JPS61240026A - Multiple visual field type flame detector - Google Patents

Multiple visual field type flame detector

Info

Publication number
JPS61240026A
JPS61240026A JP60079167A JP7916785A JPS61240026A JP S61240026 A JPS61240026 A JP S61240026A JP 60079167 A JP60079167 A JP 60079167A JP 7916785 A JP7916785 A JP 7916785A JP S61240026 A JPS61240026 A JP S61240026A
Authority
JP
Japan
Prior art keywords
flame
optical fiber
light
photoelectric conversion
flame detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60079167A
Other languages
Japanese (ja)
Inventor
Koujirou Yamada
山田 紘二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60079167A priority Critical patent/JPS61240026A/en
Publication of JPS61240026A publication Critical patent/JPS61240026A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/08Flame sensors detecting flame flicker
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/18Flame sensor cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To prevent error signals from developing by reducing the lowering of the relative light transmittances of optical fibers even when the optical fibers are bent by a method wherein graded index type optical fiber is employed as the optical fiber subject to bending work and at the same time the only one peak of transmittance is made so as to correspond to the predetermined angle of incidence. CONSTITUTION:Light signals from three visual fields 15, 16 and 17 are led through a 3-core junction fiber cable 5 to a photoelectric conversion part 10. The photoelectric conversion part 10 has a structure laminating a detector of infrared light (1-2.5mum in wavelength) to a detector of visible-near infrared light (0.4-0.9mum in wavelength) so as to detect lights with in said two wavelength regions with each of three laminated type photoelectric conversion elements in order to obtain six electric signals in total. Only the variation with the range of about 50Hz-1kHz, which is characteristic to the light signals emitted from the primary combustion zone of flame, is selectively amplified with a frequency discriminating amplifier 11, changed-over at a certain period (for example 50 ms) by a multiplexer 12, converted by an A/D converter 13 and finally introduced in a flame judging part 14 in order to judge the presence or absence of flame by whether at least one of the six electric signals exceeds the pre-set threshold value or not.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は火炎検出器に係り、特に複数本の光ファイバを
用いた多視野型の火炎検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flame detector, and more particularly to a multi-view flame detector using a plurality of optical fibers.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

各種燃焼装置において、省力化、制御の適正化のため自
動制御を行う場合が増加しているが、この場合′、各バ
ーナの点火、消火を確実に判定することが、手動制御に
よる場合よりもさらに強く望まれている。火炎検出器は
点火バーナの如く小容量のバーナの場合には火炎に対し
て電極棒を接触させて火炎中のイオンをイオン電流とし
て検出する接炎型の火炎検出器が多用される。しかしこ
の型式の装置i長時間使用により焼損する虞れがあるた
め、事業所用ボイラの主バーナの如(運転時間が長くか
つ大容量のバーナの場合には非接触型の先代火炎検出器
が主として用いられている。
In various combustion devices, automatic control is increasingly being used to save labor and optimize control, but in this case, it is more difficult to accurately determine whether each burner should be ignited or extinguished than with manual control. Even more strongly desired. In the case of a small-capacity burner such as an ignition burner, a flame contact type flame detector is often used, which detects ions in the flame as an ion current by bringing an electrode rod into contact with the flame. However, there is a risk of burnout when using this type of equipment for a long period of time. It is used.

火炎の発する光は波長にして紫外域から赤外域の広い範
囲にわたっており、いづれの波長域の光を検出するのが
火炎の有無判定に有効であるかは燃料の種類、燃焼条件
(空燃比、排ガス再循環の有無等)等に大きく依存して
いる。一般的にはガス燃料では紫外域の直流光を、油や
石炭を燃焼させる場合には可視−赤外域のちらつき光(
変動光)を検出する方法が多用されている。
The light emitted by a flame has a wide range of wavelengths, from the ultraviolet to the infrared, and which wavelength range is effective in determining the presence or absence of a flame depends on the type of fuel, combustion conditions (air-fuel ratio, It depends largely on the presence or absence of exhaust gas recirculation, etc.). Generally, direct current light in the ultraviolet region is used for gas fuel, and flickering light (in the visible-infrared region) is used when burning oil or coal.
A method of detecting fluctuating light) is often used.

第3図は光ファイバを用いた従来型火炎検出器を示す。FIG. 3 shows a conventional flame detector using optical fibers.

図中視野24内にある火炎からの光は導光部である集光
レンズ26.保護管22内の光ファイバ21を介して火
炎からの熱輻射の小さい場所に設置した光電変換部23
に導かれ、電気信号に変換後、検出回路25で火炎有無
の判定を行う。
The light from the flame within the field of view 24 in the figure is collected by a condensing lens 26 which is a light guide. A photoelectric conversion unit 23 installed in a place where heat radiation from the flame is small via the optical fiber 21 inside the protection tube 22
After converting it into an electric signal, the detection circuit 25 determines whether there is a flame or not.

事業所用ボイラではバーナ容量も大きくかつバーナの設
置本数も例えば48〜50本と多いため、隣接バーナ相
互で火炎の干渉が生じる虞れがあり、これによって各バ
ーナの火炎位置の変動が生じ易い。さらに、窒素酸化物
(Not)低減燃焼法の一つとして排ガス混合燃焼等が
強化され、火炎の吹き飛び現象が生じ易くなっており、
検出対象火炎の位置変動が増大する傾向にある。
In boilers for business use, the burner capacity is large and the number of installed burners is large, for example, 48 to 50, so there is a risk of flame interference between adjacent burners, which tends to cause fluctuations in the flame position of each burner. Furthermore, mixed combustion of exhaust gas has been strengthened as one of the nitrogen oxide (Not) reduction combustion methods, and the phenomenon of flame blow-off is becoming more likely to occur.
The positional fluctuations of the flame to be detected tend to increase.

以上の問題点に鑑み、発明者等は燃焼条件が変化して火
炎の位置の変動が増大してもこれに追従できる多視野型
の火炎検出器を別途提案している。
In view of the above-mentioned problems, the inventors have separately proposed a multi-view flame detector that can follow even if the combustion conditions change and the flame position increases.

1      第4図はこの多視野型火炎検出器の導光
部(受光部)の構造を示す。図中受光部はファイバ角度
θf (θf=o、15”、30”)を有する3つの異
る視野を有しており、火炎の位置変動が生じても各ファ
イバのうち少くとも一つが常に火炎の1次燃焼域(火炎
の芯となる部分)を検出する様に、3本の光ファイバの
いずれかを選択しコネクタ28を介して検出光を判定部
に伝達するよう構成しである。この構造において、導光
部先端の小型化のために、光ファイバ21に対して、θ
fの角度をつける方法として熱曲げ加工を施し、金属製
のマウント部27に配置して一体化している。
1 Figure 4 shows the structure of the light guiding section (light receiving section) of this multi-field flame detector. In the figure, the light receiving section has three different fields of view with fiber angles θf (θf=o, 15", 30"), and even if the flame position changes, at least one of each fiber is always in the flame position. In order to detect the primary combustion region (the core of the flame), one of the three optical fibers is selected and the detection light is transmitted to the determination section via the connector 28. In this structure, in order to reduce the size of the tip of the light guide part, θ
As a method of forming the angle f, heat bending is performed, and the metal mount portion 27 is placed and integrated.

しかしながら光ファイバを屈曲加工することにより相対
光透過率は曲げ加工を施す以前の半分以下に低下し、か
つ透過率ピークが複数となって誤信号を発する虞れがあ
る。
However, by bending the optical fiber, the relative light transmittance decreases to less than half of the value before the bending process, and there is a risk that there will be multiple transmittance peaks, resulting in the generation of erroneous signals.

〔本発明の目的〕[Object of the present invention]

本発明は上述した問題点に鑑み構成したものであり、光
ファイバを屈曲しても相対光透過率の低下が少くしかも
誤信号を発することのない火炎検出器を提供することを
目的とする。
The present invention was constructed in view of the above-mentioned problems, and it is an object of the present invention to provide a flame detector in which the decrease in relative light transmittance is small even when an optical fiber is bent, and which does not generate false signals.

〔本発明の概要〕[Summary of the invention]

要する本発明は曲げ加工を施す光ファイ/Nlをグレー
ティラドインデックス型の光ファイバとして相対光透過
率の低下を最小にし、かつ透過率ピークを所定の入射角
度に対応して一個とし、誤信号の発生を防止するよう構
成したものである。
In summary, the present invention minimizes the decrease in relative light transmittance by using the optical fiber/Nl to be bent as a gray rad index type optical fiber, and also has one transmittance peak corresponding to a predetermined angle of incidence, thereby reducing erroneous signals. It is designed to prevent this from occurring.

〔実施例〕〔Example〕

以下本発明の実施例につき具体的に説明する。 Examples of the present invention will be specifically described below.

第1図において、視野15 (ファイバ角度θf−0度
)、視野16(θf−15度)、視野17(θf−30
度)からの光信号はセラミックカバー6内に配置した導
光部(受光部)先端1.光フアイバ中継コネクタ2.光
ファイバ3.別の光フアイバ中継コネクタ4.中継ファ
イバケーブル(3芯)5を介して光電変換部10に導入
され、電気信号に変換される。変換後の電気信号のうち
約50Hz以上の高周波変動分のみを周波数弁別アンプ
11で選択増幅し、これをマルチプレクサ−12に導き
、一定量M(例えば50m)で信号の切替を行い、A/
Dコンバータ13でディジタル信号に変換後、火炎判定
部14に導入し、火炎の有無を判定する。
In Figure 1, field of view 15 (fiber angle θf-0 degrees), field of view 16 (θf-15 degrees), field of view 17 (θf-30 degrees),
The optical signal from the light guide section (light receiving section) disposed inside the ceramic cover 6 is transmitted from the tip 1. Optical fiber relay connector 2. Optical fiber 3. Another fiber optic relay connector 4. The signal is introduced into the photoelectric conversion unit 10 via the relay fiber cable (3 cores) 5 and converted into an electrical signal. Of the electrical signals after conversion, only the high frequency fluctuations of about 50 Hz or more are selectively amplified by the frequency discrimination amplifier 11, guided to the multiplexer 12, where the signal is switched by a certain amount M (for example, 50 m), and the A/
After being converted into a digital signal by the D converter 13, the signal is introduced into a flame determination section 14 to determine the presence or absence of flame.

以上の構成中、火炎からの熱輻射が大きい導光部先端は
前述の如くセラミックカバー(アルミナ製)6内に収め
られており、先端のスリット部を介して火炎からの光を
導入するようになっている。
In the above configuration, the tip of the light guide, which has a large amount of heat radiation from the flame, is housed in the ceramic cover (made of alumina) 6 as described above, and the light from the flame is introduced through the slit at the tip. It has become.

また導光部1.中継コネクタ2.4及び光ファイバ3は
保護外管7.保護内管8内を流れる冷却用空気によって
冷却し、冷却用空気は保護外管7の先端より噴出させ、
導光部先端1に対するダスト付着を防止するようにして
いる。
Also, the light guide section 1. The relay connector 2.4 and the optical fiber 3 are connected to the protective outer tube 7. It is cooled by cooling air flowing inside the protective inner tube 8, and the cooling air is blown out from the tip of the protective outer tube 7.
This is to prevent dust from adhering to the light guide tip 1.

3つの視野(15,16,17)からの光信号は3芯の
中継ファイバケーブル5によって光電変換部10に導か
れるが、光電変換部は赤外光(1〜2.5μm波長)検
出素子と、可視−近赤外光(0,4〜0.9μm波長)
検出素子とを積層した構造となっており、3個の積層型
光電変換素子により各々2つの波長域の光を検出する。
Optical signals from the three fields of view (15, 16, 17) are guided to the photoelectric conversion unit 10 by a three-core relay fiber cable 5, and the photoelectric conversion unit includes an infrared light (1 to 2.5 μm wavelength) detection element and , visible-near infrared light (0.4-0.9 μm wavelength)
It has a structure in which detection elements are stacked, and each of the three stacked photoelectric conversion elements detects light in two wavelength ranges.

これにより合計6個の電気信号を得ている。なお積層型
光電変換素子の採用により構造の簡素化、低価格化が達
成できる。
As a result, a total of six electrical signals are obtained. Note that by adopting a stacked photoelectric conversion element, the structure can be simplified and the cost can be reduced.

次に周波数弁別アンプ11は火炎の−次燃焼域からの光
信号に固有な約50Hz〜IKHzの変動分のみを選択
的に増幅しており、背影光、隣接・対向火炎等による約
50Hz以下の低周波変動光の影響を除去し、誤信号の
発生を防止している。火炎判定部14ではマルチプレク
サ−12における各切替周期毎に、6個の電気信号のう
ち少くとも一つが予め設定しておいたしきい値以上にな
るか否かによって火炎の有無の判定を行う。
Next, the frequency discrimination amplifier 11 selectively amplifies only the fluctuations of about 50Hz to IKHz that are specific to the optical signal from the second combustion region of the flame, and it amplifies only the fluctuations of about 50Hz or less due to backlight, adjacent/opposed flames, etc. This eliminates the effects of low-frequency fluctuation light and prevents the generation of erroneous signals. The flame determination unit 14 determines whether or not there is a flame, depending on whether at least one of the six electrical signals exceeds a preset threshold value at each switching cycle in the multiplexer 12.

第2図は導光部先端の構造を示す。FIG. 2 shows the structure of the tip of the light guide.

金属製の光フアイバマウント部19の溝部に3本の石英
系グレーディッドインデックス、つまり分布屈折率(G
l)型光ファイバ18を装着している。3本の光ファイ
バはいづれもジャケットやシース材料等、全ての被覆を
除去してあり、コア部とその周囲のクラッド部とからの
み成っており、耐熱性を高めている。この場合視野15
の光ファイバは曲げ加工を施していないが、視野16゜
j      17に相当する光ファイバは熱曲げ加工
により所定のファイバ角度θrを実現している。
Three quartz-based graded indexes, that is, distributed refractive index (G
1) type optical fiber 18 is installed. All three optical fibers have all coatings such as jackets and sheath materials removed, and consist only of a core portion and a cladding portion around it, increasing heat resistance. In this case field of view 15
The optical fiber of 1 is not bent, but the optical fiber corresponding to the field of view 16°j 17 is thermally bent to achieve a predetermined fiber angle θr.

第6図(A)、  (B)はステップインデックス(S
r)型光ファイバと前記Gl、型光ファイバの屈折率分
布の違いを示す。Sl型光ファイバはコア部29の屈折
率はコア半径方向に対して均一になっているのに対し、
GI型光ファイバではコア部29の屈折率は分布型とな
っており、コア部29の中心部への集束性がSl型より
も高くなる特性を有している。
Figures 6 (A) and (B) show the step index (S
The difference in refractive index distribution between the r) type optical fiber and the above-mentioned Gl type optical fiber is shown. In the SL type optical fiber, the refractive index of the core portion 29 is uniform in the core radial direction, whereas
In the GI type optical fiber, the refractive index of the core portion 29 is distributed type, and the core portion 29 has a characteristic that the convergence to the center is higher than that of the SI type.

第7図(A)及び(B)はsr型、CI型の各光ファイ
バのコア部29における光伝送経路の概略を示す、Sl
型ではコアの屈折率が均一なため、a方向からの入射光
が伝送されにくくなるが、0曲げの影響を受けにくい特
性となっている。ここで、第5図はSl型の光ファイバ
の相対光透過率を示し、θf−0@の場合は1.0を実
現しているのに対し、θf=15°及び30″の場合に
は0.5をかなり下回ってしまう。さらにファイバを屈
曲することによりP、〜P#の如く、各ファイバについ
て透過率のピークが複数個生じ、誤信号発生の原因とな
る等、ファイバの屈曲により大幅に性能が低下すること
を示している。
FIGS. 7(A) and 7(B) schematically show the optical transmission path in the core section 29 of each SR type and CI type optical fiber.
Since the core of the mold has a uniform refractive index, it is difficult for incident light from the a direction to be transmitted, but the mold is not easily affected by zero bending. Here, Fig. 5 shows the relative light transmittance of the SL type optical fiber, and in the case of θf-0@, 1.0 is achieved, whereas in the case of θf = 15° and 30'', Furthermore, by bending the fiber, multiple transmittance peaks will occur for each fiber, such as P and ~P#, which can cause false signals. This shows that performance deteriorates.

第8図はGl型光ファイバを熱曲げ加工した場合の光伝
送特性を示す。図面から明らかなとおり、Gl型ファイ
バを屈曲した場合でも相対的透過率はほぼ0.5を保持
し、かつ所定入射角についてのみ透過率ピークを有する
ので誤信号の発生が防止でき、検出器の性能向上が可能
となる。
FIG. 8 shows the optical transmission characteristics when a Gl type optical fiber is thermally bent. As is clear from the drawing, even when the Gl-type fiber is bent, the relative transmittance maintains approximately 0.5 and has a transmittance peak only at a predetermined angle of incidence, which prevents the generation of false signals and improves the Performance can be improved.

〔効果〕〔effect〕

本発明は以上のとおりであるので、別途提案中の多視野
型火炎検出器の大幅な性能向上を達成できる。
Since the present invention is as described above, it is possible to significantly improve the performance of a multi-view flame detector that is currently being proposed separately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる火炎検出器の一実施例を示す構成
図、第2図は本発明になる火炎検出器の導光部先端の断
面図、第3図は光ファイバを利用した従来型の火炎検出
器の構成図、第4図は従来型火炎検出器導光部先端の断
面図、第5図は従来型火炎検出器導光部先端の光伝送特
性を示す線図、第6図(A)はSl型、同(B)はGI
型光ファイバの屈折率分布各々を示す模式図、第7図は
(A)は31型、同(B)はGl型光ファイバの光伝送
経路を各々示す模式図、第8図は本発明になる火炎検出
器導光部先端の光伝送特性を示す線図である。 l・・・導光部(受光部)先端、3・・・光ファイバ、
10・・・光電変換部、18・・・Gl型光ファイバ。 第1図 第2図 第3図 第4図 第5図 X射A/jjθ(創 第6図 GIl!! 第8図
Fig. 1 is a configuration diagram showing an embodiment of the flame detector according to the present invention, Fig. 2 is a sectional view of the tip of the light guide section of the flame detector according to the present invention, and Fig. 3 is a conventional one using an optical fiber. Figure 4 is a cross-sectional view of the tip of the light guide of a conventional flame detector, Figure 5 is a diagram showing the light transmission characteristics of the tip of the light guide of a conventional flame detector, and Figure 6 is a diagram showing the light transmission characteristics of the tip of the light guide of a conventional flame detector. Figure (A) is SL type, same (B) is GI type.
Fig. 7 is a schematic diagram showing the refractive index distribution of each type optical fiber, (A) is a schematic diagram showing the optical transmission path of the 31 type optical fiber, and (B) is a schematic diagram showing the optical transmission path of the Gl type optical fiber. FIG. 3 is a diagram showing the light transmission characteristics at the tip of the light guide section of a flame detector. l...Light guiding part (light receiving part) tip, 3... Optical fiber,
10... Photoelectric conversion unit, 18... Gl type optical fiber. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)受光部に位置する複数本の光フアイバのうち少く
とも一部の光フアイバを各々異る角度に屈曲して光フア
イバの入射角度を相違させ、このうち、少くとも屈曲加
工を行つた光フアイバについては分布屈折率型光フアイ
バ(GI型光フアイバ)としたことを特徴とする多視野
型火炎検出器。
(1) At least some of the optical fibers located in the light receiving section are bent at different angles to make the incident angles of the optical fibers different, and at least some of the optical fibers are bent. A multi-view flame detector characterized in that the optical fiber is a distributed index optical fiber (GI type optical fiber).
(2)前記受光部に対して、赤外波長域における光電変
換素子と、可視−近赤外波長域における光電変換素子と
を積層した光電変換部を接続したことを特徴とする特許
請求の範囲第(1)項記載の多視野型火炎検出器。
(2) A photoelectric conversion section in which a photoelectric conversion element in the infrared wavelength range and a photoelectric conversion element in the visible-near infrared wavelength range are stacked is connected to the light receiving part. The multi-field flame detector according to item (1).
JP60079167A 1985-04-16 1985-04-16 Multiple visual field type flame detector Pending JPS61240026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079167A JPS61240026A (en) 1985-04-16 1985-04-16 Multiple visual field type flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079167A JPS61240026A (en) 1985-04-16 1985-04-16 Multiple visual field type flame detector

Publications (1)

Publication Number Publication Date
JPS61240026A true JPS61240026A (en) 1986-10-25

Family

ID=13682407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079167A Pending JPS61240026A (en) 1985-04-16 1985-04-16 Multiple visual field type flame detector

Country Status (1)

Country Link
JP (1) JPS61240026A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447133A (en) * 1977-09-20 1979-04-13 Toshiba Corp Flame detector for combustion chamber of boiler
JPS5819622A (en) * 1981-07-22 1983-02-04 コンバツシヨン・エンジニアリング・インコ−ポレ−テツド Monitor device for flame
JPS59221520A (en) * 1983-05-31 1984-12-13 Sharp Corp Incomplete combustion sensing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447133A (en) * 1977-09-20 1979-04-13 Toshiba Corp Flame detector for combustion chamber of boiler
JPS5819622A (en) * 1981-07-22 1983-02-04 コンバツシヨン・エンジニアリング・インコ−ポレ−テツド Monitor device for flame
JPS59221520A (en) * 1983-05-31 1984-12-13 Sharp Corp Incomplete combustion sensing device

Similar Documents

Publication Publication Date Title
US4709155A (en) Flame detector for use with a burner
US4855718A (en) Fire detection system employing at least one optical waveguide
JPH04223228A (en) Gas-turbine-flame detecting apparatus having device for attenuating radiation of reflected flame
JPS61240026A (en) Multiple visual field type flame detector
JPH0697187B2 (en) Flame monitoring device using optical fiber
JPS5759124A (en) Flame detector
CN2411479Y (en) Device for detecting boiler flame using infrared light
JPS6136618A (en) Flame detecting device
JPS6339559Y2 (en)
JPS5979123A (en) Flame sensor
JPH0629666B2 (en) Flame detector
JP3711294B2 (en) Flame detection and combustion diagnostic equipment
JPS59109715A (en) Flame detecting device
JPH0627578B2 (en) Flame detector
JP3423454B2 (en) Multi-field optical probe
JPH071205B2 (en) Fire detector
JP2622382B2 (en) Flame detector
JPS61139726A (en) Flame detection apparatus
JP3258778B2 (en) Flame detection and combustion diagnostic device
JPS60263013A (en) Flame detector
JPS61124828A (en) Flame monitor apparatus
JP2006058165A (en) Flame detector
JPH1073243A (en) Flame detector and combustion diagnostic device
JPH057608B2 (en)
JPS62250315A (en) Flame detector