JP3711294B2 - Flame detection and combustion diagnostic equipment - Google Patents

Flame detection and combustion diagnostic equipment Download PDF

Info

Publication number
JP3711294B2
JP3711294B2 JP13953095A JP13953095A JP3711294B2 JP 3711294 B2 JP3711294 B2 JP 3711294B2 JP 13953095 A JP13953095 A JP 13953095A JP 13953095 A JP13953095 A JP 13953095A JP 3711294 B2 JP3711294 B2 JP 3711294B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
flame
wavelength
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13953095A
Other languages
Japanese (ja)
Other versions
JPH08327053A (en
Inventor
信夫 森本
和宏 山崎
弘 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP13953095A priority Critical patent/JP3711294B2/en
Publication of JPH08327053A publication Critical patent/JPH08327053A/en
Application granted granted Critical
Publication of JP3711294B2 publication Critical patent/JP3711294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Combustion (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、火炎検出および燃焼診断装置に係り、特に発電用火力プラント等の燃焼炉内火炎の有無および燃焼状態を監視する装置であって、装置の小型化を図り、従来の火炎検出器との互換性を容易にした火炎検出および燃焼診断装置に関する。
【0002】
【従来の技術】
近年の火力発電用ボイラでは中間負荷運用、DSS(毎日起動・停止)運転により頻繁にバーナの点火、消火作業が行われるようになっており、バーナ火炎の点火、消火状態を検出する火炎検出器は重要な構成要素になっている。火炎検出器として一般に使用されているものはほとんどは火炎の発光を検出し、火炎の有無を判定する光学式である。発電用ボイラ等のように多数のバーナを備えたマルチバーナ炉では、光検出式でかつ火炎のフリッカ(ちらつき)信号(火炎発光のAC成分)の強度から火炎の有無を判定するフリッカ分析式が適している(以下、光検出式ならびにフリッカ分析式火炎検出器を単に火炎検出器と記す)。
【0003】
図8に従来の火炎検出器の一例を示す。図8の火炎検出器はバーナ火炎80からの発光を3つの異なる観測視野82を持つ多視野形光ファイバプローブ83によって受光し、中継光ファイバ1を経て光電変換(O/E)ボード84により火炎発光を電気信号に変換し、この電気信号の特定周波数帯域成分(フリッカ信号)をもとに判定処理ボード85において火炎の点消火を判定する。判定処理ボード85の判定結果はリレーボードユニット88を経てバーナ自動制御装置89に送られ、バーナの自動制御が行われるとともに通信制御ボード86を介してホストコンピュータに情報を提供する。図9は火炎検出器の盤構成の一例を示したものである。図9中でO/E 1〜24は図8の光電変換ボード84であり、SBC 1〜24は図8の判定処理ボード85、CCBは通信制御ボード86であり、リレーボードラックはリレーボードユニット88が納まっている個所である。図9に示した火炎検出器盤90はバーナ数24本対応の例を示している。図10に光電変換(O/E)ボード84に搭載される光検出器の構成を示す。3本の中継光ファイバ1からの光を受光窓102を介して3個の受光面100で直接受ける構成である。中継光ファイバ1のコア径は200μm、それに対し受光面は2.4×2.4mm程度のサイズを持っており、中継光ファイバの光軸ずれ、光検出器の相対的な位置ずれを考慮する必要性が少ない。
【0004】
また、環境対策等の面からボイラ等の燃焼装置においては窒素酸化物、すすおよび一酸化炭素を極力発生させないことが望まれている。このような燃焼状態を形成するためには燃焼炉内で燃料と空気が適度に混合する火炎を形成し、これにより燃焼炉内に極端な高温度領域および極端な低温度領域を形成させないことが必要である。このような燃焼状態の監視を行う装置の1つに燃焼火炎の輻射光を所定の数点の波長について分光分析した結果から、燃焼状態を診断する分光分析式燃焼診断装置(以下、燃焼診断装置と記す)がある。マルチバーナ炉である近年の大容量火力発電用ボイラでは多数本あるバーナの個々の火炎の保炎が最重要であり、バーナ個々の燃焼状態を診断する必要がある。同様にバーナ毎に設置される火炎検出器と機能の一体化を図った装置として図11に示す構成の光センサを備えた装置がある。この光センサは火炎検出用の火炎発光のフリッカ(ちらつき)成分分析機能と燃焼診断用の数点の波長における分光分析機能を兼ね備えた火炎発光分析用センサであり、以下、火炎検出・燃焼診断併用型火炎センサまたは単に火炎センサと記述する。
【0005】
図11に示した従来の火炎検出・燃焼診断併用型火炎センサは視野数分の光ファイバ1、コリメータ用のロッドレンズ110、ガラスブロック111、光干渉バンドパスフィルタ112〜116、燃焼診断用の光検出器117〜121、火炎検出用の光検出器122から主に構成される。光ファイバ1より伝送されてきた火炎発光はロッドレンズ110により並行光線に変換され、ガラスブロック111に入射する。ガラスブロック111に入射した光は光干渉バンドパスフィルタ112〜116において入射光の大部分が反射され、多重反射によりガラスブロック111内を伝搬し、火炎検出用光検出器122によって受光され電気信号128に変換される。光干渉バンドパスフィルタ112〜116における多重反射の過程で各干渉フィルタの膜材質、膜厚および層数によって決まる狭波長帯域の光のみが干渉フィルタ112〜116を透過し、燃焼診断用の光検出器117〜121によって電気信号123〜127に変換される。燃焼診断用の光検出器117〜121の出力電気信号123〜127から得られる所定の5波長における分光分析結果から火炎燃焼状態の特徴量(火炎温度、ガス吸収等)を抽出し、また火炎検出用の光検出器122の出力電気信号128から火炎発光のフリッカ(ちらつき)成分を分析し、火炎の有無を判定する。図11に示した構成は各視野ごとに設けられ、3視野のものでは紙面と直角方向に3つ平並して設けられることになる。
【0006】
【発明が解決しようとする課題】
図11に示した従来技術では、火炎検出機能と燃焼診断機能を同一の多視野型光ファイバプローブ、中継光ファイバケーブルを使用して実現を図っているが、既にボイラ等の燃焼炉に設置されている図8および図9のような既設の火炎検出器との互換性については考慮されていない。また、新設の場合でも、従来の火炎検出器をほぼそのまま使用できれば検査、製作、敷設等にかかるコストの増加を抑えられ新機能を付加し、かつ低コストのシステムを提供することができる。しかしながら、既設の火炎検出器と互換性を持たせる上で次のような問題がある。
【0007】
マルチバーナ炉である近年の大容量火力発電用ボイラでは多数本あるバーナの個々の火炎の保炎が最重要であり、メンテナンス性、信頼性の上で火炎検出器にはバーナ毎に火炎の状態を検出、判定するセンサユニット、それに基づき燃焼状態を調整するコントロールユニットが分散配置される。また、火炎検出器用盤の大型化はコストの大幅な増加になるとともに盤を設置する機器室等のサイズ制限から不適当であり、極力盤のダウンサイジング化を図り、かつ1つの盤で多数のバーナに対応し、盤のサイズと設置台数を抑える必要がある。このためバーナ毎に設置するセンサユニットも小型化が必要である。
【0008】
既設の火炎検出器に分光分析による燃焼診断機能を容易に追設する手段としては、既設の火炎検出器のセンサユニットを既設のものと入力、出力、ユニットの外観ともに互換性を持たせたまま、図11に示した火炎検出機能と燃焼診断機能を併用したセンサを実装したものと交換するのがよいと考えられる。
互換ボードへの実装を図り、既設盤へ組込むためには光センサの小型、堅牢化が必要になる。図11に示した光センサを小型化すること自体は、光検出器を各出射光毎に個別に取付けるのではなく、アレイ化することにより達成できる。他のガラスブロックやレンズ、干渉フィルタ等はマイクロオプティックスの代表的な部品であることから、1mm〜数mm程度のサイズで高精度のものの入手は容易である。しかしながら、小型化することにより光軸合わせが難しくなり、特に従来の火炎検出器用の中継光ファイバは図10に示した光検出器と接続することを前提に設計されているため、高い製作精度を持つ必要性がなかった。光ファイバと光検出器受光面との位置合わせは両者のサイズの違いが大きいことから容易であり、また両者の中心軸が一致する必要性が少ない。これに対して小型化した図11に示す光ファイバとレンズを含む分光光学系との位置合わせは、中心軸がずれることにより光線の伝搬角度、拡がりが変化し、多大な損失を生じる原因になる。これはサイズが小さくなるに従い影響は大である。
【0009】
また、図11に示した光センサの小型化に必要な光検出器(117〜122)のアレイ化もその組立て方法から分光光学系との光軸合わせを困難にする要因となる。図10に示した従来の火炎検出器の光電変換ボード用光検出器も受光面3個からなるリニアアレイであり、この図を用いて説明する。3個の受光面100は基盤104上に形成される。これは単品の受光面を切り出して複数個配置するか、またはマスクを作成して基盤上に半導体膜を成膜して行われる。この受光面同士の相対的な位置精度は高いが、問題はケース101との位置関係である。受光面のみでは環境による劣化が激しく金属、セラミック、樹脂などのケースが必要である。受光面はこのケース内に固定され、出力取出し用のピン等と配線されるが、一般にケースとその中の受光面との位置関係に精度保証はなく、またケース自体の寸法公差も±0.3〜0.5mmと大である。また、安価に光検出器のアレイ化を図るためにはケースの製作精度をより引き下げる必要もある。
【0010】
このような場合、光電変換後の出力電気信号が最大になるように監視しながら光軸調整を行うか、または可視光を入力し、そのスポットを確認しながらの調整が一般的に行われるが、多数本のバーナ毎に設置されるセンサ毎にこのような調整を行うことはコスト、信頼性の点から問題がある。
本発明の目的は、上記従来技術の問題点を解決し、火炎検出と燃焼状態診断を行う装置を高い精度にて小型化するとともに、従来の火炎検出器との互換性を向上させた火炎検出および燃焼診断装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため本願で特許請求される発明は以下のとおりである。
(1)光プローブによって受光した火炎発光を伝送する中継光ファイバと、中継光ファイバによって伝送された火炎発光を受入れて所定の複数の狭波長帯域の単色光と火炎発光からこれら所定の複数の狭波長帯域の単色光を除いた他の波長域の光に分光し、これら分光された光の強度に応じた電気信号に変換する光電変換部と、所定の複数の狭波長帯域の単色光の強度分析から燃焼診断を行う手段と、その他の波長域の光強度に応じた電気信号のフリッカ(ちらつき)成分分析から火炎の点火、消火判定を行う手段とを備えた火炎検出および燃焼診断装置において、前記光電変換部が、中継光ファイバからの出射光を受光する中継光ファイバよりもコア径が大きい受光用光ファイバと受光用光ファイバの出射光線の拡がりを防ぐ集光レンズと集光レンズにより集光された光線を平行光線に変換するロッドレンズとからなる中継光ファイバ光軸ずれの影響を抑制する手段と、前記ロッドレンズからの光を受けてこれを前記所定の波長帯および波長域に分光し、これら分光された光の強度に応じた電気信号に変換する手段とを有することを特徴とする火炎検出および燃焼診断装置。
【0012】
(2)光プローブによって受光した火炎発光を伝送する中継光ファイバと、中継光ファイバによって伝送された火炎発光を受入れて所定の複数の狭波長帯域の単色光と火炎発光からこれら単色光を除いた他の波長帯域の光に分光し、これら分光された光の強度に応じた電気信号に変換する光電変換部と、所定の複数の狭波長帯域の単色光の強度分析から燃焼診断を行う手段と、その他の波長域の光強度に応じた電気信号のフリッカ成分分析から火炎の点火、消火判定を行う手段とを備えた火炎検出および燃焼診断装置において、前記光電変換部が、中継光ファイバの出射光を受光し、かつ中継光ファイバ光軸ずれの影響を抑制して平行光線として入射させる手段と、前記入射光を対向する2面に多重反射により伝播するように構成されたガラスブロックと、該ガラスブロックの多重反射伝播位置に配置され特定波長の光を透過する複数枚の光干渉バンドパスフィルタとからなる分光手段と、前記複数枚の光干渉バンドパスフィルタの透過光と多重反射光とをそれぞれ受入れる複数本のロッドレンズと、このロッドレンズを前記分光手段に保持する部材と、ロッドレンズの出射光をそれぞれ受入れる複数の受光面を持ち出射光を電気信号に変換する光検出素子とを備えていることを特徴とする火炎検出および燃焼診断装置。
【0013】
(3)光プローブによって受光した火炎発光を伝送する中継光ファイバと、中継光ファイバによって伝送される火炎の発光を所定の複数点の波長の単色光と火炎発光からこれら所定の複数点の波長の単色光を除いたその他の波長域の光に分光し、所定の複数点の波長の単色光とその他の波長域の光のそれぞれを光強度に応じた電気信号に変換する光電変換部からなり、所定の複数点の波長の単色光強度分析から燃焼診断を行い、その他の波長域の光強度に応じた電気信号のフリッカ(ちらつき)成分分析から火炎の点火、消火判定を行う火炎検出および燃焼診断装置において、前記光電変換部は、中継光ファイバからの出射光を受光する、中継光ファイバよりコア径が大きい受光用光ファイバと、受光用光ファイバの出射光線の拡がりを防ぐ集光レンズと集光レンズにより集光された光線を並行光線に変換するロッドレンズからなる中継光ファイバ光軸ずれの影響を抑制する手段と、中継光ファイバの出射光が前記中継光ファイバ光軸ずれの影響を抑制する手段を経て入射するガラスブロックと、ガラスブロックの少なくとも2面に入射光が多重反射により伝搬するように配置された複数枚の光干渉バンドパスフィルタからなる分光手段と、前記複数枚の光干渉バンドパスフィルタの透過光と多重反射光を受ける複数本のロッドレンズと、このロッドレンズを前記分光手段に保持する部材とロッドレンズの出射光を受ける複数の受光面を持ち出射光を電気信号に変換する光検出素子アレイと、ロッドレンズおよび光検出素子アレイの受光面配置に合わせた貫通孔を持ち、ロッドレンズを光軸合わせ用ピンとして利用し、かつ光検出素子アレイの受光面を光軸合わせ用のマーキングとして利用する位置合わせ用部材からなることを特徴とする火炎検出および燃焼診断装置。
【0014】
【作用】
分光光学系に対して光軸合わせ精度上問題のある従来の火炎検出器用中継光ファイバ1に対して光軸ずれの影響を抑制するためには、よりコア径が大きく、また屈折率分布パラメータが中継光ファイバ以上である光ファイバで受光するのが簡便な手段である。しかしながら、コア径が大きく屈折率分布パラメータの大きい光ファイバの出射光スポット、および出射光線の拡がりは中継光ファイバよりも拡大するため、ロッドレンズ単品で並行光線に変換することは困難であり、ガラスブロック内を伝搬する光線のビーム径、拡がり角が大きくなり、損失がかえって増加することになる。ロッドレンズにより拡がりを持った入射光線の並行光線への変換は、入射光が点光源である場合に最高の効果を持つ。ゆえに本発明では集光レンズにより光ファイバの出射光をロッドレンズの入射端の光軸上に焦点を結ぶように構成することによって効果的に並行光線への変換が可能である。これによって中継光ファイバと中継光ファイバの出射光を受ける受光用光ファイバとの間で光軸ずれが起こっても、ガラスブロックなどの分光光学系内を伝搬する光線への影響を抑制することができる。また、これは製作精度から生じる軸ずれのみでなく、振動によって生じる光ファイバの接続状態の変化(軸ずれ、間隙等)の影響も抑制できる。
【0015】
光検出素子アレイとの接続に関しては、前述のように受光面同士の相対的な位置精度は比較的高いことから、ケースとの位置関係、精度は考えず、図3〜4に示すように受光面そのものを光軸合わせ用のマークとして利用し、また分光系からの出射光を光検出素子アレイの受光面へ導き、集光するロッドレンズ11を設け、このロッドレンズ自体を位置合わせ用のピンとして利用することにより簡単な構成で確実に光検出素子アレイと分光光学系との結合が可能である。
【0016】
ゆえに本発明によれば図11の光センサの小型化を図り、従来の火炎検出器と互換性を持った光電変換ボードへの実装と中継光ファイバとの低損失な接続を可能にし、既設、新設を問わず従来の火炎検出器のシステムを使用して新たに分光分析式燃焼診断機能を付加した高機能な火炎検出器を提供することができる。
本発明は下記の手段によって前記課題を解決し、図11の光センサの小型化を図り、従来の火炎検出器と互換性を持った光電変換ボードへの実装と中継光ファイバとの低損失な接続を可能にすることにより、既設、新設を問わず従来の火炎検出器のシステムを使用して新たに分光分析式燃焼診断機能を付加した高機能な火炎検出器を提供するものである。
【0017】
▲1▼ 中継光ファイバからの出射光を受光する、中継光ファイバよりコア径が大きい受光用光ファイバと、ビーム径の拡がりを防ぐ集光レンズと集光レンズにより集光された光線を並行光線に変換するロッドレンズからなるコリメータ。
▲2▼ 格子状に配置した複数の受光面を持つ光検出素子アレイと、この光検出素子アレイに分光系からの出射光を集光する受光面数分の本数のロッドレンズと、このロッドレンズを光軸合わせ用ピンとして利用し、かつ格子状に配置した複数の受光面を光軸合わせ用のマーキングとして利用する位置合わせ用部材からなる光検出素子アレイ光軸合わせ手段。
【0018】
▲3▼ 光軸合わせを容易にし、かつ低損失化を図ることにより性能向上と工程の簡素化による低コスト化を図る。また、簡素な構成からデバイスの小型化、堅牢化を図りボード実装を容易にする。
【実施例】
本発明になる従来の火炎検出器との互換性を実現するための光センサの構成を1視野分について図1に示す。図1の光センサはコア径200μm中継光ファイバ1の出射光を受けるコア径400μmの光ファイバ2とコリメータ3、ガラスブロック5、光干渉バンドパスフィルタ6〜10、光干渉バンドパスフィルタ6〜10の透過光を受け光検出素子アレイ13、14に導くロッドレンズ11、ロッドレンズ11を保持するホルダー12、ロッドレンズ11と光検出素子アレイ13とを結合させる位置合わせ用部材15から主に構成される。複数視野に対しては図1の構成が紙面を貫く方向に視野数分配置される。本実施例では3視野である。
【0019】
コリメータ3の拡大図を図2に示す。コリメータ3はコア径400μmの受光用光ファイバ2の光軸合わせおよび保持を行うためのフェルール23、コア径400μm光ファイバの出射光を集光する直径1mmの球レンズ20、球レンズ20の保持とコア径400μm光ファイバとの光軸合わせを行うためのレンズガイド21、および直径2mmのロッドレンズ22から構成される。コリメータ3ではコア径400μm光ファイバ2の出射光をまず球レンズ20により受け、ロッドレンズ22の入射面光軸上に集光させる。ロッドレンズ22は球レンズ20の出射光を並行光線に変換して図1のガラスブロック5、干渉バンドパスフィルタ6〜10からなる分光系に入射せしめる。
【0020】
分光系に入射した光線4はガラスブロック5内を多重反射を行って伝搬し、多重反射の過程で光干渉バンドパスフィルタ6〜10の透過波長成分のみが干渉バンドパスフィルタ6〜10を透過し、直径2mmのロッドレンズ11を経て光検出素子アレイ13に入射し電気信号に変換される。分光の機能上は図11に示した光センサと同じである。
【0021】
図3に光検出素子アレイ13の詳細構成を示す。また、実施例の寸法も並記した。本実施例では小型化を図るために光検出素子アレイのケース30をセラミックで構成している。セラミックケース30内に位置する基盤32上に格子状に9個の受光面31a〜31iを配置している。受光面31a〜31iのサイズはロッドレンズ11とほぼ同等のサイズである。受光面31a、31d、31gは図1において干渉バンドパスフィルタ6の透過光を、受光面31b、31e、31hは干渉バンドパスフィルタ8の透過光を、受光面31c、31f、31iは干渉バンドパスフィルタ10の透過光をロッドレンズ11を介して受光するものである。受光面31a〜31c、31d〜31f、31h〜31iは多視野形光ファイバプローブ83の観測視野82a、82b、82cに相当する。
【0022】
図4に位置合わせ用部材15の光検出素子アレイ13の取付けを示す。位置合わせ用部材15は光検出素子アレイ13のケース30に対する位置関係をもとに取付けを行うのではなく、受光素子と同間隔で配置したスルーホール41と受光面31との位置関係をもとに取付けるものであり、光検出素子アレイ13の格子状に配置した受光面31が位置決め用のマーキングである。これによりケース30の寸法公差、およびケースと受光面との位置関係によらず、確実にまた容易に受光面との位置合わせが可能である。また、ケース30の寸法公差は精度を出す必要がなく製作、検査の工程を簡略化できることからコストを下げることができる。
【0023】
図5にガラスブロック5、干渉バンドパスフィルタ6〜10からなる分光系と光検出素子アレイ13、14との結合法を示す。光検出素子アレイ13、14に取付けた位置合わせ用部材15のスルーホール41とレンズホルダ12とをロッドレンズ11をピンとして位置合わせ、接続を行うことにより確実かつ容易に結合することができる。
【0024】
以上述べた構成によって、火炎検出機能と燃焼診断機能の併用化を図り、かつ従来の火炎検出器の光電変換ボードと互換性を持たせる上で必要な光センサの小型化の点で問題であった中継光ファイバの光軸ずれの抑制、光検出素子アレイ受光面との確実かつ容易な光軸合わせが可能となる。
図6および図7に本発明になる、従来の火炎検出器に燃焼診断機能を付加した火炎検出器の盤構成を示す。
【0025】
図6および図7において火炎検出器盤60のSBC(判定処理ボード)、CCB(通信制御ボード)、リレーボードラックおよび盤そのものは従来のものをそのまま使用し、光電変換(O/E)ボードを図1の光センサを搭載した分光分析機能付き互換形光電変換ボード61に交換し、新たに1枚燃焼診断用の分光データを収集するボード62と、このデータ収集ボード62とネットワーク63により接続される燃焼診断用の解析用コンピュータ、表示装置等を収納した盤70を一面追加するのみで、新設、既設を問わず従来の火炎検出器に燃焼診断機能を付加することができる。
【0026】
【発明の効果】
本発明によれば、装置をきわめてコンパクトに、かつ光軸ずれの影響を抑制して精度の高いものとすることができ、かつ新設のみならず既設の火炎検出器においても光ファイバプローブ、中継光ファイバケーブル、盤をそのまま使用してセンサ部のみを燃焼診断用の分光分析機能搭載の互換形ボードに交換することにより、個別バーナ燃焼診断機能を容易に追設できる合理的なシステムを提供できる。
【図面の簡単な説明】
【図1】本発明になる火炎検出・燃焼診断併用型分光分析機能付き光センサの構成を示す図。
【図2】本発明になる光センサのコリメータ部の詳細図。
【図3】本発明になる光センサ用光検出素子アレイの構成を示す図。
【図4】光検出素子アレイ用位置合わせ用部材の構成を示す図。
【図5】光検出素子アレイと分光光学系との結合を示す図。
【図6】、
【図7】本発明になる従来の火炎検出器に燃焼診断機能を付加したシステムの構成を示す図。
【図8】従来の火炎検出器の構成を示す図。
【図9】従来の火炎検出器の盤構成を示す図。
【図10】従来の火炎検出器の光電変換ボード用光検出器を示す図。
【図11】従来の火炎検出機能と燃焼診断機能の併用化を図った光センサの構成を示す図。
【符号の説明】
1…中継光ファイバ(200μm)、2…400μm光ファイバ(受光用光ファイバ)、3…コリメーター、4…伝搬光線、5…ガラスブロック、6〜10…光干渉バンドパスフィルタ、11…ロッドレンズ(直径2mm)、12…ホルダー、13、14…光検出素子アレイ、15…位置合せ用部材、17…火炎発光。
[0001]
[Industrial application fields]
The present invention relates to a flame detection and combustion diagnostic apparatus, and more particularly to an apparatus for monitoring the presence or absence and combustion state of a flame in a combustion furnace such as a power plant for power generation. The present invention relates to a flame detection and combustion diagnostic device that facilitates the compatibility of the two.
[0002]
[Prior art]
In recent boilers for thermal power generation, burner ignition and extinguishing work are frequently performed by intermediate load operation and DSS (daily start / stop) operation, and a flame detector that detects the ignition and extinguishing status of the burner flame Is an important component. Most of the commonly used flame detectors are optical systems that detect the emission of flame and determine the presence or absence of flame. In a multi-burner furnace equipped with a large number of burners, such as a power generation boiler, a flicker analysis formula for determining the presence or absence of a flame from the intensity of a light flicker signal (flame emission signal) is used. (Hereinafter, the light detection type and flicker analysis type flame detector is simply referred to as a flame detector).
[0003]
FIG. 8 shows an example of a conventional flame detector. The flame detector of FIG. 8 receives light emitted from the burner flame 80 by a multi-field optical fiber probe 83 having three different observation fields 82, passes through the relay optical fiber 1, and flames by a photoelectric conversion (O / E) board 84. The light emission is converted into an electric signal, and the fire extinguishing of the flame is determined in the determination processing board 85 based on a specific frequency band component (flicker signal) of the electric signal. The determination result of the determination processing board 85 is sent to the burner automatic control device 89 via the relay board unit 88 to perform automatic control of the burner and to provide information to the host computer via the communication control board 86. FIG. 9 shows an example of the panel configuration of the flame detector. 9, O / E 1 to 24 are the photoelectric conversion board 84 of FIG. 8, SBC 1 to 24 are the determination processing board 85 of FIG. 8, CCB is the communication control board 86, and the relay board rack is a relay board unit. This is where 88 is stored. The flame detector panel 90 shown in FIG. 9 shows an example corresponding to 24 burners. FIG. 10 shows a configuration of a photodetector mounted on the photoelectric conversion (O / E) board 84. In this configuration, the light from the three relay optical fibers 1 is directly received by the three light receiving surfaces 100 through the light receiving window 102. The core diameter of the repeater optical fiber 1 is 200 μm, while the light receiving surface has a size of about 2.4 × 2.4 mm, taking into account the optical axis misalignment of the repeater optical fiber and the relative misalignment of the photodetector. Less need.
[0004]
Moreover, it is desired that nitrogen oxides, soot, and carbon monoxide are not generated as much as possible in a combustion apparatus such as a boiler from the viewpoint of environmental measures. In order to form such a combustion state, it is necessary to form a flame in which the fuel and air are appropriately mixed in the combustion furnace, thereby preventing an extremely high temperature region and an extremely low temperature region from being formed in the combustion furnace. is necessary. One of the devices for monitoring the combustion state is a spectroscopic combustion diagnostic device (hereinafter referred to as a combustion diagnostic device) for diagnosing the combustion state from the result of spectral analysis of the radiation light of the combustion flame for a predetermined number of wavelengths. ). In recent large-capacity thermal power generation boilers that are multi-burner furnaces, flame holding of a large number of individual burners is the most important, and it is necessary to diagnose the combustion state of each burner. Similarly, there is an apparatus provided with an optical sensor having the configuration shown in FIG. 11 as an apparatus that integrates functions with a flame detector installed for each burner. This optical sensor is a flame emission analysis sensor that combines the flicker component analysis function of flame emission for flame detection and the spectral analysis function at several wavelengths for combustion diagnosis. Type flame sensor or simply flame sensor.
[0005]
The conventional flame sensor / combustion diagnostic combined flame sensor shown in FIG. 11 includes optical fibers 1 corresponding to the number of visual fields, a collimator rod lens 110, a glass block 111, optical interference bandpass filters 112 to 116, and light for combustion diagnosis. It mainly comprises detectors 117 to 121 and a light detector 122 for detecting flames. The flame emission transmitted from the optical fiber 1 is converted into parallel rays by the rod lens 110 and enters the glass block 111. Most of the light incident on the glass block 111 is reflected by the optical interference bandpass filters 112 to 116, propagates through the glass block 111 by multiple reflection, is received by the flame detection photodetector 122, and is received by the electric signal 128. Is converted to In the process of multiple reflection in the optical interference bandpass filters 112 to 116, only light in a narrow wavelength band determined by the film material, film thickness, and number of layers of each interference filter is transmitted through the interference filters 112 to 116, and light detection for combustion diagnosis is performed. It is converted into electrical signals 123 to 127 by the devices 117 to 121. Features of the flame combustion state (flame temperature, gas absorption, etc.) are extracted from the spectroscopic analysis results at five predetermined wavelengths obtained from the output electrical signals 123 to 127 of the photodetectors 117 to 121 for combustion diagnosis, and flame detection is performed. The flicker component of the flame emission is analyzed from the output electric signal 128 of the light detector 122 for use, and the presence or absence of the flame is determined. The configuration shown in FIG. 11 is provided for each field of view, and in the case of three fields of view, three are arranged in parallel in the direction perpendicular to the paper surface.
[0006]
[Problems to be solved by the invention]
In the prior art shown in FIG. 11, the flame detection function and the combustion diagnosis function are realized by using the same multi-view type optical fiber probe and relay optical fiber cable, but they are already installed in a combustion furnace such as a boiler. The compatibility with existing flame detectors as shown in FIGS. 8 and 9 is not considered. Even in the case of a new installation, if the conventional flame detector can be used almost as it is, an increase in costs for inspection, production, installation, etc. can be suppressed, a new function can be added, and a low-cost system can be provided. However, there are the following problems in providing compatibility with existing flame detectors.
[0007]
In recent large-capacity thermal power generation boilers, which are multi-burner furnaces, it is most important to hold the flames of each of the burners. For the sake of maintainability and reliability, the flame detector has a flame condition for each burner. Sensor units for detecting and judging the above and control units for adjusting the combustion state based on the sensor units are distributed. In addition, an increase in the size of the flame detector panel is not appropriate due to the significant increase in cost and the size limitation of the equipment room where the panel is installed. Corresponding to the burner, it is necessary to reduce the size and number of installed panels. For this reason, the sensor unit installed for each burner also needs to be downsized.
[0008]
As a means to easily add a combustion diagnostic function by spectroscopic analysis to an existing flame detector, the existing flame detector sensor unit is compatible with the existing one in terms of input, output, and unit appearance. It is considered that it is better to replace the sensor with a combination of the flame detection function and the combustion diagnosis function shown in FIG.
In order to mount it on a compatible board and incorporate it into an existing board, it is necessary to make the optical sensor compact and robust. The miniaturization of the optical sensor shown in FIG. 11 can be achieved by arraying the photodetectors instead of individually attaching the photodetectors for each outgoing light. Since other glass blocks, lenses, interference filters, and the like are typical parts of micro-optics, it is easy to obtain highly accurate ones with a size of about 1 mm to several mm. However, the downsizing makes it difficult to align the optical axis. In particular, the conventional repeater optical fiber for the flame detector is designed to be connected to the photodetector shown in FIG. There was no need to have. The alignment between the optical fiber and the light receiving surface of the photodetector is easy because of the large difference in size between the two, and there is little need for the central axes of the two to coincide. On the other hand, the alignment of the optical fiber and the spectroscopic optical system including the lens shown in FIG. 11 which are reduced in size changes the propagation angle and spread of the light beam due to the deviation of the central axis, causing a great loss. . This has a greater effect as the size decreases.
[0009]
In addition, an array of photodetectors (117 to 122) necessary for downsizing the optical sensor shown in FIG. 11 is also a factor that makes it difficult to align the optical axis with the spectroscopic optical system due to its assembly method. The photoelectric detector for the photoelectric conversion board of the conventional flame detector shown in FIG. 10 is also a linear array having three light receiving surfaces, and will be described with reference to this figure. Three light receiving surfaces 100 are formed on the substrate 104. This is performed by cutting out a single light receiving surface and arranging a plurality of light receiving surfaces, or by forming a mask and forming a semiconductor film on a substrate. Although the relative positional accuracy between the light receiving surfaces is high, the problem is the positional relationship with the case 101. Only the light-receiving surface is severely degraded by the environment, and cases such as metal, ceramic, and resin are required. The light receiving surface is fixed in this case and wired with an output lead pin or the like. Generally, there is no guarantee of accuracy in the positional relationship between the case and the light receiving surface in the case, and the dimensional tolerance of the case itself is ± 0. It is as large as 3 to 0.5 mm. In addition, it is necessary to further reduce the manufacturing accuracy of the case in order to array the photodetectors at a low cost.
[0010]
In such a case, the optical axis adjustment is generally performed while monitoring so that the output electric signal after photoelectric conversion is maximized, or the adjustment is performed while inputting visible light and checking the spot. Such adjustment for each of the sensors installed in each of the many burners is problematic in terms of cost and reliability.
An object of the present invention is to solve the above-mentioned problems of the prior art, downsize the apparatus for performing flame detection and combustion state diagnosis with high accuracy, and to detect flame with improved compatibility with conventional flame detectors. And providing a combustion diagnostic apparatus.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) A relay optical fiber that transmits the flame emission received by the optical probe, and the flame emission transmitted by the relay optical fiber, and accepts the predetermined plurality of narrow wavelength bands from the monochromatic light and the flame emission. A photoelectric conversion unit that splits light into other wavelength ranges excluding monochromatic light in the wavelength band and converts it into an electrical signal corresponding to the intensity of the split light, and the intensity of the monochromatic light in a plurality of predetermined narrow wavelength bands In a flame detection and combustion diagnostic apparatus comprising means for performing combustion diagnosis from analysis and means for performing flame ignition and extinguishing determination from flicker (flicker) component analysis of electrical signals according to light intensity in other wavelength ranges, A light receiving optical fiber having a core diameter larger than that of the relay optical fiber that receives the light emitted from the relay optical fiber, and a condensing lens that prevents spreading of the light emitted from the light receiving optical fiber; Means for suppressing the influence of optical axis deviation of the relay optical fiber comprising a rod lens that converts the light beam collected by the optical lens into a parallel light beam; A flame detection and combustion diagnostic apparatus, characterized by comprising means for spectrally dividing into a wavelength range and converting it into an electrical signal corresponding to the intensity of the split light.
[0012]
(2) The relay optical fiber that transmits the flame emission received by the optical probe, and the flame emission transmitted by the relay optical fiber are received, and the monochromatic light is removed from a predetermined plurality of narrow wavelength band monochromatic light and flame emission. A photoelectric conversion unit that splits light into other wavelength bands and converts them into electrical signals according to the intensity of the split light; and means for performing combustion diagnosis from intensity analysis of a predetermined plurality of narrow wavelength bands of monochromatic light; In the flame detection and combustion diagnostic apparatus comprising means for performing ignition and extinguishing judgment from flicker component analysis of electrical signals according to light intensity in other wavelength ranges, the photoelectric conversion unit is configured to output the relay optical fiber. Means for receiving incident light and suppressing the influence of the optical axis deviation of the repeater optical fiber so as to be incident as a parallel beam; and a glass configured to propagate the incident light to two opposing surfaces by multiple reflection. Spectroscopic means comprising a block and a plurality of optical interference bandpass filters that are arranged at the multiple reflection propagation position of the glass block and transmit light of a specific wavelength, and multiplexed with the transmitted light of the plurality of optical interference bandpass filters Light detection that converts a plurality of rod lenses that receive reflected light, a member that holds the rod lens to the spectroscopic means, and a plurality of light receiving surfaces that respectively receive the emitted light of the rod lenses and converts the emitted light into an electrical signal A flame detection and combustion diagnostic apparatus comprising: an element.
[0013]
(3) The relay optical fiber that transmits the flame emission received by the optical probe, and the flame emission transmitted by the relay optical fiber is changed from the monochromatic light and the flame emission of the predetermined multiple points to the wavelengths of the predetermined multiple points. It consists of a photoelectric conversion unit that splits into light of other wavelength ranges excluding monochromatic light, and converts each of monochromatic light of a predetermined plurality of wavelengths and light of other wavelength ranges into an electric signal according to the light intensity, Combustion diagnosis is performed from single-color light intensity analysis at a plurality of predetermined wavelengths, and flame detection and combustion diagnosis is performed to determine flame ignition and extinction from flicker component analysis of electrical signals according to light intensity in other wavelength ranges In the apparatus, the photoelectric conversion unit receives the outgoing light from the relay optical fiber, and prevents the light receiving optical fiber having a larger core diameter than the relay optical fiber and the spread of the outgoing light from the light receiving optical fiber. Means for suppressing the effect of optical axis deviation of the relay optical fiber consisting of a rod lens that converts the light collected by the optical lens and the condensing lens into parallel light, and the output light of the relay optical fiber is offset from the optical axis of the relay optical fiber A spectroscopic means comprising a glass block incident through a means for suppressing the influence of the light, a plurality of optical interference bandpass filters arranged so that incident light propagates by multiple reflection on at least two surfaces of the glass block, and the plurality A plurality of rod lenses that receive the transmitted light and the multiple reflected light of a single optical interference bandpass filter, a member that holds the rod lens in the spectroscopic means, and a plurality of light receiving surfaces that receive the emitted light from the rod lens A light detection element array that converts the light into an electrical signal, and a through hole that matches the arrangement of the light receiving surfaces of the rod lens and the light detection element array. Flame detection and combustion diagnosis device utilizing a pin for optical axis alignment, and characterized by comprising the alignment member utilizing light receiving surface of the detector array as a marking for the optical axis alignment for.
[0014]
[Action]
In order to suppress the influence of the optical axis deviation with respect to the conventional flame detector repeater optical fiber 1 which has a problem in optical axis alignment accuracy with respect to the spectroscopic optical system, the core diameter is larger and the refractive index distribution parameter is It is a simple means to receive light with an optical fiber that is equal to or more than a relay optical fiber. However, since the outgoing light spot of the optical fiber having a large core diameter and a large refractive index distribution parameter and the spread of the outgoing light are larger than those of the relay optical fiber, it is difficult to convert them into parallel rays with a single rod lens. The beam diameter and divergence angle of the light beam propagating in the block is increased, and the loss is increased. Conversion of incident light spread by the rod lens into parallel light has the highest effect when the incident light is a point light source. Therefore, in the present invention, it is possible to effectively convert the light emitted from the optical fiber by the condenser lens so as to be focused on the optical axis of the incident end of the rod lens. As a result, even if the optical axis shift occurs between the repeater optical fiber and the light receiving optical fiber that receives the light emitted from the repeater optical fiber, the influence on the light beam propagating in the spectroscopic optical system such as the glass block can be suppressed. it can. Further, this can suppress not only the axial deviation caused by the manufacturing accuracy but also the influence of changes in the optical fiber connection state (axial deviation, gap, etc.) caused by vibration.
[0015]
Regarding the connection with the light detection element array, the relative positional accuracy between the light receiving surfaces is relatively high as described above. Therefore, the positional relationship with the case and the accuracy are not considered, and the light receiving is performed as shown in FIGS. The surface itself is used as a mark for aligning the optical axis, and a rod lens 11 is provided for guiding and collecting the emitted light from the spectroscopic system to the light receiving surface of the light detection element array, and this rod lens itself is a pin for alignment. As a result, it is possible to reliably couple the photodetecting element array and the spectroscopic optical system with a simple configuration.
[0016]
Therefore, according to the present invention, the optical sensor of FIG. 11 can be reduced in size, and can be mounted on a photoelectric conversion board compatible with a conventional flame detector and can be connected with a low-loss optical fiber. It is possible to provide a high-performance flame detector to which a spectroscopic combustion diagnosis function is newly added using a conventional flame detector system regardless of whether it is newly installed.
The present invention solves the above-mentioned problems by the following means, reduces the size of the optical sensor of FIG. 11, and achieves low loss between the mounting on the photoelectric conversion board compatible with the conventional flame detector and the relay optical fiber. By enabling the connection, it is possible to provide a high-performance flame detector to which a spectroscopic combustion diagnosis function is newly added by using a conventional flame detector system regardless of whether it is installed or not.
[0017]
(1) A light receiving optical fiber having a core diameter larger than that of the relay optical fiber that receives light emitted from the relay optical fiber, a condensing lens that prevents the beam diameter from spreading, and a light beam collected by the condensing lens is a parallel light beam. A collimator consisting of a rod lens that converts to.
(2) Photodetector array having a plurality of light-receiving surfaces arranged in a grid, rod lenses corresponding to the number of light-receiving surfaces that collect the light emitted from the spectroscopic system on the photodetector array, and the rod lenses A light detecting element array optical axis aligning means comprising an alignment member that uses a plurality of light receiving surfaces arranged in a grid pattern as optical axis alignment markings.
[0018]
(3) Easily align the optical axis and reduce the loss to improve performance and reduce costs by simplifying the process. In addition, the simple configuration reduces the size and makes the device easier to mount.
【Example】
The structure of the optical sensor for realizing compatibility with the conventional flame detector according to the present invention is shown in FIG. 1 for one field of view. The optical sensor of FIG. 1 includes an optical fiber 2 having a core diameter of 400 μm, a collimator 3, a glass block 5, optical interference bandpass filters 6 to 10, and optical interference bandpass filters 6 to 10. Is mainly composed of a rod lens 11 that receives the transmitted light to the light detection element arrays 13 and 14, a holder 12 that holds the rod lens 11, and an alignment member 15 that couples the rod lens 11 and the light detection element array 13. The For a plurality of visual fields, the configuration of FIG. 1 is arranged for the number of visual fields in a direction penetrating the paper surface. In this embodiment, there are three fields of view.
[0019]
An enlarged view of the collimator 3 is shown in FIG. The collimator 3 includes a ferrule 23 for performing optical axis alignment and holding of a light receiving optical fiber 2 having a core diameter of 400 μm, a ball lens 20 having a diameter of 1 mm for converging light emitted from the optical fiber having a core diameter of 400 μm, It comprises a lens guide 21 for performing optical axis alignment with an optical fiber having a core diameter of 400 μm and a rod lens 22 having a diameter of 2 mm. In the collimator 3, the light emitted from the optical fiber 2 with a core diameter of 400 μm is first received by the spherical lens 20 and condensed on the optical axis of the incident surface of the rod lens 22. The rod lens 22 converts the light emitted from the spherical lens 20 into parallel rays, and enters the light into a spectroscopic system including the glass block 5 and the interference bandpass filters 6 to 10 in FIG.
[0020]
The light beam 4 incident on the spectroscopic system propagates through the glass block 5 with multiple reflections, and only the transmission wavelength components of the optical interference bandpass filters 6 to 10 are transmitted through the interference bandpass filters 6 to 10 in the process of multiple reflection. Then, the light enters the photodetector element array 13 through the rod lens 11 having a diameter of 2 mm and is converted into an electric signal. The spectral function is the same as that of the optical sensor shown in FIG.
[0021]
FIG. 3 shows a detailed configuration of the photodetecting element array 13. Moreover, the dimension of the Example was written together. In this embodiment, the case 30 of the photodetecting element array is made of ceramic in order to reduce the size. Nine light-receiving surfaces 31 a to 31 i are arranged in a lattice pattern on a base 32 positioned in the ceramic case 30. The size of the light receiving surfaces 31 a to 31 i is substantially the same size as the rod lens 11. In FIG. 1, the light receiving surfaces 31a, 31d and 31g are transmitted light from the interference bandpass filter 6, the light receiving surfaces 31b, 31e and 31h are transmitted light from the interference bandpass filter 8, and the light receiving surfaces 31c, 31f and 31i are interference bandpass. Light transmitted through the filter 10 is received through the rod lens 11. The light receiving surfaces 31a to 31c, 31d to 31f, and 31h to 31i correspond to the observation visual fields 82a, 82b, and 82c of the multi-field optical fiber probe 83.
[0022]
FIG. 4 shows attachment of the photodetecting element array 13 of the alignment member 15. The alignment member 15 is not attached based on the positional relationship of the light detection element array 13 with respect to the case 30 but based on the positional relationship between the through holes 41 and the light receiving surface 31 arranged at the same interval as the light receiving elements. The light receiving surfaces 31 arranged in a grid pattern of the light detection element array 13 are positioning markings. Thus, the alignment with the light receiving surface can be surely and easily performed regardless of the dimensional tolerance of the case 30 and the positional relationship between the case and the light receiving surface. Further, the dimensional tolerance of the case 30 does not need to be accurate, and the manufacturing and inspection processes can be simplified, thereby reducing the cost.
[0023]
FIG. 5 shows a method of coupling the spectroscopic system including the glass block 5 and the interference bandpass filters 6 to 10 and the photodetecting element arrays 13 and 14. By aligning and connecting the through hole 41 of the alignment member 15 attached to the photodetecting element arrays 13 and 14 and the lens holder 12 with the rod lens 11 as a pin, it can be reliably and easily coupled.
[0024]
With the configuration described above, it is a problem in terms of downsizing the optical sensor, which is necessary for the combined use of the flame detection function and the combustion diagnosis function and for compatibility with the photoelectric conversion board of the conventional flame detector. In addition, the optical axis deviation of the relay optical fiber can be suppressed, and the optical axis can be reliably and easily aligned with the light receiving surface of the light detecting element array.
FIG. 6 and FIG. 7 show a panel configuration of a flame detector according to the present invention in which a combustion diagnostic function is added to the conventional flame detector.
[0025]
6 and 7, the conventional SBC (determination processing board), CCB (communication control board), relay board rack and board itself of the flame detector board 60 are used as they are, and a photoelectric conversion (O / E) board is used. 1 is replaced with a compatible photoelectric conversion board 61 with a spectroscopic analysis function, and a new board 62 for collecting spectral data for combustion diagnosis is connected to the data collection board 62 via a network 63. It is possible to add a combustion diagnostic function to a conventional flame detector regardless of whether it is newly installed or simply by adding a panel 70 containing an analysis computer for combustion diagnosis, a display device and the like.
[0026]
【The invention's effect】
According to the present invention, the apparatus can be made extremely compact and highly accurate by suppressing the influence of optical axis deviation, and the optical fiber probe and the relay light can be used not only in a new installation but also in an existing flame detector. By using the fiber cable and the panel as they are and replacing only the sensor unit with a compatible board equipped with a spectral analysis function for combustion diagnosis, it is possible to provide a rational system that can easily add an individual burner combustion diagnosis function.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of a photosensor with a flame analysis / combustion diagnosis combined spectral analysis function according to the present invention.
FIG. 2 is a detailed view of a collimator unit of the optical sensor according to the present invention.
FIG. 3 is a diagram showing a configuration of a photodetecting element array for photosensors according to the present invention.
FIG. 4 is a diagram showing a configuration of a photodetecting element array alignment member.
FIG. 5 is a diagram showing coupling between a photodetecting element array and a spectroscopic optical system.
FIG.
FIG. 7 is a diagram showing a configuration of a system in which a combustion diagnosis function is added to a conventional flame detector according to the present invention.
FIG. 8 is a diagram showing a configuration of a conventional flame detector.
FIG. 9 is a diagram showing a panel configuration of a conventional flame detector.
FIG. 10 is a view showing a photodetector for photoelectric conversion board of a conventional flame detector.
FIG. 11 is a diagram showing a configuration of an optical sensor in which a conventional flame detection function and a combustion diagnosis function are used in combination.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Relay optical fiber (200 micrometers), 2 ... 400 micrometers optical fiber (light receiving optical fiber), 3 ... Collimator, 4 ... Propagating light beam, 5 ... Glass block, 6-10 ... Optical interference band pass filter, 11 ... Rod lens (Diameter 2 mm), 12 ... holder, 13, 14 ... photodetecting element array, 15 ... alignment member, 17 ... flame emission.

Claims (3)

光プローブによって受光した火炎発光を伝送する中継光ファイバと、中継光ファイバによって伝送された火炎発光を受入れて所定の複数の狭波長帯域の単色光と火炎発光からこれら所定の複数の狭波長帯域の単色光を除いた他の波長域の光に分光し、これら分光された光の強度に応じた電気信号に変換する光電変換部と、所定の複数の狭波長帯域の単色光の強度分析から燃焼診断を行う手段と、その他の波長域の光強度に応じた電気信号のフリッカ(ちらつき)成分分析から火炎の点火、消火判定を行う手段とを備えた火炎検出および燃焼診断装置において、前記光電変換部が、中継光ファイバからの出射光を受光する中継光ファイバよりもコア径が大きい受光用光ファイバと受光用光ファイバの出射光線の拡がりを防ぐ集光レンズと集光レンズにより集光された光線を平行光線に変換するロッドレンズとからなる中継光ファイバ光軸ずれの影響を抑制する手段と、前記ロッドレンズからの光を受けてこれを前記所定の波長帯および波長域に分光し、これら分光された光の強度に応じた電気信号に変換する手段とを有することを特徴とする火炎検出および燃焼診断装置。A relay optical fiber for transmitting the flame emission received by the optical probe, and a flame emission transmitted by the relay optical fiber, and receiving a plurality of predetermined narrow wavelength band monochromatic light and flame emission from the predetermined plurality of narrow wavelength bands. A photoelectric conversion unit that splits the light into other wavelength ranges excluding monochromatic light and converts it into an electrical signal according to the intensity of the separated light, and burns from the intensity analysis of monochromatic light in a plurality of predetermined narrow wavelength bands In the flame detection and combustion diagnostic apparatus, comprising the means for performing diagnosis and the means for performing flame ignition / extinguishing determination from flicker (flicker) component analysis of electrical signals according to light intensity in other wavelength ranges, the photoelectric conversion A light receiving optical fiber having a core diameter larger than that of the relay optical fiber that receives the light emitted from the relay optical fiber, a condensing lens that prevents spreading of the light emitted from the light receiving optical fiber, and a light collecting lens. Means for suppressing the influence of optical axis misalignment of the relay optical fiber comprising a rod lens for converting the light collected by the lens into parallel light, and receiving the light from the rod lens to the predetermined wavelength band and wavelength And a flame diagnostic apparatus characterized by having a means for spectrally dividing the light into a region and converting it into an electrical signal in accordance with the intensity of the dispersed light. 光プローブによって受光した火炎発光を伝送する中継光ファイバと、中継光ファイバによって伝送された火炎発光を受入れて所定の複数の狭波長帯域の単色光と火炎発光からこれら単色光を除いた他の波長帯域の光に分光し、これら分光された光の強度に応じた電気信号に変換する光電変換部と、所定の複数の狭波長帯域の単色光の強度分析から燃焼診断を行う手段と、その他の波長域の光強度に応じた電気信号のフリッカ成分分析から火炎の点火、消火判定を行う手段とを備えた火炎検出および燃焼診断装置において、前記光電変換部が、中継光ファイバの出射光を受光し、かつ中継光ファイバ光軸ずれの影響を抑制して平行光線として入射させる手段と、前記入射光を対向する2面に多重反射により伝播するように構成されたガラスブロックと、該ガラスブロックの多重反射伝播位置に配置され特定波長の光を透過する複数枚の光干渉バンドパスフィルタとからなる分光手段と、前記複数枚の光干渉バンドパスフィルタの透過光と多重反射光とをそれぞれ受入れる複数本のロッドレンズと、このロッドレンズを前記分光手段に保持する部材と、ロッドレンズの出射光をそれぞれ受入れる複数の受光面を持ち出射光を電気信号に変換する光検出素子とを備えていることを特徴とする火炎検出および燃焼診断装置。A relay optical fiber that transmits the flame emission received by the optical probe, and the flame emission transmitted by the relay optical fiber to receive a plurality of monochromatic lights in a predetermined narrow wavelength band and other wavelengths obtained by removing these monochromatic lights from the flame emission. A photoelectric converter that splits light into a band of light and converts it into an electrical signal corresponding to the intensity of the split light, a means for performing combustion diagnosis from intensity analysis of monochromatic light in a plurality of predetermined narrow wavelength bands, In a flame detection and combustion diagnostic apparatus comprising a means for performing flame ignition / extinguishing judgment from flicker component analysis of an electrical signal according to light intensity in a wavelength range, the photoelectric conversion unit receives light emitted from a relay optical fiber. And means for suppressing the influence of the optical axis deviation of the repeater optical fiber and making it incident as a parallel light beam, and a glass blower configured to propagate the incident light to two opposing surfaces by multiple reflections. And a plurality of optical interference band-pass filters arranged at the multiple reflection propagation position of the glass block and transmitting light of a specific wavelength, and multiplexed with the transmitted light of the plurality of optical interference band-pass filters Light detection that converts a plurality of rod lenses that receive reflected light, a member that holds the rod lens to the spectroscopic means, and a plurality of light receiving surfaces that respectively receive the emitted light of the rod lenses and converts the emitted light into an electrical signal A flame detection and combustion diagnostic apparatus comprising: an element. 光プローブによって受光した火炎発光を伝送する中継光ファイバと、中継光ファイバによって伝送される火炎の発光を所定の複数点の波長の単色光と火炎発光からこれら所定の複数点の波長の単色光を除いたその他の波長域の光に分光し、所定の複数点の波長の単色光とその他の波長域の光のそれぞれを光強度に応じた電気信号に変換する光電変換部からなり、所定の複数点の波長の単色光強度分析から燃焼診断を行い、その他の波長域の光強度に応じた電気信号のフリッカ(ちらつき)成分分析から火炎の点火、消火判定を行う火炎検出および燃焼診断装置において、前記光電変換部は、中継光ファイバからの出射光を受光する、中継光ファイバよりコア径が大きい受光用光ファイバと、受光用光ファイバの出射光線の拡がりを防ぐ集光レンズと集光レンズにより集光された光線を並行光線に変換するロッドレンズからなる中継光ファイバ光軸ずれの影響を抑制する手段と、中継光ファイバの出射光が前記中継光ファイバ光軸ずれの影響を抑制する手段を経て入射するガラスブロックと、ガラスブロックの少なくとも2面に入射光が多重反射により伝搬するように配置された複数枚の光干渉バンドパスフィルタからなる分光手段と、前記複数枚の光干渉バンドパスフィルタの透過光と多重反射光を受ける複数本のロッドレンズと、このロッドレンズを前記分光手段に保持する部材とロッドレンズの出射光を受ける複数の受光面を持ち出射光を電気信号に変換する光検出素子アレイと、ロッドレンズおよび光検出素子アレイの受光面配置に合わせた貫通孔を持ち、ロッドレンズを光軸合わせ用ピンとして利用し、かつ光検出素子アレイの受光面を光軸合わせ用のマーキングとして利用する位置合わせ用部材からなることを特徴とする火炎検出および燃焼診断装置。The relay optical fiber that transmits the flame emission received by the optical probe, the flame emission transmitted by the relay optical fiber, the monochromatic light at the predetermined multiple wavelengths and the monochromatic light at the predetermined multiple wavelengths from the flame emission. It consists of a photoelectric conversion unit that splits the light into the other wavelength regions, and converts each of the monochromatic light at the predetermined multiple points and the light at the other wavelength regions into an electrical signal corresponding to the light intensity. In the flame detection and combustion diagnostic device that performs combustion diagnosis from monochromatic light intensity analysis of the wavelength of the point, and performs flicker (flicker) component analysis of the electrical signal according to the light intensity in the other wavelength range to determine the ignition and extinguishing of the flame, The photoelectric conversion unit receives light emitted from the repeater optical fiber, and receives a light receiving optical fiber having a core diameter larger than that of the repeater optical fiber, and a condensing light that prevents the spread of the light emitted from the light receive optical fiber. And means for suppressing the influence of the optical axis deviation of the relay optical fiber comprising a rod lens that converts the light collected by the condensing lens into a parallel light, A spectroscopic means comprising a glass block incident through a means for suppressing influence, a plurality of optical interference bandpass filters arranged so that incident light propagates by multiple reflection on at least two surfaces of the glass block, and the plurality of sheets A plurality of rod lenses that receive the transmitted light and multiple reflected light of the optical interference bandpass filter, a member that holds the rod lens in the spectroscopic means, and a plurality of light receiving surfaces that receive the emitted light of the rod lens, It has a light detection element array that converts it into an electrical signal, and a through hole that matches the arrangement of the light receiving surface of the rod lens and light detection element array. Utilized as a pin for a laminated and flame detection and combustion diagnosis apparatus characterized by comprising a positioning member for use as a marking for the optical axis alignment of the light receiving surface of the detector array.
JP13953095A 1995-06-06 1995-06-06 Flame detection and combustion diagnostic equipment Expired - Fee Related JP3711294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13953095A JP3711294B2 (en) 1995-06-06 1995-06-06 Flame detection and combustion diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13953095A JP3711294B2 (en) 1995-06-06 1995-06-06 Flame detection and combustion diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH08327053A JPH08327053A (en) 1996-12-10
JP3711294B2 true JP3711294B2 (en) 2005-11-02

Family

ID=15247433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13953095A Expired - Fee Related JP3711294B2 (en) 1995-06-06 1995-06-06 Flame detection and combustion diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3711294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650050B2 (en) * 2005-12-08 2010-01-19 Alstom Technology Ltd. Optical sensor device for local analysis of a combustion process in a combustor of a thermal power plant
JP2011169593A (en) * 2008-06-10 2011-09-01 Panasonic Corp Attachment member, inertial sensor device using the same, automobile, and car navigation system
CN106353449B (en) * 2016-11-03 2019-04-30 上海理工大学 Active laser formula solid rocket propellant burn rate dynamic checkout unit and method

Also Published As

Publication number Publication date
JPH08327053A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
KR101072657B1 (en) Method and apparatus for the monitoring and control of combustion
WO2018038491A1 (en) Optical waveguide using parabolic reflector and infrared gas sensor having same
US20190226965A1 (en) Method and system for particle characterization in harsh environments
CN1145300C (en) Wavelength-division multiplex arrangement equied with array wave-guide grating for alignment of waveguide, and alignment arrangement therefor
JP2007033449A (en) System and apparatus for measuring force
EP3887792B1 (en) Large core apparatus for measuring optical power in multifiber cables
WO2020098577A1 (en) Planar optical waveguide device, and temperature measurement system
US5131741A (en) Refractive velocimeter apparatus
EP1630527B1 (en) Optical displacement transducer, displacement measurement system and method
JP3711294B2 (en) Flame detection and combustion diagnostic equipment
CN215010254U (en) Optical cable fiber core optical signal collector and device and resource detection equipment
JPS62280638A (en) Gas concentration detection cell
CN112583481A (en) Optical cable fiber core optical signal acquisition device, resource detection equipment and platform
JPH09282577A (en) Gas detector
JPH1073243A (en) Flame detector and combustion diagnostic device
JP3423454B2 (en) Multi-field optical probe
CN101620011A (en) Plasma flame confocal scanning device based on single-mode optical fiber
US6894770B2 (en) Inspection apparatus for optical transmission device
CN106814365B (en) Fiber spectrum is copolymerized burnt measuring device
CN219266096U (en) Coagulation analyzer and coagulation light path system thereof
CN220322561U (en) Color sensor
CA2152892A1 (en) Optical monitoring apparatus
RU2137047C1 (en) Flame remote monitoring device
CN2387524Y (en) Internal modulation fibre-optical colorimetric thermometer
CN115327710A (en) Optical waveguide device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees