JPH02208330A - Yarn-like or film-like porous cellulosic material and its production - Google Patents

Yarn-like or film-like porous cellulosic material and its production

Info

Publication number
JPH02208330A
JPH02208330A JP2759189A JP2759189A JPH02208330A JP H02208330 A JPH02208330 A JP H02208330A JP 2759189 A JP2759189 A JP 2759189A JP 2759189 A JP2759189 A JP 2759189A JP H02208330 A JPH02208330 A JP H02208330A
Authority
JP
Japan
Prior art keywords
cellulose
film
solution
porous
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2759189A
Other languages
Japanese (ja)
Inventor
Jiyunichi Shirokaze
淳一 城風
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2759189A priority Critical patent/JPH02208330A/en
Publication of JPH02208330A publication Critical patent/JPH02208330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title material having many interconnected cells of a specified diameter and suited as a catalyst, an adsorbent or the like by forming a cellulose (derivative) solution into a yarn or a film, freezing this yarn or film by cooling and extracting the solvent from the frozen body. CONSTITUTION:Cellulose or its derivative (e.g. cellulose acetate) is dissolved in a solvent (e.g. aqueous cuprammonium solution), and the obtained solution is formed into a yarn or a film. This yarn or film is frozen by cooling to a temperature lower than the solidification temperature of the solution, and the solvent is extracted from it or is deprived of its solvency, and the cellulose derivative, if used, is regenerated into cellulose. In this way, a yarn-like or film-like porous cellulose material having many cells of a diameter >= about 2mum, separated from each other by films and interconnected to each other through the apertures in the films which separate the adjacent cells from each other to form an interconnected porous structure, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な構造を有する糸状またはフィルム状セ
ルロース多孔体及びその製造方法に関する。より詳細に
は、触媒、酵素、医薬品の担体やイオン交換体、吸着体
の原料及び細胞培養用等として好適な構造を持つ糸状ま
たはフィルム状セルロース多孔体及びその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a filamentous or film-like porous cellulose material having a novel structure and a method for producing the same. More specifically, the present invention relates to a filamentous or film-like porous cellulose material having a structure suitable for use as a carrier for catalysts, enzymes, pharmaceuticals, ion exchangers, adsorbents, cell culture, etc., and a method for producing the same.

〔従来の技術〕[Conventional technology]

セルロースの微小粒子は、ゲル濾過クロマトグラフィー
(GPC)用の充填材等として広く利用されている。加
えて、各種官能基を容易に導入できるため多種多様なイ
オン交換体やアフィニティークロマトグラフィーの基材
として広い応用範囲を持っている。特に近年、生化学や
遺伝子工学の発展に伴い生体内微量蛋白質の分離精製分
野における需要が大幅に拡大しつつある。
Cellulose microparticles are widely used as fillers for gel filtration chromatography (GPC). In addition, because various functional groups can be easily introduced, it has a wide range of applications as a variety of ion exchangers and as a base material for affinity chromatography. Particularly in recent years, with the development of biochemistry and genetic engineering, the demand in the field of separation and purification of trace proteins in living organisms has been significantly expanding.

また、最近になって、インターフェロン或はウロキナー
ゼ等の付加価値の高い蛋白質等を大量に培養する技術が
発展し、それらの培養に用いるマイクロキャリアが開発
されている。
Furthermore, recently, techniques for culturing large amounts of high value-added proteins such as interferon or urokinase have been developed, and microcarriers for use in culturing them have been developed.

例えば、ファインケミカル1985.12.15.  
P、5〜P、13には、キトサン多孔性ビーズ(粒径0
.1〜3mm、細孔径0.1〜3JM)が開示されてい
る。このマイクロキャリアを用いて細胞培養が試みられ
ているが、細胞は比較的に大径(例えば、10//m)
を有しているために、マイクロキャリアの表面に付着す
るのみで、細孔の中には入れない。その場合、培地の循
環系においてマイクロキャリア同志の衝突により細胞が
表面から脱落して培養効率が低下するという懸念がある
。また、マイクロキャリアは培養槽内で循環する培地に
より浮遊する現象を示し、培地の流速を上げるには特別
な工夫を要するという問題がある。
For example, Fine Chemical 1985.12.15.
For P, 5 to P, 13, chitosan porous beads (particle size 0
.. 1-3 mm, pore diameter 0.1-3 JM). Cell culture has been attempted using this microcarrier, but the cells have a relatively large diameter (for example, 10//m).
Because of this, it only attaches to the surface of the microcarrier and does not enter the pores. In this case, there is a concern that cells may fall off the surface due to collisions between microcarriers in the culture medium circulation system, resulting in a decrease in culture efficiency. In addition, microcarriers exhibit a phenomenon of floating due to the medium circulating in the culture tank, and there is a problem in that special measures are required to increase the flow rate of the medium.

培養担体を固定化する方法として、特開昭626568
1号公報には繊維状担体を用いることが開示されている
。そして繊維状担体としてガラス繊維、ダクロン、テフ
ロン、ナイロン、オーロン等が挙げられている。しかし
ながら、これらの繊維は衣料用・産業資材用の繊維内部
構造の緻密なプラスチック繊維等であり、本発明の繊維
の化学組成・構造とは異なるものであり、しかも細胞の
付着や他の吸着物の付着は表面にしか期待しえない。
As a method for immobilizing culture carriers, Japanese Patent Application Laid-Open No. 626568
Publication No. 1 discloses the use of a fibrous carrier. Examples of the fibrous carrier include glass fiber, Dacron, Teflon, nylon, and Orlon. However, these fibers are plastic fibers with a dense internal structure for clothing and industrial materials, and have a different chemical composition and structure from the fibers of the present invention. can only be expected to adhere to the surface.

また、良く知られている中空状繊維もその内部構造は一
般的には0.1−=以下の微孔体であり、本発明の繊維
とは異なるものである。
Further, the well-known hollow fibers generally have a microporous structure of 0.1-= or less, and are different from the fibers of the present invention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

セルロース多孔体の用途の1つとして各種担体がある。 One of the uses of cellulose porous materials is as various carriers.

たとえば、付着性細胞の大量培養に用いられるマイクロ
キャリアや繊維状担体は、従来、粒子の表面に細胞を付
着させることにより培養濃度を106セル/mfにまで
向上させてきたが、マイクロキャリアを用いる場合は、
マイクロキャリアが培地中に浮遊するために、マイクロ
キャリアと培地上澄を分離するためにフィルターまたは
沈澱管を用いる必要があり、フィルターの目詰りの問題
や、沈澱管の場合は流速を一定以上あげることができな
い等の問題がある。また、繊維状担体も大きい付着面積
が得られないという問題がある。
For example, microcarriers and fibrous carriers used for mass culture of adherent cells have conventionally been used to increase the culture concentration to 106 cells/mf by attaching cells to the particle surface, but microcarriers In case,
Because the microcarriers float in the medium, it is necessary to use a filter or sedimentation tube to separate the microcarriers and the medium supernatant, which may cause problems with filter clogging or increase the flow rate above a certain level if a sedimentation tube is used. There are problems such as not being able to do so. Further, there is also a problem that a large adhesion area cannot be obtained with a fibrous carrier.

これらの問題点を解決するために、大きい付着面積を有
する大量培養可能な固定化担体が望まれている。
In order to solve these problems, an immobilization carrier with a large attachment area and capable of mass culturing is desired.

従って、本発明の目的は、従来の問題点を解決し、約2
声より大きい孔が比較的均一に分布した糸状またはフィ
ルム状セルロース多孔体及びその製造方法を提供するに
ある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the problems of the prior art and to
The object of the present invention is to provide a filamentous or film-like porous cellulose material in which pores larger than a voice are distributed relatively uniformly, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、膜で隔てられた径が約2I1mより大きい
多数の空胞を有し、該空胞は隣接した空胞間を隔てる膜
の開口部によりたがいに連通した連続孔構造を形成して
いることを特徴とする糸状またはフィルム状セルロース
多孔体によって達成される。
The above object has a large number of vacuoles separated by a membrane and having a diameter of more than about 2I1 m, and the vacuoles form a continuous pore structure that communicates with each other through openings in the membrane separating adjacent vacuoles. This is achieved by using a filamentous or film-like cellulose porous material that is characterized by the following properties:

上記の糸状またはフィルム状セルロース多孔体は、セル
ロース溶液またはセルロース誘導体溶液を糸状またはフ
ィルム状に形成し、その溶液の固化温度以下に冷却して
凍結させ、次いで溶媒を抽出除去するかまたは溶解能力
を失なわせ、さらに、セルロース誘導体の場合は再生す
ることを特徴とする方法によって製造される。
The above-mentioned filamentous or film-like cellulose porous material is produced by forming a cellulose solution or a cellulose derivative solution into a filamentous or film-like form, cooling and freezing the solution below the solidification temperature, and then extracting and removing the solvent or removing the dissolving ability. It is produced by a method characterized by causing the cellulose derivative to be lost and, in the case of cellulose derivatives, being regenerated.

本発明の要点は、セルロース溶液あるいはセルロース誘
導体溶液が凍結固化する際、溶媒またはその構成成分(
以下、「溶媒等」と記す)の微結晶が多数形成され、溶
解していたセルロースあるいはセルロース誘導体が溶媒
微結晶間隙に濃縮分離する一種の相分離現象を多孔化手
段として応用した、まった(新規な方法で、従来得られ
なかった孔径が約2JJmより大きい糸状またはフィル
ム状セルロース多孔体(以下、単に「セルロース多孔体
」という。)を提供することにある。
The gist of the present invention is that when a cellulose solution or a cellulose derivative solution is frozen and solidified, the solvent or its constituent components (
A type of phase separation phenomenon in which a large number of microcrystals of a solvent (hereinafter referred to as "solvent, etc.") is formed, and the dissolved cellulose or cellulose derivatives are concentrated and separated in the gaps between the solvent microcrystals is applied as a means for creating porosity. The object of the present invention is to provide a thread-like or film-like cellulose porous material (hereinafter simply referred to as "cellulose porous material") having a pore diameter larger than about 2 JJm, which has not been previously obtained, by a new method.

本発明のセルロース多孔体の空胞の大きさは、径が約2
pより大きく、好ましくはその大部分が5−以上、更に
好ましくは10−=以上である。これより小さいときは
、セルロース多孔体中での流体や物質の自由な移動が実
現されず、その用途は制約される。空胞の大きさの上限
は、特に制限されるものではなく、使用目的やセルロー
ス多孔体の強度等から選ばれて良いが、通常500IA
n以下、好ましくは200J−以下に選ばれることが多
い。
The size of the vacuoles of the cellulose porous material of the present invention is approximately 2 in diameter.
p, preferably the majority is 5- or more, more preferably 10-= or more. When the size is smaller than this, free movement of fluids and substances within the porous cellulose material is not achieved, and its uses are restricted. The upper limit of the size of the vacuole is not particularly limited and may be selected depending on the purpose of use and the strength of the porous cellulose material, but it is usually 500 IA.
It is often selected to be less than n, preferably less than 200 J-.

空胞隔膜の厚みや構造に関しては、各空胞を互いに連結
するだめの連結口が開口されているべきこと以外は特に
制限されるものではないが、該開口の大きさは、空胞の
径に比べ余り小さすぎないことが好ましく、およそ空胞
径の1/30程度以上が望ましい。開口があまりに大き
すぎるとセルロース多孔体の強度が不足して使用時の破
壊につながり好ましくないため、空胞径の約3/4程度
以下、特に約2/3程度以下であることが望ましい。
There are no particular restrictions on the thickness or structure of the vacuole septum, except that the connecting ports connecting the vacuoles to each other should be opened, but the size of the openings depends on the diameter of the vacuole. It is preferable that the diameter of the vacuole is not too small compared to the diameter of the vacuole, and preferably about 1/30 or more of the diameter of the vacuole. If the opening is too large, the strength of the cellulose porous material will be insufficient, leading to destruction during use, which is undesirable; therefore, it is desirable that the opening is about 3/4 or less, particularly about 2/3 or less, of the vacuole diameter.

また、空胞隔膜の厚さは、セルロースまたはその誘導体
の溶液の濃度、空胞径等によって異なるが、空胞径の1
/4以下、好ましくは1/10以下であり、場合によっ
ては1/30以下のものさえ可能である。
The thickness of the vacuolar septum varies depending on the concentration of the cellulose or its derivative solution, the vacuole diameter, etc.
/4 or less, preferably 1/10 or less, and even 1/30 or less is possible in some cases.

隔膜には上記の大口径の開口部の他に、更に微細な孔構
造がみられることもあるが、特に発明の目的を害さぬか
ぎり、むしろ望ましい実施態様である。
In addition to the above-mentioned large-diameter openings, the diaphragm may have a finer pore structure, but this is a preferable embodiment as long as it does not particularly impede the purpose of the invention.

本発明のセルロース多孔体、即ちそれを構成する膜は、
実質的にセルロースより形成されている。
The cellulose porous material of the present invention, that is, the membrane constituting it,
Made essentially of cellulose.

ここでセルロースとしては、パルプ、リンク−故紙、細
菌産生セルロース、再生セルロースナトのいずれかを原
料とするものであり、特に制限されるものではない。
Here, cellulose is not particularly limited and may be made from pulp, waste paper, bacterially produced cellulose, or regenerated cellulose.

セルロース多孔体ヲ形成するセルロース多孔体ら原料を
後述の方法で溶解し、再析出または再生させたものであ
って、平均重合度は特に制限されるものではない。平均
重合度は通常100〜1000程度のものが好ましいが
、細菌産生セルロースのように更に高重合度のものでも
、特に発明の目的を害さぬかぎり、むしろ望ましい実施
態様である。
The cellulose porous material used to form the cellulose porous material is dissolved and reprecipitated or regenerated by the method described below, and the average degree of polymerization is not particularly limited. The average degree of polymerization is usually preferably about 100 to 1000, but even higher degrees of polymerization, such as cellulose produced by bacteria, are a rather desirable embodiment, as long as they do not particularly impede the purpose of the invention.

セルロース多孔体を形成するセルロース中にヘミセルロ
ースまたはセルロース加水分解物及び酸化分解物の少量
が混在していても、または他の重合体の少量が混在して
いても、それが本発明の目的を損なわないかぎり許され
る。
Even if a small amount of hemicellulose or cellulose hydrolyzate and oxidative decomposition product is mixed in the cellulose forming the cellulose porous body, or even if a small amount of other polymer is mixed, this will defeat the purpose of the present invention. It is allowed as long as it is not.

本発明のセルロース多孔体において糸状のものは、通常
の紡糸方法、即ち、ノズルに設けた吐出孔からポリマー
溶液を凍結媒体中に押し出して形成される糸である。ま
た、ポリマー溶液を環状ノズルから押し出して形成され
る中空糸であってもよい。さらに、フィルム状物は、通
常のフィルム形成方法、即ち、ポリマー溶液をグイから
押し出す、或いはキャスチング法で形成されるフィルム
状物であり、またポリマー溶液を型枠に流し込んで形成
されるフィルム状物である。
The thread-like cellulose porous material of the present invention is a thread formed by a normal spinning method, that is, by extruding a polymer solution into a freezing medium through a discharge hole provided in a nozzle. Alternatively, it may be a hollow fiber formed by extruding a polymer solution from an annular nozzle. Furthermore, the film-like material is a film-like material formed by a normal film-forming method, that is, extruding a polymer solution through a goo or a casting method, or a film-like material formed by pouring a polymer solution into a mold. It is.

セルロース多孔体が糸の場合、断面形状は通常、円形、
三角形、六角形等の多角形、偏平多角形、偏平円形、中
空状、田型状のものから選ばれるが、この範囲に限定さ
れるものではない。糸径も用途によって任意に選定され
て良く、通常5〜500p径、場合によっては5mm径
以上の棒状のものさえ可能である。糸径は糸長方向に均
一である必要はなく、糸長も任意であることは言うまで
もない。
When the porous cellulose material is a thread, the cross-sectional shape is usually circular,
It is selected from polygons such as triangles and hexagons, flat polygons, flat circular shapes, hollow shapes, and box-shaped shapes, but is not limited to this range. The diameter of the thread may also be arbitrarily selected depending on the application, and it is usually 5 to 500p in diameter, and in some cases even rod-shaped threads with a diameter of 5 mm or more are possible. Needless to say, the yarn diameter does not need to be uniform in the yarn length direction, and the yarn length can also be arbitrary.

セルロース多孔体がフィルムの場合、膜厚は用途によっ
て任意に限定されて良く、通常5〜500廁厚、場合に
よっては5m+n以上のものさえ可能である。膜厚は均
一である必要はなく、使用目的に応じてむしろ凹凸をつ
けることも好ましい実施態様となり得る。さらに、チュ
ーブ状、ハニカム状、その他の任意の形態にすることも
可能であることは容易に理解されよう。
When the porous cellulose material is a film, the film thickness may be arbitrarily limited depending on the use, and is usually 5 to 500 m thick, and may even be 5 m+n or more in some cases. The film thickness does not need to be uniform, and it may be preferable to provide the film with unevenness depending on the purpose of use. Furthermore, it will be easily understood that it is also possible to take a tubular shape, a honeycomb shape, or any other arbitrary shape.

本発明の方法においては、製造時にセルロース溶液ある
いはセルロース誘導体溶液に多孔化材等の異物を入れる
必要がないため、溶液は成型性に富み、また純セルロー
ス多孔体が容易に得られる。
In the method of the present invention, there is no need to add foreign matter such as a porous material to the cellulose solution or cellulose derivative solution during production, so the solution has excellent moldability and a pure cellulose porous body can be easily obtained.

空胞の径と形状は基本的に溶液中の溶媒等が凍結固化す
る際に形成する溶媒等の結晶の大きさと形状により決ま
る。従って、セルロース溶液の種類あるいはセルロース
誘導体溶液の種類と、温度などの凍結同化条件を変化さ
せることにより空胞の形状及び孔径を調整することがで
きる。
The diameter and shape of the vacuole are basically determined by the size and shape of crystals of the solvent, etc. that are formed when the solvent, etc. in the solution freezes and solidifies. Therefore, the shape and pore size of the vacuole can be adjusted by changing the type of cellulose solution or cellulose derivative solution and freezing assimilation conditions such as temperature.

本発明に用いるセルロース溶液には、例えば、銅アンモ
ニア(Cuoxam)、銅エチレンジアミン(CBD)
、カドキセン、酒石酸鉄ナトリウム(EWNN) 、ニ
ッケルエチレンジアミン(Nioxen) 、ニッケル
アンモニア(Nioxam)、コバルトエチレンジアミ
ン(Cooxen)、亜鉛エチレンジアミン(Zinc
oxen)等の金属錯体の水溶液にセルロースを溶解し
た溶液、ジメチルアセトアミド/塩化リチウム系溶媒に
セルロースを溶解した溶液、N−メチルモルフォリンオ
キサイド、トリエチルアミンオキザイド、シクロへキシ
ルジメチルアミン等の各種アミン系溶媒にセルロースを
溶解した溶液、チオンアン酸アンモン、ヨアを組み合わ
せた溶媒にセルロースを溶解した溶液、特開昭60−4
2438号公報に示されるアルカリ水溶液にセルロース
を溶解した溶液などがあるが、これらに限定されるもの
ではない。
The cellulose solution used in the present invention includes, for example, copper ammonia (Cuoxam), copper ethylenediamine (CBD),
, cadoxen, iron sodium tartrate (EWNN), nickel ethylene diamine (Nioxen), nickel ammonia (Nioxam), cobalt ethylene diamine (Cooxen), zinc ethylene diamine (Zinc)
A solution of cellulose dissolved in an aqueous solution of a metal complex such as oxen), a solution of cellulose dissolved in a dimethylacetamide/lithium chloride solvent, and various amines such as N-methylmorpholine oxide, triethylamine oxide, and cyclohexyldimethylamine. A solution of cellulose dissolved in a solvent, a solution of cellulose dissolved in a solvent containing ammonium thionate and ioar, JP-A-60-4
Examples include a solution in which cellulose is dissolved in an alkaline aqueous solution as shown in Japanese Patent No. 2438, but the present invention is not limited thereto.

本発明に用いるセルロース誘導体溶液には、ジメチルス
ルホキサイド中でパラホルムアルデヒドをセルロースに
反応させセルロースの一部をメチロール化して溶解した
溶液、ジメチルホルムアミド中で四酸化二窒素をセルロ
ースに反応させてセルロースナイトライドエステル化し
て溶解した溶液、ジメチルスルホキサイド(DMSO)
中で各種アミンと二酸化イオウをセルロースに反応させ
て溶解した溶液、セルロースザントゲン酸ソーダ溶液(
ビスコース)、およびセルロースアセテートのアセトン
溶液などがあるがこれらに限定されるものではない。
The cellulose derivative solution used in the present invention includes a solution obtained by reacting paraformaldehyde with cellulose in dimethyl sulfoxide to methylolate a part of cellulose, and a solution obtained by reacting dinitrogen tetroxide with cellulose in dimethylformamide. Nitride esterified and dissolved solution, dimethyl sulfoxide (DMSO)
A solution prepared by reacting various amines and sulfur dioxide with cellulose, and a cellulose xanthate sodium solution (
viscose), and an acetone solution of cellulose acetate, but are not limited to these.

凍結は、繊維状溶液またはフィルム状溶液を任意の温度
に調節した媒体中に導入することによっておこなう。媒
体は、セルロース溶液あるいはセルロース誘導体溶液と
非反応性かつ非混和性の液体あるいは気体が好ましい。
Freezing is carried out by introducing the fibrous or film solution into a medium adjusted to an arbitrary temperature. The medium is preferably a liquid or gas that is non-reactive and immiscible with the cellulose solution or cellulose derivative solution.

なお、反応性の気体あるいは液体中であれば、繊維また
はフィルムの表面部分だけを反応・改質したうえ凍結す
ることができる。例えば、セルロース溶液あるいはセル
ロース誘導体溶液と混和性の液体あるいは気体中で凍結
させると、凍結温度に達する前に、繊維またはフィルム
表面にのみ該液体あるいは気体が浸透するため、表面を
覆う膜状にセルロースが析出する。結果として、表層の
み膜で覆われたセルロース多孔体が得られる。
Note that if it is in a reactive gas or liquid, only the surface portion of the fiber or film can be reacted and modified and then frozen. For example, when frozen in a liquid or gas that is miscible with a cellulose solution or cellulose derivative solution, the liquid or gas permeates only the surface of the fiber or film before reaching the freezing temperature, so that the cellulose forms a film that covers the surface. is precipitated. As a result, a cellulose porous body whose surface layer is covered with a membrane is obtained.

本発明方法において凍結を実施するに際し、凍結温度は
溶媒等が凍結する温度より低ければ、特に制限されるも
のではない。しかしながら、本発明のセルロース多孔体
の空胞径を決定する溶媒等の結晶の成長の点で重要であ
り、溶媒等の種類及び目的とする空胞径から選択される
。余りにも低い温度は、凍結に際し結晶を形成すること
なく、セルロース溶液が溶液構造に近い状態のまま凍結
されてしまい、通常の湿式凝固したと同様のゲル構造と
なり、好ましくない場合が多い。但し、凍結温度の適切
な設定により、セルロース多孔体表面のみゲル構造とし
、内部を多孔構造にすることが可能であり、且つ表面を
部分的にゲル被膜で覆い部分的にセルロース多孔体内部
への連結口を残すこともできる。この様な構造を持つセ
ルロース多孔体は、圧縮時の変形に対し特に高い抵抗力
を持つ。一般には、凍結温度は、溶媒等の凍結温度より
も40℃以上低くは設定されないことが好ましく、通常
は凍結温度よりも0〜20℃低い範囲に選ばれることが
多い。
When freezing is carried out in the method of the present invention, the freezing temperature is not particularly limited as long as it is lower than the temperature at which the solvent etc. freeze. However, the solvent and the like that determine the vacuole diameter of the porous cellulose material of the present invention are important in terms of crystal growth, and are selected based on the type of solvent and the desired vacuole diameter. Too low a temperature is often undesirable, as the cellulose solution will be frozen in a state close to its solution structure without forming crystals during freezing, resulting in a gel structure similar to that obtained by normal wet coagulation. However, by setting the freezing temperature appropriately, it is possible to make only the surface of the porous cellulose material have a gel structure and the inside to have a porous structure, and the surface can be partially covered with a gel film and the inside of the porous cellulose material can be partially covered with a gel film. You can also leave a connecting port. Cellulose porous materials with such a structure have particularly high resistance to deformation during compression. Generally, it is preferable that the freezing temperature is not set lower than the freezing temperature of the solvent, etc. by 40°C or more, and it is usually selected in the range of 0 to 20°C lower than the freezing temperature.

本発明の方法において、凍結されたセルロース溶液ある
いはセルロース誘導体溶液は、次いで、セルロースある
いはセルロース誘導体を溶解している溶媒を抽出除去す
るか、その溶解能を低めて(以下、これらの処理を総称
して「溶媒除去等」という)、固化されたセルロース多
孔体とする。
In the method of the present invention, the frozen cellulose solution or cellulose derivative solution is then treated by extracting and removing the solvent in which the cellulose or cellulose derivative is dissolved, or by lowering its solubility (hereinafter, these treatments are collectively referred to as (referred to as "solvent removal, etc.") to form a solidified cellulose porous body.

要するに、通常のセルロース溶液、セルロース誘導体溶
液の湿式成形時に用いられる稀釈析出もしくは沈澱、溶
媒抽出、または酸アルカリ中和反応などの凝固方法がそ
のまま適用できる。
In short, the usual coagulation methods used in wet molding of cellulose solutions and cellulose derivative solutions, such as dilution precipitation or precipitation, solvent extraction, or acid-alkali neutralization reaction, can be applied as is.

溶媒除去等の条件は特に制限されるものではない。通常
は、凍結した糸状物またはフィルム状物を素早く任意の
凝固浴または再生浴中に投入すれば足りるが、凝固浴ま
たは再生浴も溶液の凍結温度以下にすることが好ましく
推奨される。
Conditions such as solvent removal are not particularly limited. Normally, it is sufficient to quickly introduce the frozen filament or film into any coagulation bath or regeneration bath, but it is preferably recommended that the temperature of the coagulation bath or regeneration bath be below the freezing temperature of the solution.

但し、セルロース誘導体の場合はセルロース再生工程が
必要であり、この再生は溶媒除去等と同時または逐次的
に(すなわち、溶媒除去等を行った後に)行なう。再生
自体は常法によって行うことができる。
However, in the case of cellulose derivatives, a cellulose regeneration step is required, and this regeneration is performed simultaneously with or sequentially with the solvent removal (that is, after the solvent removal and the like). Regeneration itself can be performed by conventional methods.

溶媒除去等を済ませたセルロース多孔体、または、溶媒
除去等と再生工程を経たセルロース多孔体は、次いで水
または他の洗浄剤により洗浄され、必要があれば乾燥や
蒸気滅菌等を施された後、使用に供される。洗浄や乾燥
の条件についても特に制限されるものではなく、用途に
応じた条件が任意に選ばれて良い。
The porous cellulose material that has undergone solvent removal, etc., or the cellulose porous material that has undergone the solvent removal and regeneration process, is then washed with water or other cleaning agents, and if necessary, dried or steam sterilized. , made available for use. The washing and drying conditions are not particularly limited either, and conditions may be arbitrarily selected depending on the application.

〔作用および発明の効果〕 本発明のセルロース多孔体は、約2pより人きい大孔径
の連続空胞を持つため、セルロース多孔体内に液体や固
体が出入りしやすい構造体である。
[Function and Effects of the Invention] The porous cellulose material of the present invention has continuous vacuoles with a pore diameter larger than about 2p, so it is a structure in which liquids and solids can easily enter and exit the porous cellulose material.

この多孔体の空胞を形成する隔壁は、基本的に天然物で
あるセルロースより成るため、水に対する親和性が良く
、生物的に無害であり、耐有機溶剤性が良く、耐熱性が
良いなどの利点がある。これらの利点から、そのまま、
または一部化学修飾した後、固定化酵素用担体、細胞培
養用担体等に有用である。
The partition walls that form the vacuoles of this porous material are basically made of cellulose, which is a natural product, so they have good affinity for water, are biologically harmless, have good resistance to organic solvents, and good heat resistance. There are advantages. Because of these advantages,
Or after partial chemical modification, it is useful as a carrier for immobilized enzymes, a carrier for cell culture, etc.

また、大孔径の連続空胞は粘性のある液に対しても通液
性がよいものとなる。さらに、動物細胞のような大きな
体積を有するものでも、表面に聞いた孔から内部に侵入
することができるので、従来の表面付着型の担体と異な
り、担体内部に細胞を保持する細胞培養担体として応用
できる。また、多孔体であるため、細胞の付着面積が広
く、細胞の大量培養を可能とする。さらに繊維状または
フィルム状のために浮遊問題や詰り問題も防止し得る。
Moreover, continuous vacuoles with large pores have good permeability even for viscous liquids. Furthermore, even cells with a large volume such as animal cells can enter the interior through pores on the surface, so unlike conventional surface-attached carriers, it can be used as a cell culture carrier that retains cells inside the carrier. Can be applied. Furthermore, since it is a porous material, it has a large adhesion area for cells, making it possible to culture a large amount of cells. Furthermore, due to the fibrous or film form, floating and clogging problems can also be avoided.

また、セルロースの反応性水酸基を利用した誘導体化も
容易であり、機能性反応基の導入により酵素固定、イオ
ン交換能、キレート能などが付与できるため、種々の用
途に応用することができる。
In addition, derivatization using the reactive hydroxyl groups of cellulose is easy, and enzyme immobilization, ion exchange ability, chelating ability, etc. can be imparted by introducing functional reactive groups, so it can be applied to various uses.

本発明の方法の特徴とするところは、凍結時に溶媒等が
微結晶として析出するため、溶液中のセルロースは微結
晶間の僅かな隙間に高濃度で濃縮される。この濃縮され
た状態で溶媒分離により膜状にセルロースが再生あるい
は析出するため強靭なセルロース多孔体が得られる。
A feature of the method of the present invention is that during freezing, the solvent and the like precipitate as microcrystals, so that cellulose in the solution is concentrated at a high concentration in the small gaps between the microcrystals. In this concentrated state, cellulose is regenerated or precipitated in the form of a membrane by solvent separation, resulting in a tough cellulose porous body.

〔実施例〕〔Example〕

以下、本発明を実施例について具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

実施例において、セルロース溶液あるいはセルロース誘
導体溶液の粘度は、市販の回転粘度計を用い、温度23
℃において、ロータを2Qrpmて回転させて測定した
値である。
In the examples, the viscosity of the cellulose solution or cellulose derivative solution was measured using a commercially available rotational viscometer at a temperature of 23.
This is a value measured by rotating the rotor at 2 Qrpm at ℃.

セルロースの銅安相対粘度(ηrat) はJIS P
8101によって測定し、平均重合度(U17)は銅安
相対粘度から次の式によって求めた(I、 E、 C9
42,502(1950)参照)。
The copper ammonium relative viscosity (ηrat) of cellulose is determined by JIS P
8101, and the average degree of polymerization (U17) was determined from the copper ammonium relative viscosity using the following formula (I, E, C9
42, 502 (1950)).

(1’TF<300)  ’U′F= 520 (’7
rev−1 )多孔体表面の開孔径及び開孔面積率は、
凍結乾燥処理した試料を金スパツタリング処理してSE
Mで適当な倍率に拡大し観察測定を行なった。多孔体内
部の開孔径および隔膜の厚さは、上述のように液体窒素
で凍結した後、同温度で割断を行ない、そのまま真空中
で乾燥以降の処理を施しSEMで粒子断面の観察測定を
行ない求めた。
(1'TF<300) 'U'F=520 ('7
rev-1) The pore diameter and pore area ratio on the surface of the porous body are:
Freeze-dried samples were subjected to gold sputtering and SE
The image was enlarged to an appropriate magnification using M and observation and measurement were performed. The diameter of the openings inside the porous body and the thickness of the diaphragm are determined by freezing the material in liquid nitrogen as described above, cutting it at the same temperature, drying it in vacuum, and then observing and measuring the particle cross section using SEM. I asked for it.

開孔径等については、それらが真円でない場合は、最も
短い直径をもって定義した。
Regarding the opening diameter, etc., if the holes were not perfectly circular, they were defined as the shortest diameter.

実施例1 アラスカパルプ社製溶解用パルプAL−Tを酸加水分解
により平均重合度450に調整したものを6℃の8%水
酸化す) IJウム水溶液に溶解し、濃度6%のセルロ
ース溶液を得た。
Example 1 Dissolving pulp AL-T manufactured by Alaska Pulp Co., Ltd. was adjusted to an average degree of polymerization of 450 by acid hydrolysis, and then dissolved in an aqueous IJ solution (8% hydroxylated at 6°C) to form a cellulose solution with a concentration of 6%. Obtained.

この溶液を径1mmのノズルから一16℃のヘキサン中
に押し出し、ヘキサン中で糸状の該溶液の凍結体を得た
。次に凍結体を取り出し、−20℃の50%硫酸水溶液
中に投入し、−20℃に5時間保った後、糸状体を取り
出し水洗した。光学顕微鏡で糸状体を観察したところ、
糸の太さは、120声であり、その表面から内部へ多数
の2〜30卯の孔径の孔が開口しているのが認められた
This solution was extruded into hexane at -16° C. through a nozzle with a diameter of 1 mm to obtain a frozen filament of the solution in hexane. Next, the frozen body was taken out and put into a 50% sulfuric acid aqueous solution at -20°C, and after being kept at -20°C for 5 hours, the filamentous body was taken out and washed with water. When the filamentous bodies were observed with an optical microscope,
The thickness of the thread was 120 tones, and it was observed that many holes with a diameter of 2 to 30 μm were opened from the surface to the inside.

また、高倍率の観察で孔は内部深くに達し、それぞれの
孔は膜で隔てられ空胞を形成しているのが認められた。
Furthermore, observation under high magnification revealed that the pores reached deep inside, and that each pore was separated by a membrane, forming a vacuole.

さらに空胞間を隔てる膜が部分的に開孔した連続孔構造
を形成しているのが認められた。糸状体の断面および側
面の走査型電子顕微鏡(SEM)写真をそれぞれ第1図
および第2図に示す。
Furthermore, it was observed that the membrane separating the vacuoles formed a partially open continuous pore structure. Scanning electron microscope (SEM) photographs of the cross section and side surface of the filament are shown in FIGS. 1 and 2, respectively.

凍結割断面のSEM観察により求めた隔膜の厚さは2廂
以下であった。
The thickness of the diaphragm determined by SEM observation of the freeze-fractured cross section was 2 feet or less.

実施例2 実施例1と同じセルロース溶液からドクターブレードを
用いて厚さ1000側のフィルムを調製し、これを型台
ごと一20℃に冷却したシリコーンオイル(信越シリコ
ーン■社製KF96 )中に浸漬して凍結させ、途中で
型台からフィルムをはがして凍結を完了させた。次に、
フィルムを取り出し、−20℃の50%硫酸水溶液中に
投入し、−20℃に5時間保った後、フィルムを取り出
し水洗した。得られたフィルムの厚さは約100殉で、
フィ空孔を形成しているのが認められ、空孔間を隔てる
膜が部分的に開孔した連続孔構造を形成しているのが8
忍められた。
Example 2 A film with a thickness of 1000 mm was prepared from the same cellulose solution as in Example 1 using a doctor blade, and the entire mold was immersed in silicone oil (KF96 manufactured by Shin-Etsu Silicone Co., Ltd.) cooled to -20°C. The film was removed from the mold stand midway through to complete freezing. next,
The film was taken out and put into a 50% sulfuric acid aqueous solution at -20°C, and after being kept at -20°C for 5 hours, the film was taken out and washed with water. The thickness of the obtained film was approximately 100 mm.
In 8 cases, the membrane separating the pores forms a continuous pore structure where the pores are partially open.
It was tolerated.

実施例3 本例は、本発明のセルロース多孔体の有用な応用例の一
つを示すものである。
Example 3 This example shows one of the useful applications of the cellulose porous material of the present invention.

滅菌処理済みのコラーゲン■溶液であるCellmat
rix I−Δ(新田ゼラヂン■社製)を滅菌処理した
pt13の塩酸水溶液で5倍に希釈し、0.6 mg/
証のコラーゲン■溶液10艷を調製し4℃に保冷した。
Cellmat, a sterilized collagen solution
rix I-Δ (manufactured by Nitta Zeradin ■) was diluted 5 times with a sterilized PT13 hydrochloric acid aqueous solution, and 0.6 mg/
Ten volumes of collagen solution were prepared and kept at 4°C.

実施例2で得られたフィルムを未乾燥状態のまま、セル
ロース乾燥重量換算で0.4g分取し、500mEの蒸
溜水と共に耐圧ガラスビンに入れ130℃、2時間オー
トクレーブ滅菌処理を施した後、4℃に保冷した。ここ
に上述のコラーゲンI溶液50dを加え氷冷しながら撹
拌した後、1時間かけて撹拌しなから液温を25℃まで
上昇させて、滅菌水で洗浄した。ハムl−12(大日本
製薬株式会社製)培地に牛胎児血清(犬日本製薬株式会
社製)を5%添加したちの5誦を径60mmの滅菌済ボ
トルに入れ、水洗後の上記フィルムをボトル中に3層と
なるように筒状に詰めた後、チャイニーズハムスター卵
巣由来の株細胞C11O−Kl (大日本製薬株式会社
製)を加え37℃、二酸化炭素5%の条件で7日間イン
キュベートした。インキュベート後、2%グルクルアル
デヒド中にフィルムをいれ4℃で3時間放置した後、リ
ン酸緩衝溶液(PBS)で2回洗浄し、2%オスミウム
酸で1.5時間、4℃で処理した。次に4℃の20%、
50%、た後、室温の80%、90%、100%エタノ
ールで順次アルコール置換をおこなった。更に酢酸イソ
アミル中に30分間浸漬した後、二酸化炭素を用いた臨
界点乾燥処理を行ない、乾燥試料を得た。
0.4 g of the film obtained in Example 2 was collected in an undried state in terms of cellulose dry weight, placed in a pressure-resistant glass bottle with 500 mE distilled water, and sterilized in an autoclave at 130°C for 2 hours. It was kept cold at ℃. After adding 50 d of the collagen I solution described above and stirring while cooling on ice, the solution temperature was raised to 25°C over 1 hour without stirring, and the mixture was washed with sterilized water. Five recitations prepared by adding 5% fetal bovine serum (manufactured by Inu Nippon Pharmaceutical Co., Ltd.) to Ham l-12 (manufactured by Dainippon Pharmaceutical Co., Ltd.) medium were placed in a sterilized bottle with a diameter of 60 mm, and the above film was washed with water. After filling the bottle in a cylindrical shape with three layers, Chinese hamster ovary-derived cell line C11O-Kl (manufactured by Dainippon Pharmaceutical Co., Ltd.) was added and incubated at 37°C and 5% carbon dioxide for 7 days. . After incubation, the film was placed in 2% glucuraldehyde and left at 4°C for 3 hours, washed twice with phosphate buffered saline (PBS), and treated with 2% osmic acid for 1.5 hours at 4°C. . Next, 20% of 4℃,
After 50%, alcohol substitution was performed sequentially with 80%, 90%, and 100% ethanol at room temperature. After further immersing in isoamyl acetate for 30 minutes, critical point drying treatment using carbon dioxide was performed to obtain a dry sample.

この試料を金蒸着処理した後走査型電子顕微鏡(SEM
)で観察したところCll0−Klがフィルムの孔に入
り込んで付着繁殖している状態が認められた。
This sample was subjected to gold evaporation treatment and then subjected to scanning electron microscopy (SEM).
), it was observed that Cll0-Kl had entered the pores of the film and was adhering and propagating.

【図面の簡単な説明】[Brief explanation of the drawing]

第」図および第2図は、それぞれ、本発明の糸状セルロ
ース多孔体の断面および側面の走査型電子顕微鏡(SE
M)写真である。 手 続 補 正 書(方式) %式% 事件の表示 平成1年特許願第27591、 発明の名称 糸状またはフィルム状セルロース多孔体及びその製造方
法 補正をする者 事件との関係   特許出願人 名称 (003)旭化成工業株式会社 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号静光
虎ノ門ビル 電話504−07216、補正の対象 (1)明細書の「図面の簡単な説明」の欄7、補正の内
容 (1)明細書21頁10行に「および第2図は、それぞ
れ、」とあるを「はJと訂正する。 (2)明細書21頁11行に「および」とあるを「の走
査型電子顕微鏡(SEM)写真であり、第2図は、第1
図に示す糸状セルロース多孔体の」と訂正する。
Figures 1 and 2 respectively show a cross section and a side view of the filamentous cellulose porous material of the present invention under a scanning electron microscope (SE).
M) It is a photograph. Procedural amendment (method) % formula % Display of the case 1999 Patent Application No. 27591, Name of the invention Thread-like or film-like cellulose porous material and its manufacturing method Relationship with the case Amendment of the method Patent applicant name (003) Asahi Kasei Kogyo Co., Ltd. 4, Agent address: Shizuko Toranomon Building, 8-10 Toranomon-chome, Minato-ku, Tokyo 105 Telephone: 504-07216 Subject of amendment (1) Column 7 of "Brief explanation of drawings" in the specification; Contents of the amendment (1) On page 21, line 10 of the specification, the words ``and in Figure 2, respectively'' are corrected to ``J.'' (2) On page 21, line 11 of the specification, the words ``and'' are changed to `` Fig. 2 is a scanning electron microscope (SEM) photograph of Fig. 1.
Corrected to ``of the filamentous cellulose porous material shown in the figure.''

Claims (2)

【特許請求の範囲】[Claims] (1)膜で隔てられた径が約2μmより大きい多数の空
胞を有し、該空胞は隣接した空胞間を隔てる膜の開口部
によりたがいに連通した連続孔構造を形成していること
を特徴とする糸状またはフィルム状セルロース多孔体。
(1) It has a large number of vacuoles with a diameter of about 2 μm or more separated by a membrane, and the vacuoles form a continuous pore structure that communicates with each other through openings in the membrane that separate adjacent vacuoles. A filamentous or film-like cellulose porous material characterized by:
(2)セルロース溶液またはセルロース誘導体溶液を糸
状またはフィルム状に形成し、その溶液の固化温度以下
に冷却して凍結させ、次いで溶媒を抽出除去するかまた
は溶解能力を失なわせ、さらに、セルロース誘導体の場
合は再生することを特徴とする糸状またはフィルム状セ
ルロース多孔体の製造方法。
(2) Form a cellulose solution or a cellulose derivative solution into a thread or film, cool and freeze the solution below its solidification temperature, then extract and remove the solvent or lose its ability to dissolve the cellulose derivative; A method for producing a filamentous or film-like porous cellulose material, which comprises regenerating the cellulose material.
JP2759189A 1989-02-08 1989-02-08 Yarn-like or film-like porous cellulosic material and its production Pending JPH02208330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2759189A JPH02208330A (en) 1989-02-08 1989-02-08 Yarn-like or film-like porous cellulosic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2759189A JPH02208330A (en) 1989-02-08 1989-02-08 Yarn-like or film-like porous cellulosic material and its production

Publications (1)

Publication Number Publication Date
JPH02208330A true JPH02208330A (en) 1990-08-17

Family

ID=12225192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2759189A Pending JPH02208330A (en) 1989-02-08 1989-02-08 Yarn-like or film-like porous cellulosic material and its production

Country Status (1)

Country Link
JP (1) JPH02208330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001760A1 (en) * 1998-07-07 2000-01-13 Atrix Laboratories, Inc. Filamentous porous films and methods for producing the same
JP2011195655A (en) * 2010-03-18 2011-10-06 Konica Minolta Holdings Inc Fiber composite and method for producing the same
WO2016013568A1 (en) * 2014-07-22 2016-01-28 株式会社ダイセル Method for producing porous cellulose medium
US10695747B2 (en) 2015-04-03 2020-06-30 Daicel Corporation Method for producing porous cellulose medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129788A (en) * 1976-04-22 1977-10-31 Purdue Research Foundation Process for preparing porous cellulose beads
JPS6411141A (en) * 1987-07-03 1989-01-13 Nippi Collagen Kogyo Kk Production of porous article of hydrophilic polymer
JPH03502180A (en) * 1988-11-10 1991-05-23 メンティック・リミテッド Polymer porous hollow fiber manufacturing method and equipment used therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129788A (en) * 1976-04-22 1977-10-31 Purdue Research Foundation Process for preparing porous cellulose beads
JPS6411141A (en) * 1987-07-03 1989-01-13 Nippi Collagen Kogyo Kk Production of porous article of hydrophilic polymer
JPH03502180A (en) * 1988-11-10 1991-05-23 メンティック・リミテッド Polymer porous hollow fiber manufacturing method and equipment used therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001760A1 (en) * 1998-07-07 2000-01-13 Atrix Laboratories, Inc. Filamentous porous films and methods for producing the same
JP2011195655A (en) * 2010-03-18 2011-10-06 Konica Minolta Holdings Inc Fiber composite and method for producing the same
WO2016013568A1 (en) * 2014-07-22 2016-01-28 株式会社ダイセル Method for producing porous cellulose medium
JPWO2016013568A1 (en) * 2014-07-22 2017-06-22 株式会社ダイセル Method for producing porous cellulose medium
US11021588B2 (en) 2014-07-22 2021-06-01 Daicel Corporation Method for producing porous cellulose medium
US10695747B2 (en) 2015-04-03 2020-06-30 Daicel Corporation Method for producing porous cellulose medium

Similar Documents

Publication Publication Date Title
CA1321860C (en) Multi-cellular cellulose particle and process for preparation thereof
Mao et al. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution
US4056467A (en) Hollow fibres
JP4656839B2 (en) Halar film
US4612119A (en) Hollow fiber filter medium and process for preparing the same
US4439322A (en) Polymethyl methacrylate membrane
EP2329010B1 (en) Device for renal cell expansion
US4604326A (en) Porous regenerated cellulose hollow fiber and process for preparation thereof
US4075108A (en) Polycarbonate membranes and production thereof
Chen et al. Physical properties of microporous membranes prepared by hydrolyzing cellulose/soy protein blends
US4181694A (en) Method for producing hollow fibers of acrylonitrile polymers for ultrafilter
EP0066408B1 (en) Porous membrane
WO2009035413A1 (en) A chitosan solution and method of preparing the same
EP1029584A1 (en) Cellulose acetate semipermeable membrane and method for producing the same
JPH02208330A (en) Yarn-like or film-like porous cellulosic material and its production
JPH0491142A (en) Modified cellulose porous carrier
JPH02208332A (en) Production of polymeric porous material
JPS5898105A (en) Fluoride type wet separation membrane and preparation thereof
US6979700B2 (en) Non-degradable porous materials with high surface areas
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
GB2069925A (en) Plasmaphoresis membrane
JPH02208331A (en) Modified porous cellulose material
JPH02207785A (en) Porous carrier for cell culture
USRE30856E (en) Polycarbonate membranes and production thereof
JPS62234510A (en) Drying method for regenerated hollow cellulose yarn