第3図a,bに
示す。P層23とN層24とのPN接合によるホ
トダイオード(受光素子)PD1は短波長感度が
大であり、P層25とN層24とのPN接合によ
るホトダイオードPD2は長波長感度が大である。
なお、26は絶縁膜、27はP層23に設けられ
た電極、28はN層24に設けられた電極、29
はP層25に設けられた電極である。上記両ホト
ダイオードPD1,PD2の短絡電流比ISC2/ISC1
受光素子λとは第4図に示す如く、1:1の対応
関係を有している。従つて、逆に、両ダイオード
PD1,PD2の短絡電流比が判れば、受光した波
長すなわち色を識別することができるはずであ
る。しかしながらこの色センサは単一波長に対し
ては識別が正確であつても、燃焼炎のように複数
種類の波長を放射しているものをどのように識別
するかについては判然としていない。そこで酸素
濃度と、この時の燃焼炎の色に対する短絡電流比
との関係を実験により調べた処第5図の如く、酸
素濃度が、19%近傍では、その短絡電流比が急速
に下降している。従つて、この立下りを検出する
ことにより、不完全燃焼の開始を正確に検知する
ことができる。
The structure and equivalent circuit of the color sensor are shown in FIGS. 3a and 3b. A photodiode (light receiving element) PD1 formed by a PN junction between a P layer 23 and an N layer 24 has high short wavelength sensitivity, and a photodiode PD2 formed by a PN junction between a P layer 25 and an N layer 24 has high long wavelength sensitivity.
In addition, 26 is an insulating film, 27 is an electrode provided on the P layer 23, 28 is an electrode provided on the N layer 24, and 29
is an electrode provided on the P layer 25. As shown in FIG. 4, the short-circuit current ratio I SC2 /I SC1 of both photodiodes PD1 and PD2 and the light receiving element λ have a 1:1 correspondence relationship. Therefore, conversely, both diodes
If the short-circuit current ratio of PD1 and PD2 is known, it should be possible to identify the wavelength or color of the received light. However, although this color sensor is accurate in identifying a single wavelength, it is not clear how to identify something that emits multiple wavelengths, such as a combustion flame. Therefore, we conducted an experiment to investigate the relationship between the oxygen concentration and the short-circuit current ratio with respect to the color of the combustion flame. As shown in Figure 5, when the oxygen concentration is around 19%, the short-circuit current ratio rapidly decreases. There is. Therefore, by detecting this fall, it is possible to accurately detect the start of incomplete combustion.

しかし、一般に気化式燃焼器は、手動又はサー
ミスタ等により自動的に火力すなわち発熱量調整
を行なう。このとき、灯油消費速度が変化する。
本実施例の場合、灯油消費速度は0.36/h〜
0.19/h(発熱量3000kcal/h〜1600kcal/h)
と変化する。第5図に、灯油消費速度0.36/h
の燃焼結果を実線で、灯油消費速度0.19/hの
燃焼結果を破線で示す。灯油消費速度が0.36/
hから0.19/hの途中にある場合の結果は、第
5図の実線と破線の間で示される。第5図に示す
如く、灯油消費量が少くなると、色センサの短絡
電流比が大幅に減少するときの酸素濃度が変化し
ている。従つて、酸素濃度の検知レベル(例え
ば、19.0%)を一定にするには、色センサの短絡
電流比の検知設定レベルを灯油燃焼速度に応じて
aからbの間で変えれば良い。
However, in general, the vaporization type combustor adjusts the thermal power, that is, the calorific value, manually or automatically using a thermistor or the like. At this time, the kerosene consumption rate changes.
In the case of this example, the kerosene consumption rate is 0.36/h ~
0.19/h (Calorific value 3000kcal/h ~ 1600kcal/h)
and changes. Figure 5 shows the kerosene consumption rate of 0.36/h.
The solid line shows the combustion results for kerosene consumption rate 0.19/h, and the broken line shows the combustion results for a kerosene consumption rate of 0.19/h. Kerosene consumption rate is 0.36/
The results for the case between h and 0.19/h are shown between the solid line and the broken line in FIG. As shown in FIG. 5, when the amount of kerosene consumed decreases, the oxygen concentration changes when the short circuit current ratio of the color sensor decreases significantly. Therefore, in order to keep the oxygen concentration detection level (for example, 19.0%) constant, the detection setting level of the short circuit current ratio of the color sensor may be changed between a and b depending on the kerosene burning speed.

第6図は上記事実に基づいて、室内の酸素濃度
が検知レベル以下になれば換気指示等の警報を発
生するようにした装置の要部ブロツク図である。
同図において、30,31はそれぞれ対数増幅回
路で、各ホトダイオードPD1,PD2に接続され
ている。32は上記各対数増幅回路30,31の
出力logISC1,logISC2の差をとるための差動増幅器
である。この増幅器32の出力(logISC2/ISC1
は燃焼制御器33からの出力(すなわち灯油消費
速度に対応した検知レベル)とコンパレータ34
により比較判定される。そして、このコンパレー
タ34の出力によつて、燃焼制御器3、換気扇3
6、警報ブザー37等を制御するマイコン等の制
御部35を設けておけば、室内の酸欠状態を未然
に防止することができる。
FIG. 6 is a block diagram of the main parts of a device which, based on the above facts, generates an alarm such as a ventilation instruction when the oxygen concentration in the room falls below the detection level.
In the figure, 30 and 31 are logarithmic amplifier circuits, respectively, and are connected to the respective photodiodes PD1 and PD2. 32 is a differential amplifier for taking the difference between the outputs logI SC1 and logI SC2 of each of the logarithmic amplifier circuits 30 and 31. The output of this amplifier 32 (logI SC2 /I SC1 )
is the output from the combustion controller 33 (that is, the detection level corresponding to the kerosene consumption rate) and the comparator 34
Comparative judgment is made by. Then, depending on the output of this comparator 34, the combustion controller 3, the ventilation fan 3
6. By providing a control unit 35 such as a microcomputer that controls the alarm buzzer 37, etc., it is possible to prevent an oxygen deficiency state in the room.

第7図,8図は、第6図に示した本発明装置の
要部ブロツク図に対する具体的な例である。第7
図は、第6図の燃焼制御器33を、スイツチS1
をオン、オフすることでポンプ38の吐出量を制
御し、灯油消費速度を3000kcal/hと1600kcal/
hとにする回路構成としたものであり、抵抗r1
r2,r3,r4、フオトカプラーPC1等により構成さ
れている。フオトカプラーPC1中のダイオード
D1が発光し、フオトトランジスタTr1が短絡状
態のとき、ポンプ38の吐出量は最大となる。ス
イツチS1のオン、オフにより抵抗r2に対して抵
抗r3が並列に接続されるかされないかの状態にな
る。従つてコンパレータ34の比較電圧のレベル
がスイツチS1がオンのとき低く、オフのとき高
くなり検知レベルの調整ができることになる。
7 and 8 are specific examples of the main part block diagram of the apparatus of the present invention shown in FIG. 6. 7th
The diagram shows the combustion controller 33 in FIG.
By turning on and off, the discharge amount of the pump 38 is controlled, and the kerosene consumption rate is set to 3000kcal/h and 1600kcal/h.
The circuit configuration is such that the resistance r 1 ,
It is composed of r 2 , r 3 , r 4 , photocoupler PC1, etc. When the diode D1 in the photocoupler PC1 emits light and the phototransistor T r1 is short-circuited, the discharge amount of the pump 38 becomes maximum. Depending on whether the switch S1 is turned on or off, the resistor r3 is connected in parallel to the resistor r2 or not. Therefore, the level of the comparison voltage of the comparator 34 is low when the switch S1 is on, and high when the switch S1 is off, making it possible to adjust the detection level.

第8図は灯油消費速度を連続的に変化させる燃
焼制御回路の1例である。オペアンプIC1、抵
抗R1〜R10、コンデンサC1よりなる回路は、
温度調節ボリウムV1とサーミスタTH1の抵抗値
の大小によつて、フオトカプラーPC2中のフオ
トトランジスタTr2の抵抗をダイオードD2の発
光により制御し、ポンプ39の吐出量を自動的に
コントロールして室温の制御を行なつている。第
5図に示すように、一定酸素濃度の検知レベル
(例えば19.0%)に対して灯油消費量ごとの設定
レベルは、オペアンプIC2、R11〜R14、コンデ
ンサC2より構成される回路からの信号により設
定される。この灯油消費量に対応した設定レベル
の信号と、色センサの出力信号はコンパレータ3
4に入力し、比較判定される。コンパレータ34
の出力によつて、燃料送油ポンプ39、換気扇3
6、警報ブザー37等を制御する制御部35が設
置されているので、室内の酸欠状態を未然に防止
することができる。
FIG. 8 is an example of a combustion control circuit that continuously changes the kerosene consumption rate. The circuit consisting of operational amplifier IC1, resistors R1 to R10, and capacitor C1 is as follows:
Depending on the resistance value of the temperature control volume V1 and thermistor TH1, the resistance of the phototransistor T r2 in the photocoupler PC2 is controlled by the light emission of the diode D2, and the discharge amount of the pump 39 is automatically controlled to maintain the room temperature. is under control. As shown in Fig. 5, the setting level for each kerosene consumption amount for a fixed oxygen concentration detection level (for example, 19.0%) is determined by a signal from a circuit consisting of operational amplifier IC2, R11 to R14 , and capacitor C2. Set by. The setting level signal corresponding to this kerosene consumption and the output signal of the color sensor are sent to comparator 3.
4 and is compared and determined. Comparator 34
Depending on the output of the fuel oil pump 39, ventilation fan 3
6. Since the control unit 35 that controls the alarm buzzer 37 and the like is installed, it is possible to prevent an oxygen deficiency state in the room.

なお、この色センサを用いると、受光された光
の波長は2つのホトダイオードPD1,PD2の出
力間の比として得られ単一受光素子を使用する場
合のように、素子の出力の絶対値に依存しないか
ら、受光面に汚れがあつたり、炎がゆらいだりし
てもその影響をほとんど受けることがなく、正確
に酸素濃度を検知することができる。又、同一チ
ツプ上に、2個のホトダイオードPD1,PD2が
集積されているのでセンサ4への温度影響は相殺
され、温度の影響は小さくできる。又、透視窓1
7が汚れていても電流比をとるからその汚れの影
響をあまり受けなくて済む。
Note that when using this color sensor, the wavelength of the received light is obtained as the ratio between the outputs of the two photodiodes PD1 and PD2, and does not depend on the absolute value of the output of the element, as in the case of using a single photodiode. Therefore, even if the light-receiving surface gets dirty or the flame flickers, it will not be affected much and the oxygen concentration can be detected accurately. Furthermore, since the two photodiodes PD1 and PD2 are integrated on the same chip, the influence of temperature on the sensor 4 is canceled out, and the influence of temperature can be reduced. Also, see-through window 1
Even if 7 is dirty, the current ratio is taken, so there is no need to be affected much by the dirt.

又、上記実施例は同一チツプ上に2個のフオト
ダイオードを形成し、そのS1層にフイルタの役
割をさせた色センサを用いたが、波長感度の異な
る受光素子を2個設け、この受光素子の出力間の
相対値を用いてもよい。
Furthermore, in the above embodiment, two photodiodes are formed on the same chip, and a color sensor is used in which the S1 layer functions as a filter. You may also use relative values between the outputs.

以上のように、本発明によれば燃焼炎からの光
を受光する複数個の受光素子の出力間の相対値か
ら酸素濃度を検知する装置において、燃料消費速
度が変つても正確に酸素濃度を検知することがで
きる。従つてこの検知出力を利用して換気等を行
うようにすれば酸欠による事故はもちろん酸素不
足に伴う頭痛等もなくすことができる。
As described above, according to the present invention, in a device that detects oxygen concentration from the relative value between the outputs of a plurality of light receiving elements that receive light from a combustion flame, the oxygen concentration can be accurately detected even if the fuel consumption rate changes. Can be detected. Therefore, by using this detection output to perform ventilation, etc., not only accidents caused by oxygen deficiency but also headaches caused by oxygen deficiency can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明の説明に供する実験装置の概略
説明図、第2図:本発明の装置を具備した燃焼器
の正面説明図、第3図a,b:色センサの構造図
及び等価回路図、第4図:第3図色センサの短絡
電流比−波長特性を示す特性図、第5図:色セン
サの短絡電流比と酸素濃度との関係を示す特性
図、第6図:本発明装置の要部ブロツク図、第7
図:本発明装置の具体的な例のブロツク図、第8
図:本発明装置の具体的な他の例のブロツク図。 符号、4:半導体色センサ、33:燃焼制御
器、34:コンパレータ。
Fig. 1: Schematic explanatory diagram of an experimental device used to explain the present invention, Fig. 2: Front explanatory diagram of a combustor equipped with the device of the present invention, Fig. 3 a, b: Structural diagram and equivalent circuit of a color sensor. Figure 4: Figure 3: Characteristic diagram showing the short-circuit current ratio-wavelength characteristics of the color sensor; Figure 5: Characteristic diagram showing the relationship between the short-circuit current ratio and oxygen concentration of the color sensor; Figure 6: The present invention Main part block diagram of the device, No. 7
Figure: Block diagram of a specific example of the device of the present invention, No. 8
Figure: Block diagram of another specific example of the device of the present invention. Symbol, 4: Semiconductor color sensor, 33: Combustion controller, 34: Comparator.

Claims (1)

【特許請求の範囲】 1 燃焼炎からの光を受光する波長感度の異なる
複数個の受光素子をを設け、各素子の出力間の相
対値から酸素濃度を検知するものにおいて、 燃焼機器の燃料消費速度に対応する速度信号を
出力する燃焼制御器と、 この出力を基準値とし、上記各素子の出力間の
相対値出力を比較値として導入されるコンパレー
タとを具備し、 このコンパレータの出力を不完全燃焼検知信号
とする不完全燃焼検知装置。
[Scope of Claims] 1. A device that includes a plurality of light-receiving elements having different wavelength sensitivities for receiving light from a combustion flame, and detects oxygen concentration from a relative value between the outputs of each element, which includes: It is equipped with a combustion controller that outputs a speed signal corresponding to the speed, and a comparator that uses this output as a reference value and uses the relative value output between the outputs of each of the above elements as a comparison value, and uses the output of this comparator as a reference value. An incomplete combustion detection device that uses a complete combustion detection signal.
JP58098592A 1983-05-31 1983-05-31 Incomplete combustion sensing device Granted JPS59221520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098592A JPS59221520A (en) 1983-05-31 1983-05-31 Incomplete combustion sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098592A JPS59221520A (en) 1983-05-31 1983-05-31 Incomplete combustion sensing device

Publications (2)

Publication Number Publication Date
JPS59221520A JPS59221520A (en) 1984-12-13
JPH0220895B2 true JPH0220895B2 (en) 1990-05-11

Family

ID=14223906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098592A Granted JPS59221520A (en) 1983-05-31 1983-05-31 Incomplete combustion sensing device

Country Status (1)

Country Link
JP (1) JPS59221520A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240026A (en) * 1985-04-16 1986-10-25 Babcock Hitachi Kk Multiple visual field type flame detector
JPH0627578B2 (en) * 1985-10-25 1994-04-13 バブコツク日立株式会社 Flame detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189043A (en) * 1981-05-15 1982-11-20 Sharp Corp Detector for oxygen deficiency state

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218829Y2 (en) * 1980-04-16 1987-05-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189043A (en) * 1981-05-15 1982-11-20 Sharp Corp Detector for oxygen deficiency state

Also Published As

Publication number Publication date
JPS59221520A (en) 1984-12-13

Similar Documents

Publication Publication Date Title
US4059385A (en) Combustion monitoring and control system
EP0085224B1 (en) Combustion monitoring with an oxygen shortage sensor
CN110617627A (en) Gas water heater
EP0154361B1 (en) Gas burner
JPH0220895B2 (en)
US4358265A (en) Combustion appliance with a safety device
JPS61235612A (en) Safety device for burner
JPH0215815B2 (en)
JPH033124B2 (en)
JPH02618Y2 (en)
JPS5762324A (en) Flame detecting circuit
US6050807A (en) Method and apparatus for controlling an amount of air of a gas boiler
JPS6146731B2 (en)
JPS63694B2 (en)
JPS6347710Y2 (en)
JPS58190745A (en) Co sensor
KR920007465Y1 (en) Indicating circuit of thermal changes and abnormal conditions
JPS6349819Y2 (en)
JP2939102B2 (en) Heating system
JPS6233486B2 (en)
JPH0617069Y2 (en) Incomplete combustion detector
KR890002356B1 (en) Fan heater and control method
JPS6226688Y2 (en)
JP2622382B2 (en) Flame detector
KR900001684Y1 (en) Harmful gas sensor device in fan heater