JPS63694B2 - - Google Patents

Info

Publication number
JPS63694B2
JPS63694B2 JP6936178A JP6936178A JPS63694B2 JP S63694 B2 JPS63694 B2 JP S63694B2 JP 6936178 A JP6936178 A JP 6936178A JP 6936178 A JP6936178 A JP 6936178A JP S63694 B2 JPS63694 B2 JP S63694B2
Authority
JP
Japan
Prior art keywords
circuit
signal
sensing element
temperature sensing
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6936178A
Other languages
Japanese (ja)
Other versions
JPS54159739A (en
Inventor
Yoshuki Adachi
Nobuo Oonishi
Hiroshi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6936178A priority Critical patent/JPS54159739A/en
Publication of JPS54159739A publication Critical patent/JPS54159739A/en
Publication of JPS63694B2 publication Critical patent/JPS63694B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は燃焼制御装置に係るもので、メーンバ
ーナへの着火時に緩点火させることにより着火時
の騒音を減少させようにするものであり、さらに
述べると感温素子の信号に係わらず、初期の着火
時及びON―OFF時の着火時に必らず、小ガス量
で着火させるようにして着火音を少なくしようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control device that reduces noise at the time of ignition by slowly igniting the main burner. Regardless of the situation, the aim is to reduce the ignition noise by always igniting with a small amount of gas during initial ignition and during ON-OFF ignition.

従来、例えば湯沸器の燃焼制御装置にあつては
感温素子の信号により電磁弁への通電を制御して
おり、給湯時に感温素子は大ガス量信号を出し電
磁弁へ通電する為に大ガス量への着火音が大き
く、耳ざわりとなり問題とされていた。
Conventionally, for example, in the case of a combustion control device for a water heater, energization to a solenoid valve is controlled by a signal from a temperature sensing element, and when hot water is being supplied, the temperature sensing element outputs a large gas volume signal to energize the solenoid valve. The ignition noise due to the large amount of gas was loud and harsh, which was considered a problem.

本発明はこのような従来の欠点を解消したもの
で、以下その実施例を添付図面とともに説明す
る。
The present invention eliminates these conventional drawbacks, and embodiments thereof will be described below with reference to the accompanying drawings.

第1図において、1は電源トランスと整流回路
とより構成されてなるDC電源、2は種火燃焼検
出により動作するスイツチ、3は湯温を感知する
感温素子(サーミスタ)、4は通電電流によりガ
ス量を制御するように構成してなる電磁弁、5は
感温素子3の信号により電磁弁4への通電電流を
制御するように構成してなるON―OFF機能付比
例制御回路、6は感温素子3のON信号を電圧比
較器で検出するスイツチング回路、7は電圧比較
器で構成したタイマ回路、8は演算増幅器を用い
た理想ダイオード回路を有する緩点火回路、9は
緩点火後の擬似大着火信号回路、10は擬似大着
火信号回路9への通電制御回路、11は定電圧ダ
イオード、12は抵抗、13は定電圧ダイオード
である。
In Fig. 1, 1 is a DC power source consisting of a power transformer and a rectifier circuit, 2 is a switch that operates by detecting combustion of the pilot flame, 3 is a temperature sensing element (thermistor) that detects the temperature of hot water, and 4 is a current flowing current. 5 is a proportional control circuit with an ON-OFF function configured to control the current flowing to the solenoid valve 4 based on the signal from the temperature sensing element 3; 6; is a switching circuit that detects the ON signal of temperature sensing element 3 with a voltage comparator, 7 is a timer circuit composed of a voltage comparator, 8 is a slow ignition circuit having an ideal diode circuit using an operational amplifier, and 9 is a slow ignition circuit. 10 is a current control circuit for the pseudo large ignition signal circuit 9, 11 is a constant voltage diode, 12 is a resistor, and 13 is a constant voltage diode.

ON―OFF機能付比例制御回路5に於いて、1
4は電磁弁4の逆電圧防止用のダイオード、15
は抵抗、16は抵抗、17,18はダイオード、
19はトランジスタ、20,21,22,23は
抵抗、24はトランジスタ、25,26は抵抗、
27はトランジスタ、28は抵抗、29,30は
トランジスタ、31,32,33は抵抗、34は
コンデンサ、35はトランジスタ、36は抵抗、
37はトランジスタ、38は抵抗、39は帰還用
抵抗、69はダイオードである。
In the proportional control circuit 5 with ON-OFF function, 1
4 is a diode for preventing reverse voltage of solenoid valve 4, 15
is a resistor, 16 is a resistor, 17 and 18 are diodes,
19 is a transistor, 20, 21, 22, 23 are resistors, 24 is a transistor, 25, 26 are resistors,
27 is a transistor, 28 is a resistor, 29, 30 are transistors, 31, 32, 33 are resistors, 34 is a capacitor, 35 is a transistor, 36 is a resistor,
37 is a transistor, 38 is a resistor, 39 is a feedback resistor, and 69 is a diode.

40はオペアンプを用いた第1電圧比較器で、
電源端子40a,40b、入力端子40c,40
d、出力端子40eを持つ。上記電源端子40
a,40bは定電圧ダイオード13の両端に接続
されている。
40 is a first voltage comparator using an operational amplifier;
Power terminals 40a, 40b, input terminals 40c, 40
d, has an output terminal 40e. Above power terminal 40
a and 40b are connected to both ends of the constant voltage diode 13.

41,42,43,44,45,46は抵抗、
47はコンデンサでノイズ吸収用である。48は
トランジスタであり、これらによりスイツチング
回路6を構成する。
41, 42, 43, 44, 45, 46 are resistances,
47 is a capacitor for noise absorption. 48 is a transistor, which constitutes the switching circuit 6.

49は第2電圧比較器で、電源端子49a,4
9b、入力端子49c,49d、出力端子49e
を持つ。電源端子49a,49bは定電圧ダイオ
ード13の両端に接続されている。
49 is a second voltage comparator, and power supply terminals 49a, 4
9b, input terminals 49c, 49d, output terminal 49e
have. Power supply terminals 49a and 49b are connected to both ends of the constant voltage diode 13.

50,51,52,53,54は抵抗、55は
タイマ用のコンデンサからなり、これらでタイマ
回路7を構成する。
50, 51, 52, 53, and 54 are resistors, and 55 is a timer capacitor, which constitute a timer circuit 7.

56は演算増幅器で、電源端子56a,56
b、入力端子56c,56d、出力端子56eを
持つ。57はダイオードで、演算増幅器56の入
力端子56cと出力端子56e間に接続すること
により理想ダイオードを構成し、58,59の抵
抗とともに緩点火回路8を構成する。
56 is an operational amplifier, and power terminals 56a, 56
b, has input terminals 56c, 56d, and an output terminal 56e. A diode 57 constitutes an ideal diode by being connected between the input terminal 56c and the output terminal 56e of the operational amplifier 56, and constitutes the slow ignition circuit 8 together with resistors 58 and 59.

60は抵抗、61はダイオード、62はコンデ
ンサ、63はダイオード、64は抵抗、65,6
6はダイオードで、これらで擬似大着火信号回路
9を構成する。
60 is a resistor, 61 is a diode, 62 is a capacitor, 63 is a diode, 64 is a resistor, 65, 6
6 is a diode, which constitutes a pseudo large ignition signal circuit 9.

67は第3電圧比較器で、電源端子67a,6
7b、入力端子67c,67d、出力端子67e
を持つ。68は抵抗であり、これらで、第2電圧
比較器49と逆動作をする擬似大着火信号回路9
の通電制御回路10を構成する。
67 is a third voltage comparator, and power terminals 67a, 6
7b, input terminals 67c, 67d, output terminal 67e
have. Reference numeral 68 indicates a resistor, which serves as a pseudo large ignition signal circuit 9 that operates in reverse to the second voltage comparator 49.
The energization control circuit 10 is configured.

次に動作を説明する。 Next, the operation will be explained.

DC電源1と電源として、ガスコツクの操作に
より何らかの手段で種火燃焼検出を感知すること
により、スイツチ2がONし、電源が供給され、
抵抗15を通して定電圧ダイオード11に通電さ
れ、定電圧電源がダイオード11の両端で供給さ
れる。
As a DC power source 1 and a power source, when pilot flame combustion is detected by some means by operating the gas stove, switch 2 is turned on and power is supplied.
Current is applied to the constant voltage diode 11 through the resistor 15, and constant voltage power is supplied to both ends of the diode 11.

ON―OFF機能付比例制御回路5の動作を説明
すると、抵抗16及びダイオード17,18、感
温素子3と、抵抗21,22,23からなるブリ
ツジ回路が形成されており、その回路の一辺であ
る感温素子3の抵抗値が変化することにより、ト
ランジスタ19がON,OFFをする。従つてトラ
ンジスタ19がONする設定点まで感温素子3の
抵抗値が上昇することにより、トランジスタ19
がONすると共に、トランジスタ24と27が
OFFする。
To explain the operation of the proportional control circuit 5 with ON-OFF function, a bridge circuit is formed consisting of a resistor 16, diodes 17 and 18, a temperature sensing element 3, and resistors 21, 22, and 23. The transistor 19 is turned on and off by changing the resistance value of a certain temperature sensing element 3. Therefore, as the resistance value of the temperature sensing element 3 increases to the set point at which the transistor 19 turns on, the transistor 19 turns on.
turns on, and transistors 24 and 27 turn on.
Turn off.

また、抵抗20を通して感温素子3の抵抗値に
よりトランジスタ19を流れる電流が増大し、抵
抗20で増幅された電流が抵抗22,23に流れ
る。
Further, the current flowing through the transistor 19 increases through the resistor 20 depending on the resistance value of the temperature sensing element 3, and the current amplified by the resistor 20 flows to the resistors 22 and 23.

抵抗21,22,23及び32,33のブリツ
ジ回路に設けたトランジスタ29と30は差動増
幅器を構成しており、抵抗22,23の両端電圧
が上昇することによりトランジスタ29がOFF
しはじめる。と同時にトランジスタ30がONし
て抵抗31の通電量が上昇する。トランジスタ3
7と35のVBEの電圧を超えるとトランジスタ3
5と37がONし電磁弁4に通電され、帰環用抵
抗39で電磁弁4に通電される電流を検出し、抵
抗33の両端電圧の変動を検出し、トランジスタ
30を通して抵抗31への通電電流を制御する。
従つて、感温素子3の抵抗値の上昇降下と比例し
て抵抗31への通電電流を制御しトランジスタ3
5と37を通して電磁弁4への電流を制御するよ
うに動作する。
Transistors 29 and 30 provided in the bridge circuit of resistors 21, 22, 23 and 32, 33 constitute a differential amplifier, and when the voltage across resistors 22 and 23 increases, transistor 29 is turned off.
begins to At the same time, the transistor 30 turns on and the amount of current flowing through the resistor 31 increases. transistor 3
When the voltage of V BE of 7 and 35 is exceeded, transistor 3
5 and 37 are turned on, the solenoid valve 4 is energized, the return resistor 39 detects the current energized to the solenoid valve 4, the fluctuation in the voltage across the resistor 33 is detected, and the resistor 31 is energized through the transistor 30. Control the current.
Therefore, the current flowing to the resistor 31 is controlled in proportion to the rise and fall of the resistance value of the temperature sensing element 3, and the current flowing through the transistor 3 is controlled.
5 and 37 to control the current to the solenoid valve 4.

また、湯温を感知し、感温素子3の抵抗値が減
少し、ブリツジの平衡が崩れると、トランジスタ
19はOFFすると同時に、トランジスタ24と
27がONし、ダイオード69を通してトランジ
スタ35のベース電圧を約0.7V程度に押える為、
トランジスタ35と37はOFFし電磁弁4は通
電されず閉弁している。湯温を感知して感温素子
3の抵抗値が変化することにより、トランジスタ
27がOFFすると、トランジスタ35は抵抗3
1の両端電圧、すなわち、感温素子3の両端電圧
と比例して電磁弁4への通電量が制御される。そ
の通電電流によりガス量を比例制御するようにな
つている。
Furthermore, when the temperature of the water is sensed and the resistance value of the temperature sensing element 3 decreases, causing the bridge to become unbalanced, the transistor 19 is turned off, and at the same time, the transistors 24 and 27 are turned on, and the base voltage of the transistor 35 is applied through the diode 69. In order to suppress the voltage to about 0.7V,
Transistors 35 and 37 are turned off, and solenoid valve 4 is not energized and closed. When the transistor 27 turns off by sensing the water temperature and changing the resistance value of the temperature sensing element 3, the transistor 35 turns off the resistance value of the temperature sensing element 3.
The amount of current supplied to the solenoid valve 4 is controlled in proportion to the voltage across the temperature sensing element 3, that is, the voltage across the temperature sensing element 3. The amount of gas is proportionally controlled by the applied current.

第2図にスイツチング回路6の動作を示す。こ
こでスイツチング回路6の第1電圧比較器40の
入力端子40cは感温素子3の抵抗値により電磁
弁4がON状態かOFF状態かを検出するように抵
抗31の両端電圧を入力電圧となるように接続さ
れている。一方の入力端子40dは、定電圧ダイ
オード13を電源とし、抵抗41,42,43で
設定された基準電圧V40dとなる。
FIG. 2 shows the operation of the switching circuit 6. Here, the input terminal 40c of the first voltage comparator 40 of the switching circuit 6 uses the voltage across the resistor 31 as the input voltage so as to detect whether the solenoid valve 4 is in the ON or OFF state based on the resistance value of the temperature sensing element 3. are connected like this. One input terminal 40d uses the constant voltage diode 13 as a power source, and has a reference voltage V 40d set by resistors 41, 42, and 43.

今、仮に感温素子3が湯温が高いことを感知し
て電磁弁4をオフしている状態の時、トランジス
タ27はオンしているので、入力端子40cはダ
イオード69の順方向電圧降下分(約0.7V)が
入力されている。その時V40dはおおむね で設定された基準電圧で、V40cの入力電圧の方が
基準電圧V40dより低い為、出力端子40eはH状
態であり、トランジスタ48はオフでスイツチン
グ回路6はオフである。
Now, if the thermosensor 3 senses that the water temperature is high and turns off the solenoid valve 4, the transistor 27 is on, so the input terminal 40c is equal to the forward voltage drop of the diode 69. (approximately 0.7V) is input. At that time V 40d is approximately Since the input voltage of V 40c is lower than the reference voltage V 40d , the output terminal 40e is in the H state, the transistor 48 is off, and the switching circuit 6 is off.

ところが、給湯などをする時、給湯蛇口を開く
ことにより、感温素子3が温度が低いことを感知
して抵抗値が上昇する為、トランジスタ19がオ
ンすると同時に、トランジスタ24と27がオフ
する。
However, when hot water is supplied, when the hot water faucet is opened, the temperature sensing element 3 senses that the temperature is low and its resistance value increases, so that at the same time as the transistor 19 is turned on, the transistors 24 and 27 are turned off.

すると、抵抗31の両端電圧がV40cとなるの
で、V40dの基準電圧を超え、出力端子40eがL
状態となり、トランジスタ48はオンする。この
状態を第2図に示す。
Then, the voltage across the resistor 31 becomes V 40c , exceeding the reference voltage of V 40d , and the output terminal 40e becomes L.
state, and the transistor 48 is turned on. This state is shown in FIG.

次に第3図にタイマ回路7の動作を示す。タイ
マ回路7に於いて、入力端子49dは抵抗50,
51,52で設定された基準電圧V49dに対して入
力端子49cはトランジスタ48がオフの時、す
なわち感温素子3のオフ信号の時は、抵抗54の
両端電圧が0電位の為、出力端子49eは入力端
子49eがV49dより低く、H状態であると同時に
第3電圧比較器67の出力端子67eが入力端子
67dの基準電圧より67cが高いのでL状態と
なつており、擬似大着火信号回路9のコンデンサ
62へは充電されない。一方、これと同時に、演
算増幅器56を用いた理想ダイオード回路は不動
作であり緩点火回路8は動作しない。
Next, FIG. 3 shows the operation of the timer circuit 7. In the timer circuit 7, the input terminal 49d is connected to a resistor 50,
With respect to the reference voltage V 49d set by 51 and 52, the input terminal 49c becomes the output terminal when the transistor 48 is off, that is, when the temperature sensing element 3 is off, the voltage across the resistor 54 is at 0 potential. 49e is in the H state because the input terminal 49e is lower than V 49d , and at the same time, the output terminal 67e of the third voltage comparator 67 is in the L state because 67c is higher than the reference voltage of the input terminal 67d, and a pseudo large ignition signal is generated. Capacitor 62 of circuit 9 is not charged. On the other hand, at the same time, the ideal diode circuit using the operational amplifier 56 is inoperative, and the slow ignition circuit 8 is inoperative.

ところが、トランジスタ48がオンすることに
より、タイマ回路7のタイマ用コンデンサ55へ
トランジスタ48のオンと同時に充電電流が流れ
る。入力端子49cの電圧V49cは一瞬電源電圧ま
で上昇し、V49dの基準電圧を超える為、出力端子
49eはL状態となる(第3図はこの動作波形を
示す)。出力端子49eがLになると出力端子6
7eはH状態となり、擬似大着火信号回路9のコ
ンデンサ62へは抵抗60、ダイオード61,6
3を通して充電される。
However, since the transistor 48 is turned on, a charging current flows to the timer capacitor 55 of the timer circuit 7 at the same time as the transistor 48 is turned on. The voltage V 49c at the input terminal 49c momentarily rises to the power supply voltage and exceeds the reference voltage V 49d , so the output terminal 49e goes into the L state (FIG. 3 shows this operating waveform). When the output terminal 49e becomes L, the output terminal 6
7e is in the H state, and a resistor 60 and diodes 61, 6 are connected to the capacitor 62 of the pseudo large ignition signal circuit 9.
It is charged through 3.

同時に、理想ダイオード回路を有する緩点火回
路8のダイオード57を通して抵抗59が感温素
子3と並列に接続され、感温素子3の抵抗値で比
例制御回路5が動作し電磁弁4へ通電電流を流す
のでなく、感温素子3の抵抗値と抵抗59の並列
抵抗で設定された電流が電磁弁4へ通電される。
At the same time, a resistor 59 is connected in parallel with the temperature sensing element 3 through the diode 57 of the slow ignition circuit 8 having an ideal diode circuit, and the proportional control circuit 5 operates according to the resistance value of the temperature sensing element 3 to supply current to the solenoid valve 4. Rather than flowing, a current set by the resistance value of the temperature sensing element 3 and the parallel resistance of the resistor 59 is applied to the solenoid valve 4.

すなわち、緩点火回路8はタイマ回路7の第2
電圧比較器49の出力端子49eがL状態の時、
V56dはVZD11×R59/R58+R59で設定された基準電圧と なり、その基準電圧V56d+ダイオード57の順方
向電圧降下分(約0.7V)が、感温素子3と並列
に印加され、それが電磁弁4への緩点火電流して
印加される。
That is, the slow ignition circuit 8 is the second one of the timer circuit 7.
When the output terminal 49e of the voltage comparator 49 is in the L state,
V 56d is the reference voltage set by V ZD11 × R 59 /R 58 + R 59 , and the reference voltage V 56d + forward voltage drop of diode 57 (approximately 0.7 V) is applied in parallel with temperature sensing element 3. This is applied as a slow ignition current to the solenoid valve 4.

タイマ用コンデンサ55への充電が開始されて
V49cがV49dより低下すると、出力端子49eがH
状態となり、緩点火回路8は不動作となり、みか
け上の並列抵抗の抵抗59が外れる為、感温素子
3の抵抗値で設定された通電電流が電磁弁4へ流
れる。
Charging of the timer capacitor 55 has started.
When V 49c falls below V 49d , output terminal 49e goes high.
In this state, the slow ignition circuit 8 becomes inoperative, and the apparent parallel resistance 59 is removed, so that the current set by the resistance value of the temperature sensing element 3 flows to the solenoid valve 4.

一方、出力端子49eがH(ハイ)状態になる
ことにより擬似大着火信号回路9のコンデンサ6
2へ蓄えられた電荷が抵抗64、ダイオード65
を通して感温素子3へコンデンサ62の電荷が擬
似大着火信号として重畳されて電磁弁4へ通電さ
れる。
On the other hand, since the output terminal 49e becomes H (high) state, the capacitor 6 of the pseudo large ignition signal circuit 9
The charge stored in 2 is transferred to resistor 64 and diode 65.
The electric charge of the capacitor 62 is superimposed on the temperature sensing element 3 as a pseudo large ignition signal, and the electromagnetic valve 4 is energized.

コンデンサ62へ蓄えられた電荷が、感温素子
3へ印加されることにより、感温素子3の両端電
圧Vthが第4図に示すように、給湯運転などの大
負荷大信号時には、感温素子3の信号通りの大電
流となりaの図のようになる。
As the electric charge stored in the capacitor 62 is applied to the temperature sensing element 3, the voltage V th across the temperature sensing element 3 increases as shown in FIG. A large current follows the signal of element 3, as shown in the diagram a.

また、b,cの図は、感温素子3自体の温度に
より、コンデンサ62の電荷が感温素子3へ放電
される状態を示したものであり、感温素子の抵抗
値により異なることを示す。
Furthermore, the figures b and c show the state in which the electric charge of the capacitor 62 is discharged to the temperature sensing element 3 due to the temperature of the temperature sensing element 3 itself, and shows that it varies depending on the resistance value of the temperature sensing element. .

第5図は、その感温素子3の両端電圧Vthの信
号を受けて比例制御回路5が動作し、電磁弁4へ
通電制御されるので、そのガス量を、各々に対応
して図示したものである。
In Fig. 5, the proportional control circuit 5 operates in response to the signal of the voltage V th across the temperature sensing element 3, and energization is controlled to the solenoid valve 4, so the amount of gas corresponding to each is illustrated. It is something.

従つて、タイマ回路7のタイマ動作時間(緩点
火時間)内は電磁弁4へ設定された緩点火電流を
流し、タイマ動作時間(緩点火時間)後は、感温
素子の信号通りの電流を電磁弁4へ通電するよう
になつており、点火時に大ガス量で着火せず、緩
点火信号で小ガス量で着火させるようにしたもの
である。
Therefore, during the timer operation time (slow ignition time) of the timer circuit 7, the set slow ignition current is passed through the solenoid valve 4, and after the timer operation time (slow ignition time), the current is passed according to the signal of the temperature sensing element. Electricity is supplied to the electromagnetic valve 4, so that the ignition does not occur with a large amount of gas at the time of ignition, but is ignited with a small amount of gas using a slow ignition signal.

また、感温素子3の湯温感知でON―OFF制御
をするような場合、例えば暖房使用時など、感温
素子3の湯温感知により電磁弁4をON―OFFす
る時には、感温素子3のON信号により、緩点火
動作と共に、コンデンサ62の電荷を擬似的に感
温素子3に重畳されるように、擬似大着火信号回
路9が動作し、電磁弁4へ大電流を擬似的に通電
し、大ガス量を出し着火の確実性を計るように動
作する。
In addition, when ON-OFF control is performed by sensing the hot water temperature of the temperature-sensing element 3, for example when using heating, when turning the solenoid valve 4 ON-OFF by sensing the hot water temperature of the temperature-sensing element 3, the temperature-sensing element 3 In response to the ON signal, the pseudo large ignition signal circuit 9 operates so that the electric charge of the capacitor 62 is pseudo-superimposed on the temperature sensing element 3 along with the slow ignition operation, and a large current is pseudo-energized to the solenoid valve 4. It operates to measure the certainty of ignition by emitting a large amount of gas.

以上の動作を第2図〜第5図に示す。すなわ
ち、第2図はスイツチング回路6の第1電圧比較
器40の動作説明図、第3図はタイマ回路9の第
2電圧比較器49の動作説明図、第4図は感温素
子3の特性説明図で、aは大信号時、bは小信号
時、cはオン・オフ信号時、dは緩点火のないと
きを示す。第5図は電磁弁の動作説明図で、a,
b,c,dは第4図と対応する。
The above operations are shown in FIGS. 2 to 5. That is, FIG. 2 is an explanatory diagram of the operation of the first voltage comparator 40 of the switching circuit 6, FIG. 3 is an explanatory diagram of the operation of the second voltage comparator 49 of the timer circuit 9, and FIG. 4 is a diagram of the characteristics of the temperature sensing element 3. In the explanatory diagram, a indicates a large signal, b indicates a small signal, c indicates an on/off signal, and d indicates a time without slow ignition. Figure 5 is an explanatory diagram of the operation of the solenoid valve, a,
b, c, d correspond to FIG. 4.

このように本発明によれば、次のようなすぐれ
た効果が期待できるものである。
As described above, according to the present invention, the following excellent effects can be expected.

給湯使用時など感温素子の信号が大ガス量の
信号を出力するよう検出している場合には緩点
火回路の動作で緩点火電流を電磁弁へ通電し、
着火させるので従来に比べ着火音を少なくでき
る。
When the temperature sensing element signal outputs a large amount of gas signal, such as when hot water is being used, the slow ignition circuit operates to supply a slow ignition current to the solenoid valve.
Since it ignites, the ignition noise can be reduced compared to conventional methods.

暖房運転時など湯温を高温に制御する為に感
温素子の検出信号により、電磁弁への通電電流
を減少させて小ガス量で燃焼させても湯温が上
昇しすぎて電磁弁をオン,オフさせる時には、
感温素子自体の信号では小ガス量着火のままと
なるので、緩点火後に擬似大着火信号により大
ガス量で着火でき、着火の確実性を計ることが
できる。
In order to control the water temperature to a high temperature during heating operation, etc., the current flowing to the solenoid valve is reduced based on the detection signal of the temperature sensing element, and even if a small amount of gas is burned, the water temperature rises too much and the solenoid valve is turned on. ,When turning off,
Since the signal from the temperature-sensing element itself causes ignition of a small amount of gas, ignition can be performed with a large amount of gas using a pseudo-large ignition signal after slow ignition, and the reliability of ignition can be measured.

緩点火させるのに電磁弁への通電電流を制御
している為、任意のガス量で緩点火するように
緩点火回路8の抵抗58と59の定数(抵抗
値)で制御することができるので、緩点火用バ
ーナなど複雑な構成のものが不要である。
Since the current applied to the solenoid valve is controlled for slow ignition, it can be controlled by the constants (resistance values) of resistors 58 and 59 of the slow ignition circuit 8 so that slow ignition can be achieved with any amount of gas. , complex configurations such as slow ignition burners are not required.

機械的な構成部品(緩点火用バーナなど)に
比べ安価となる。
It is cheaper than mechanical components (such as slow ignition burners).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図、第2図
は第1電圧比較器の動作説明図、第3図は第2電
圧比較器の動作説明図、第4図は感温素子両端電
圧特性図、第5図は電磁弁の動作説明図である。 3…感温素子、4…電磁弁、5…比例制御回
路、6…第1電圧比較器40を有するスイツチン
グ回路、7…第2電圧比較器49を有するタイマ
回路、8…演算増幅器56を用いた理想ダイオー
ド回路を有する緩点火回路。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the first voltage comparator, Fig. 3 is an explanatory diagram of the operation of the second voltage comparator, and Fig. 4 is an illustration of the operation of the temperature sensing element. The voltage characteristic diagram, FIG. 5, is an explanatory diagram of the operation of the solenoid valve. 3... Temperature sensing element, 4... Solenoid valve, 5... Proportional control circuit, 6... Switching circuit having first voltage comparator 40, 7... Timer circuit having second voltage comparator 49, 8... Using operational amplifier 56. A slow ignition circuit with an ideal diode circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 湯温を感知する感温素子と、この感温素子の
信号により電磁弁の通電量を制御してガス量を比
例制御するON―OFF機能付比例制御回路と、前
記比例制御回路のON信号を検出する第1電圧比
較器を有するスイツチング回路と、前記スイツチ
ング回路のON信号で動作する第2電圧比較器を
有するタイマ回路と、演算増幅器を用いた理想ダ
イオード回路を有する緩点火回路と、抵抗とコン
デンサからなる擬似大着火信号回路とを設け、前
記感温素子の信号により、前記電磁弁の開弁時
に、前記タイマ回路のタイマ動作時間中は緩点火
回路の信号で緩点火信号を、かつ、タイマ動作終
了後は前記擬似大着火信号回路のコンデンサに蓄
えた電荷を放電させて擬似大着火信号を前記感温
素子の信号に重畳印加させて前記電磁弁に通電す
るようにしたことを特徴とする燃焼制御装置。
1. A temperature sensing element that senses the water temperature, a proportional control circuit with an ON-OFF function that proportionally controls the amount of gas by controlling the amount of energization of a solenoid valve based on the signal from this temperature sensing element, and an ON signal for the proportional control circuit. a switching circuit having a first voltage comparator for detecting the switching circuit, a timer circuit having a second voltage comparator operated by the ON signal of the switching circuit, a slow ignition circuit having an ideal diode circuit using an operational amplifier, and a resistor. and a pseudo large ignition signal circuit consisting of a capacitor, and when the solenoid valve is opened by the signal of the temperature sensing element, a slow ignition signal is generated by the signal of the slow ignition circuit during the timer operation time of the timer circuit, and , after the timer operation ends, the charge stored in the capacitor of the pseudo large ignition signal circuit is discharged, a pseudo large ignition signal is superimposed on the signal of the temperature sensing element, and the electromagnetic valve is energized. Combustion control device.
JP6936178A 1978-06-07 1978-06-07 Combustion controller Granted JPS54159739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6936178A JPS54159739A (en) 1978-06-07 1978-06-07 Combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6936178A JPS54159739A (en) 1978-06-07 1978-06-07 Combustion controller

Publications (2)

Publication Number Publication Date
JPS54159739A JPS54159739A (en) 1979-12-17
JPS63694B2 true JPS63694B2 (en) 1988-01-08

Family

ID=13400331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6936178A Granted JPS54159739A (en) 1978-06-07 1978-06-07 Combustion controller

Country Status (1)

Country Link
JP (1) JPS54159739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118922B2 (en) * 1988-08-24 1995-12-18 ダイキン工業株式会社 Refrigeration system operation controller

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121914A (en) * 1980-03-03 1981-09-25 Sanyo Electric Co Ltd Combustion control device
JPS5712220A (en) * 1980-06-24 1982-01-22 Matsushita Electric Ind Co Ltd Combustor
JPS5737622A (en) * 1980-08-18 1982-03-02 Matsushita Electric Ind Co Ltd Control circuit for combustion equipment
JPS57103512U (en) * 1980-12-12 1982-06-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118922B2 (en) * 1988-08-24 1995-12-18 ダイキン工業株式会社 Refrigeration system operation controller

Also Published As

Publication number Publication date
JPS54159739A (en) 1979-12-17

Similar Documents

Publication Publication Date Title
CA2264337C (en) Temperature control system with thermoelectric and rechargeable energy sources
US6084518A (en) Balanced charge flame characterization system and method
JPS5824723A (en) Burner ignition-flame monitor device
JP3394376B2 (en) Gas combustor
US4242078A (en) Centralized automatic pilot/pilotless ignition control system
US7148454B2 (en) Systems for regulating voltage to an electrical resistance igniter
US5857845A (en) Independent burner ignition and flame-sense functions
CA1236163A (en) Functional check for a hot surface ignitor element
JPS63694B2 (en)
US4552528A (en) Current generator for the supply and detection of operation of a gas burner and control device applying same
CA2197607A1 (en) Improved hot surface ignitor
JPS649532B2 (en)
CA1173133A (en) Control circuit for a liquid fuel combustion apparatus
JPS6262256B2 (en)
JP3171809B2 (en) Heating equipment
KR910000901B1 (en) Caloric valve control method in petrolerum combustion apparatus
JPS6053882B2 (en) temperature control device
KR890004351Y1 (en) Safe valve driving circuit for gas range
US4591332A (en) Control device of a combustion apparatus
JP2003185611A (en) Gas detection method and gas detector
JPH0157249B2 (en)
JPH03286925A (en) Cooking device
KR0134870B1 (en) Indication method of remaining fuel combustion time for a fan heater
JPH03241228A (en) Burner igniter device
JPS626434Y2 (en)