JPH02208332A - Production of polymeric porous material - Google Patents

Production of polymeric porous material

Info

Publication number
JPH02208332A
JPH02208332A JP2759389A JP2759389A JPH02208332A JP H02208332 A JPH02208332 A JP H02208332A JP 2759389 A JP2759389 A JP 2759389A JP 2759389 A JP2759389 A JP 2759389A JP H02208332 A JPH02208332 A JP H02208332A
Authority
JP
Japan
Prior art keywords
polymer
solvent
solution
diameter
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2759389A
Other languages
Japanese (ja)
Inventor
Jiyunichi Shirokaze
淳一 城風
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2759389A priority Critical patent/JPH02208332A/en
Publication of JPH02208332A publication Critical patent/JPH02208332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a polymeric porous material having many uniformly dispersed cells having a specified diameter, separated from each other by films and interconnected to each other through the apertures in the films, having a large void volume and suited as a catalyst, an adsorbent, etc., by freezing a solution of a polymer other than cellulose and extracting the solvent from the product. CONSTITUTION:A polymer except cellulose (e.g. chitosan or sodium alginate) is dissolved in a solvent (e.g. dil. hydrochloric acid or aqueous sodium hydroxide solution). The obtained polymer solution is frozen by cooling to a temperature lower than the solidification temperature of the polymer solution. The solvent is extracted or deprived of its solvency to obtain a polymeric porous material having many cells of a diameter >= about 2mum and separated from each other by films and interconnected to each other through the apertures in the films which separate the adjacent cells to form an interconnected structure. By controlling the temperature and time in freezing, the pore diameter can be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な構造を有する高分子(セルロースを除
く)多孔体の製造法に関する。より詳細に述べると、触
媒、酵素、医薬品の担体やイオン交換体、吸着体の原料
及び細胞培養用マイクロキャリア等に好適な構造を持つ
高分子多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a porous polymer (excluding cellulose) having a novel structure. More specifically, the present invention relates to a method for producing a porous polymer having a structure suitable for catalysts, enzymes, pharmaceutical carriers, ion exchangers, raw materials for adsorbents, microcarriers for cell culture, and the like.

〔従来の技術〕[Conventional technology]

高分子の微小粒子は、ゲル濾過クロマトグラフィー(G
PC)用の充填材等として広く利用されている。加えて
、各種官能基を容易に導入できる場合は多種多様なイオ
ン交換体やアフィニティークロマトグラフィーの基材と
して広い応用範囲を持っている。特に近年、生化学や遺
伝子工学の発展に伴い生体内微量蛋白質の分離精製分野
における需要が大幅に拡大しつつある。現在市販されて
いる高分子粒子の中には多孔性粒子と称するものもある
が、それは主に、GPCの排除限界分子量を調節したり
粒子の密度を制御するために、極めて微細な孔径の多孔
構造を持たせているものなので、実質的にその孔径は最
大でせいぜい1μm程度のものである。
Polymer microparticles can be prepared by gel filtration chromatography (Gel filtration chromatography).
It is widely used as a filler for PC). In addition, when various functional groups can be easily introduced, it has a wide range of applications as a variety of ion exchangers and as a base material for affinity chromatography. Particularly in recent years, with the development of biochemistry and genetic engineering, the demand in the field of separation and purification of trace proteins in living organisms has been significantly expanding. Some of the polymer particles currently on the market are called porous particles, but they are mainly used to create pores with extremely fine pores in order to adjust the exclusion limit molecular weight for GPC and control particle density. Since it has a structure, its pore diameter is essentially about 1 μm at most.

一方、孔径の大きな高分子構造体としてスポンジが知ら
れているが、その孔径は数百pm以上で、通常は数mm
単位の孔が開いている。
On the other hand, sponges are known as polymeric structures with large pores, but the pores are several hundred pm or more, usually several mm.
The unit hole is open.

一般に、高分子の多孔体をつくるには、高分子溶液ある
いは融液に、目的とする孔径に応じた粒子径を持つ多孔
化材を大量に加え、成形固化したや溶液が一部変質し、
高分子が部分的に析出してしまうこともある。さらに、
多孔体の空隙率を大幅に上げたり連続孔構造にするため
には、高分子溶液や融液に対し大過剰の多孔化材を混入
する必要があるため、流動性低下により微細な成形が極
めて困難になる。また、多孔化材を抜いた後の多孔体は
必然的に強度も大幅に低下する。
Generally, to create a porous polymer body, a large amount of porous material with a particle size corresponding to the desired pore size is added to a polymer solution or melt, and the solidified or solidified solution is partially altered in quality.
Polymers may partially precipitate. moreover,
In order to significantly increase the porosity of the porous material or create a continuous pore structure, it is necessary to mix a large excess of porous material into the polymer solution or melt, which reduces fluidity and makes it extremely difficult to form fine particles. It becomes difficult. Furthermore, the strength of the porous body after removing the porous material is inevitably significantly reduced.

このような多孔化材を用いずに高分子多孔体を得る方法
として、水溶性高分子ゲルの高含水性成形物を提供する
目的で、それらの高分子の溶液を、型枠に注型したり、
塗膜とした後、凍結し、解凍することなく真空乾燥する
、いわゆる凍結真空乾燥法により溶液のゲル構造を固定
する常套手段を用いて、ゲル成形体を得る提案がある(
例えば、ポリビニルアルコールを用いる方法が特開昭5
7130543号公報、特開昭57−159826号公
報に開示され、また可溶化されたコラーゲンを用いる方
法が特開昭56−23896号公報に開示されている)
。このような凍結真空乾燥法による生成物も多孔性と称
することがあるが、ゲルの分子の網目の間の極めてミク
ロな空間を表わす概念であり、本発明の高分子多孔体の
空胞または孔とは全く概念が異なる。
As a method of obtaining a porous polymer body without using such a porous material, a solution of the polymer is poured into a mold for the purpose of providing a highly water-containing molded product of water-soluble polymer gel. Or,
There is a proposal to obtain a gel molded body using the conventional method of fixing the gel structure of the solution by the so-called freeze-vacuum drying method, which involves forming a coating film, freezing it, and vacuum-drying it without thawing.
For example, a method using polyvinyl alcohol was published in Japanese Patent Application Laid-open No. 5
7130543 and JP-A-57-159826, and a method using solubilized collagen is disclosed in JP-A-56-23896).
. The product obtained by such a freeze-vacuum drying method is also sometimes referred to as porous, but this concept refers to the extremely microscopic spaces between the molecular networks of the gel, and the vacuoles or pores of the porous polymer of the present invention are The concept is completely different.

〔発明が解決しようとしている課題〕[Problem that the invention is trying to solve]

従来の高分子ゲルとスポンジの孔径領域の中間にある2
/7In以上の孔径をもつ高分子多孔体は今まであまり
例がなく、製造が困難な領域であった。
2, which is between the pore size range of conventional polymer gels and sponges.
Until now, there have been few examples of porous polymers having pore diameters of /7In or more, and production has been difficult.

また、多孔化材を用いると微細な成形が困難になるし、
発泡剤の使用は、連続孔をつくりにくく、生成物の寸法
安定性に雛があるという問題点がある。
In addition, using porous materials makes it difficult to perform fine molding,
The use of blowing agents has the problem that it is difficult to create continuous pores and that the dimensional stability of the product is unstable.

また、ポリマー溶液の単なる凍結乾燥では、溶媒結晶の
成長をコントロールしていないため、孔径の制御が不」
分である。更に、凍結によって、高分子溶液は、溶媒結
晶とその結晶間に濃縮された高分子濃厚相とに相分離す
るが、凍結乾燥によって構造を固定しようとすると、溶
媒結晶部分は溶媒昇華によって孔となって残る。しかし
、高分子濃厚相部分は、はとんど高分子の凝集がないま
ま、保持していた溶媒が昇華によって除去されるので、
溶媒の抜けた跡が微細な孔となって残り、凍結時の厚み
を持つ隔壁構造体となる。したがって、凍結乾燥法で得
られる多孔体は孔間の隔壁を薄くすることが困難となり
、溶媒結晶が抜けて形成される比較的大きな開孔部の容
積比率を大きくすることが難しい。
Furthermore, simple freeze-drying of a polymer solution does not control the growth of solvent crystals, making it difficult to control the pore size.
It's a minute. Furthermore, upon freezing, a polymer solution undergoes phase separation into solvent crystals and a concentrated polymer phase between the crystals, but when attempting to fix the structure by freeze-drying, the solvent crystal portion becomes pore-formed due to solvent sublimation. It remains. However, in the polymer-rich phase part, the retained solvent is removed by sublimation without polymer aggregation.
Traces of the solvent leaving behind become fine pores, forming a partition wall structure with the same thickness as when frozen. Therefore, in a porous body obtained by the freeze-drying method, it is difficult to thin the partition walls between the pores, and it is difficult to increase the volume ratio of relatively large openings formed by the escape of solvent crystals.

しかも、溶媒あるいは溶媒中のある成分が昇華しにくい
場合には、凍結乾燥法による構造固定ができないので、
適用できるポリマー溶液は制約される。
Moreover, if the solvent or certain components in the solvent are difficult to sublimate, the structure cannot be fixed by freeze-drying.
Applicable polymer solutions are limited.

従って、本発明の目的は、従来の問題点を解決し、約2
淘より大きい孔が比較的均一に分布し、その空間容積が
極めて高い高分子多孔体を微細成形し得る方法を提供す
るにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the problems of the prior art and to
The object of the present invention is to provide a method capable of finely molding a porous polymer material in which pores larger than pores are distributed relatively uniformly and the spatial volume thereof is extremely high.

〔課題を解決するための手段〕[Means to solve the problem]

さきに、本発明者は、セルロース多孔体について、上記
と同様な目的を達成する製造方法を開発したく特願昭6
2−198285 )が、この方法が他の高分子多孔体
の製造にも有効なことを見出した。
First, the inventor of the present invention filed a patent application filed in 1983 to develop a manufacturing method for cellulose porous materials that achieves the same purpose as above.
2-198285) found that this method is also effective for producing other porous polymer materials.

本発明の高分子多孔体の製造方法は、高分子溶液を望み
の形状に成形しつつ溶液の固化温度以下に冷却して凍結
させ、次いで溶媒を抽出除去するかまたは溶媒能力を失
わせることを特徴とする方法である。
The method for producing a porous polymer of the present invention involves forming a polymer solution into a desired shape, cooling and freezing the solution below its solidification temperature, and then extracting and removing the solvent or causing the solvent to lose its ability. This method is characterized by

本発明の高分子多孔体の製造方法の特徴は下記の3つに
要約される。
The features of the method for producing a porous polymer material of the present invention can be summarized in the following three points.

第1に、高分子溶液が凍結固化する際、溶媒またはその
構成成分(以下、「溶媒等」と記す)の微結晶が多数形
成され、溶解していた高分子が溶媒微結晶間隙に濃縮分
離する一種の相分離現象を多孔化手段として利用してい
ること。
First, when a polymer solution freezes and solidifies, many microcrystals of the solvent or its constituent components (hereinafter referred to as "solvent, etc.") are formed, and the dissolved polymer is concentrated and separated in the gaps between the solvent microcrystals. A type of phase separation phenomenon is used as a means of creating porosity.

第2に、凍結時の温度と時間をコントロールして孔径を
制御できること。
Second, the pore size can be controlled by controlling the temperature and time during freezing.

第3に、多孔化構造を固定化する際、凍結乾燥法とは異
なり溶媒微結晶間隙にあった高分子濃縮部分の高分子溶
解能力を失わせ脱溶媒を伴う収縮凝固をさせることであ
る。
Thirdly, when fixing the porous structure, unlike the freeze-drying method, the polymer-concentrated portion located in the gaps between the solvent microcrystals loses its ability to dissolve the polymer, causing shrinkage and solidification accompanied by solvent removal.

上記のような特徴に基づいて、本発明の方法により得ら
れる高分子多孔体は極めて薄い膜で隔てられた孔径が2
#Iより大きい多数の空胞をもっている。
Based on the above characteristics, the porous polymer material obtained by the method of the present invention has pores separated by an extremely thin film with a diameter of 2.
It has many vacuoles larger than #I.

本発明方法により得られる高分子多孔体は、その好まし
い態様の一つとして、連通した空胞の連続孔が表面から
実質的に垂直に内部に達する構造をもつものがある。
One of the preferred embodiments of the porous polymer obtained by the method of the present invention is one having a structure in which continuous pores of communicating vacuoles extend substantially perpendicularly into the interior from the surface.

本発明の方法により得られる高分子多孔体の空胞を隔て
る膜の厚さは高分子溶液の濃度、空胞径等によって異な
るが、空胞径の1/4以下、好ましくは1/10以下で
あり、場合によっては1/30以下のものさえ可能であ
る。
The thickness of the membrane separating the vacuoles of the porous polymer material obtained by the method of the present invention varies depending on the concentration of the polymer solution, the vacuole diameter, etc., but is not more than 1/4, preferably not more than 1/10 of the vacuole diameter. In some cases, even 1/30 or less is possible.

また、高分子多孔体の空胞の大きさは、径が約2μmよ
り大きく、好ましくはその大部分が57/m以上、更に
好ましくは10//III以上である。これより小さい
ときは、高分子多孔体中での流体や物質の自由な移動が
実現されず、その用途は制約される。
Further, the diameter of the vacuoles of the porous polymer material is larger than about 2 μm, preferably the majority of the vacuoles are 57/m or more, and more preferably 10//m or more. When the diameter is smaller than this, free movement of fluids and substances within the porous polymer material is not achieved, and its uses are restricted.

空胞の大きさの上限は、特に制限されるものではなく、
使用目的や粒子の強度等から選ばれて良いが、通常50
0μ以下、好ましくは20hm以下に選ばれることが多
い。
The upper limit of the vacuole size is not particularly limited;
It can be selected depending on the purpose of use and the strength of the particles, but usually 50
It is often selected to be 0μ or less, preferably 20hm or less.

空胞隔膜の構造に関しては、冬空胞を互いに連結するた
めの連結口が開口されているべきこと以外は特に制限さ
れるものではないが、該開口の大きさは、空胞の径に比
べ余り小さすぎないことが好ましく、およそ空胞径の1
/30程度以上が望ましい。開口があまりに大きすぎる
と粒子構造体の強度が不足して使用時の破壊につながり
好ましくないため、空胞径の約3/4程度以下、特に約
2/3程度以下であることが望ましい。
There are no particular restrictions on the structure of the vacuolar septum, other than that it should have an opening for connecting the winter vacuoles, but the size of the opening should be much smaller than the diameter of the vacuole. Preferably not too small, approximately 1 vacuole diameter.
/30 or more is desirable. If the opening is too large, the strength of the particle structure will be insufficient, leading to destruction during use, which is undesirable; therefore, it is desirable that the opening is about 3/4 or less, particularly about 2/3 or less, of the vacuole diameter.

隔膜には上記の大口径の開口部の他に、更に微細な孔構
造がみられることもあるが、特に発明の目的を害さぬか
ぎり、むしろ望ましい実施態様である。
In addition to the above-mentioned large-diameter openings, the diaphragm may have a finer pore structure, but this is a preferable embodiment as long as it does not particularly impede the purpose of the invention.

高分子多孔体を構成する膜は、実質的に高分子(セルロ
ースを除く)より形成されている。ここで、高分子とは
、ゴム、多糖類、タンパク質、水溶性合成高分子、有機
溶媒可溶性合成高分子が好ましいが、特に限定はなく、
無機高分子でも、凍結温度を持つ溶媒に可溶であれば、
本発明の範ちゅうに含める。
The membrane constituting the porous polymer body is substantially made of polymers (excluding cellulose). Here, the polymer is preferably rubber, polysaccharide, protein, water-soluble synthetic polymer, or organic solvent-soluble synthetic polymer, but is not particularly limited.
Even if it is an inorganic polymer, if it is soluble in a solvent with a freezing temperature,
Included within the scope of the present invention.

高分子の具体例をあげると、天然植物系化合物、例えば
、アラビアガム、クィンスシード粘液質、トラガカント
ガム、カラギーナン、アガー、グアガム、カラヤガム、
ローカストビーンガム、ペクチン、ガラクタン、プルラ
ンまたはキサンタンガム、天然動物系化合物、例えば、
ゼラチン、カゼイン、カゼインカリウム塩、カゼインナ
トリウム塩、またはコンドロイチン硫酸ナトリウム塩、
コラーゲン、エスラチン、フィブロイン、キトサン、キ
チン、ヒアルロン酸、澱粉系半合成高分子化合物、例え
ば、カルボキシメチル澱粉、メチルヒドロキシプロピル
澱粉、デキストリン、デキストラン、アルギン酸系半合
成高分子化合物、例えば、アルギン酸プロピレングリコ
ールエステルまたはアルギン酸塩、合成高分子化合物、
例えば、ポリビニルアルコール、ポリビニルピロリドン
、ポリビニルエチルエーテル、カルボキシビニルポリマ
、ポリアクリル酸、ポリアクリルアミド、ポリスチレン
、ポリ塩化ビニノベポリ酢酸ビニル、ポリアクリロニト
リル等またはそれらそれぞれのモノマーと他のビニルモ
ノマーとの共重合体等、ポリアミド、ポリエステノペポ
リアラミド等の縮合重合体、およびエポキシ反応物、お
よびポリウレタンその他の付加重合体等がある。それら
の誘導体、塩、架橋体、ブレンドも含まれ、高分子は特
に制限されるものではない。
Specific examples of polymers include natural plant compounds such as gum arabic, quince seed mucilage, gum tragacanth, carrageenan, agar, guar gum, gum karaya,
Locust bean gum, pectin, galactan, pullulan or xanthan gum, natural animal compounds, e.g.
Gelatin, casein, caseinate potassium salt, caseinate sodium salt, or chondroitin sulfate sodium salt,
Collagen, elatin, fibroin, chitosan, chitin, hyaluronic acid, starch-based semi-synthetic polymer compounds such as carboxymethyl starch, methylhydroxypropyl starch, dextrin, dextran, alginic acid-based semi-synthetic polymer compounds such as alginate propylene glycol ester or alginates, synthetic polymer compounds,
For example, polyvinyl alcohol, polyvinylpyrrolidone, polyvinylethyl ether, carboxyvinyl polymer, polyacrylic acid, polyacrylamide, polystyrene, polyvinyl chloride, polyvinyl acetate, polyacrylonitrile, etc., or copolymers of their respective monomers with other vinyl monomers, etc. , polyamide, polyester polyaramid, and other condensation polymers, epoxy reactants, and polyurethane and other addition polymers. Derivatives, salts, crosslinked products, and blends thereof are also included, and the polymer is not particularly limited.

多孔体を形成する高分子はこれら高分子原料を後述の方
法で溶解し、再析出または再生させたものであって、そ
れらの平均分子量は特に制限されるものではない。また
、ポリマー中に金属、無機物、有機物、気体が混在して
いても、それが本発明の目的を損なわない限り許される
The polymer forming the porous body is obtained by dissolving these polymer raw materials and re-precipitating or regenerating them by the method described below, and the average molecular weight thereof is not particularly limited. Furthermore, the presence of metals, inorganic substances, organic substances, and gases in the polymer is permissible as long as this does not impair the purpose of the present invention.

多孔体の形状や大きさも特に限定されるものではない。The shape and size of the porous body are not particularly limited either.

多孔体が粒子の場合、形状は通常、球形、長球形ないし
は偏平球形から選ばれるが、特殊なものとしては、円柱
形、円筒形、鞍形など充填効果を高める形状とすること
も許される。大きさも用途によって任意に選定されて良
く、通常5〜500μ径、場合によっては5+nm径以
上のものさえ可能である。繊維状やフィルム状とするこ
とさえも可能である。
When the porous body is a particle, the shape is usually selected from spherical, oblate spherical, or oblate spherical, but special shapes such as cylindrical, cylindrical, saddle, etc. that enhance the filling effect are also allowed. The size may be arbitrarily selected depending on the application, and it is usually 5 to 500 μm in diameter, and even 5+nm or more in diameter is possible in some cases. It can even be in the form of fibers or films.

本発明の方法では、製造時に高分子溶液には多孔化材な
どの異物を入れる必要がないため、微小な均一径の液滴
を容易に作ることができ、粒径コントロールを任意に行
なうことができる。空胞の径と形状は基本的に溶液中の
溶媒等が凍結固化する際に形成する溶媒等の結晶の大き
さと形状により決まる。従って、高分子溶液の種類、温
度などの凍結固化条件を変化させることにより空胞の形
状及び孔径を調整することができる。
In the method of the present invention, there is no need to add foreign matter such as a porous material to the polymer solution during production, so it is possible to easily create minute droplets with a uniform diameter, and the particle size can be controlled arbitrarily. can. The diameter and shape of the vacuole are basically determined by the size and shape of crystals of the solvent, etc. that are formed when the solvent, etc. in the solution freezes and solidifies. Therefore, the shape and pore diameter of the vacuole can be adjusted by changing the freeze-solidification conditions such as the type of polymer solution and the temperature.

高分子多孔粒子の形状と粒径は高分子溶液の種類、高分
子濃度、溶液の粘度などでコントロールできるし、また
溶液を液滴にする方法によっても任意に粒子の形状と大
きさをコントロールできる。
The shape and size of porous polymer particles can be controlled by the type of polymer solution, polymer concentration, viscosity of the solution, etc., and the shape and size of the particles can also be controlled arbitrarily by changing the solution into droplets. .

液滴にする方法には溶液を気体中に噴霧するスプレーノ
ズル法、流動体中への溶液吐出法、エマルジョン分散法
などがあるが、これらに限定されるものではない。
Methods for forming droplets include, but are not limited to, a spray nozzle method in which the solution is sprayed into a gas, a method in which the solution is discharged into a fluid, and an emulsion dispersion method.

多孔体が糸の場合、断面形状は通常、円形、三角形、六
角形等の多角形、偏平多角形、偏平円形、中空状、田型
状のものから選ばれるが、この範囲に限定されるもので
はない。糸径も用途によって任意に選定されて良く、通
常5〜500ツノm径、場合によっては5mm径以上の
ものさえ可能である。糸径は糸長方向に均一である必要
はなく、糸長も任意であることは言うまでもない。
When the porous body is a thread, the cross-sectional shape is usually selected from circular, triangular, polygonal such as hexagonal, oblate polygon, oblate circular, hollow, and box-shaped, but is limited to this range. isn't it. The thread diameter may also be arbitrarily selected depending on the application, and is usually 5 to 500 mm in diameter, and even 5 mm or more in diameter is possible in some cases. Needless to say, the yarn diameter does not need to be uniform in the yarn length direction, and the yarn length can also be arbitrary.

多孔体がフィルムの場合、膜厚は用途によって任意に選
定されて良く、通常5〜500/1m厚、場合によって
は5nr+n以上のものさえ可能である。膜厚は均一で
ある必要がなく、使用目的に応じてむしろ凹凸をつける
ことも好ましい実施態様となり得る。さらに、チューブ
状、ハニカム状、その他の任意の形態にすることも可能
であることは容易に理解されよう。
When the porous body is a film, the film thickness may be arbitrarily selected depending on the application, and is usually 5 to 500/1 m thick, and may even be 5nr+n or more in some cases. The film thickness does not need to be uniform, and depending on the purpose of use, it may be a preferable embodiment to provide the film with unevenness. Furthermore, it will be easily understood that it is also possible to take a tubular shape, a honeycomb shape, or any other arbitrary shape.

糸、フィルム、ハニカム、中空糸、チューブ等への成形
には、通常のノズルやグイからの押出し法、型枠への注
入法等があるが、これらに限定されるものではない。ま
た、適当な工程で延伸、展伸、切断することも可能であ
る。
Molding into threads, films, honeycombs, hollow fibers, tubes, etc. includes, but is not limited to, extrusion methods from ordinary nozzles or gouers, injection methods into molds, and the like. Further, it is also possible to stretch, stretch, and cut in an appropriate process.

凍結は、高分子溶液を任意の温度に調節した媒体中に導
入することによっておこなう。高分子溶液と非反応性か
つ非混和性の液体あるいは気体中であればほぼ均一に凍
結する。また、該溶液と混和性の液体中であれば、いび
つな形状で凍結するし、反応性の気体あるいは液体中で
あれば、粒子の表面部分だけを反応・改質したうえ凍結
することができる。例えば、高分子溶液と混和性の液体
あるいは気体中で凍結させると、凍結温度に達する前に
、接触界面にのみ該液体あるいは気体が浸透するため、
表面を覆う膜状に高分子が析出する。
Freezing is performed by introducing the polymer solution into a medium adjusted to an arbitrary temperature. It freezes almost uniformly in a liquid or gas that is non-reactive and immiscible with the polymer solution. Also, if it is in a liquid that is miscible with the solution, it will freeze in a distorted shape, and if it is in a reactive gas or liquid, only the surface part of the particle can be reacted and modified and then frozen. . For example, when freezing in a liquid or gas that is miscible with a polymer solution, the liquid or gas infiltrates only the contact interface before reaching the freezing temperature.
Polymers precipitate in a film that covers the surface.

結果として、表層のみ膜で覆われた高分子多孔体が得ら
れる。
As a result, a porous polymer body whose surface layer is covered with a membrane is obtained.

この方法において凍結を実施するに際し、凍結温度は溶
媒等が凍結する温度より低ければ、特に制限されるもの
ではない。しかしながら、多孔体の空胞径を決定する溶
媒等の結晶の成長の点で重要であり、溶媒等の種類及び
目的とする空胞径から選択される。余りにも低い温度は
、凍結に際し結晶を形成することなく、高分子溶液が溶
液構造に近い状態のまま凍結されてしまい、通常の湿式
凝固したと同様のゲル構造となり、好ましくない場合が
多い。但し、凍結温度の適切な設定により、多孔体表面
のみゲル構造とし、内部を多孔構造にすることが可能で
あり、且つ表面を部分的にゲル被膜で覆い部分的に粒子
内部への連結口を残すこともできる。この様な構造を持
つ多孔粒子は、圧縮時の変形に対し特に高い抵抗力を持
つ。一般には、凍結温度は、溶媒等の凍結温度よりも4
0℃以」1低くは設定されないことが好ましく、通常は
凍結温度よりも0〜20℃低い範囲に選ばれることが多
い。
When performing freezing in this method, the freezing temperature is not particularly limited as long as it is lower than the temperature at which the solvent etc. freeze. However, the solvent, etc. that determines the vacuole diameter of the porous body is important from the point of view of crystal growth, and is selected based on the type of solvent, etc. and the intended vacuole diameter. Too low a temperature is often undesirable, as the polymer solution will be frozen in a state close to its solution structure without forming crystals during freezing, resulting in a gel structure similar to that of normal wet coagulation. However, by setting the freezing temperature appropriately, it is possible to make only the surface of the porous material have a gel structure and the inside to have a porous structure, and also partially cover the surface with a gel coating and partially open the connection port to the inside of the particle. You can also leave it. Porous particles with such a structure have particularly high resistance to deformation during compression. Generally, the freezing temperature is 4
It is preferable not to set the temperature at a temperature lower than 0°C, and it is usually set in a range of 0 to 20°C lower than the freezing temperature.

さらに、孔径の調節を行なうには、まず高分子溶液をで
きるだけ低温、望ましくは凍結温度よりも40〜200
℃低い温度で急速凍結し、その後温度を、凍結温度より
は若干低い温度までの任意の温度に到るまで上昇させ、
その温度で保持する時間をかえると溶媒の結晶成長をコ
ントロールできる。
Furthermore, in order to adjust the pore size, first the polymer solution is heated as low as possible, preferably 40 to 200 degrees below the freezing temperature.
℃ quickly freezing at a low temperature, and then increasing the temperature to an arbitrary temperature slightly lower than the freezing temperature,
The crystal growth of the solvent can be controlled by changing the holding time at that temperature.

すなわち、本発明の方法では、孔の形状と大きさは、溶
媒結晶の形と大きさで決まるため、溶媒結晶の成長をい
かにコントロールするかが要点となる。本発明において
は超低温で急速凍結を行なった後、溶媒結晶を成長させ
る温度と時間を任意に設定することにより高分子溶液が
同一でも孔径の制御範囲を持たせることができる。
That is, in the method of the present invention, since the shape and size of the pores are determined by the shape and size of the solvent crystals, the key point is how to control the growth of the solvent crystals. In the present invention, by rapidly freezing at an ultralow temperature and then arbitrarily setting the temperature and time for growing solvent crystals, it is possible to control the pore diameter within a range even if the polymer solution is the same.

本発明の方法において、凍結された高分子溶液は、次い
で、高分子を溶解している溶媒を抽出除去するか、その
溶解能を低めて(以下、これらの処理を総称して「溶媒
除去等」という)、固化された高分子多孔体とする。
In the method of the present invention, the frozen polymer solution is then treated by extracting and removing the solvent in which the polymer is dissolved or by lowering its solubility (hereinafter, these treatments are collectively referred to as "solvent removal, etc."). ”), and solidified porous polymer material.

溶媒除去等の手法としては、通常の高分子溶液の湿式成
形時に用いられる非溶媒による置換稀釈析出もしくは沈
澱、溶媒抽出、または酸アルカリ中和反応、高分子の変
性による溶解能力除去などの凝固方法がそのまま適用で
きる。
Methods such as solvent removal include displacement dilution precipitation or precipitation with a non-solvent that is normally used during wet molding of polymer solutions, solvent extraction, acid-alkali neutralization reaction, and coagulation methods such as removal of solubility by modification of the polymer. can be applied as is.

溶媒除去等の条件は特に制限されるものではない。通常
は、高分子溶液の凍結温度以下に冷却した凝固浴中に該
高分子溶液凍結体を素早く投入すれば足りるが、この時
の凍結体と凝固浴の温度は、高分子溶液の凍結温度より
10℃以上低くしておいた方が望ましい。
Conditions such as solvent removal are not particularly limited. Normally, it is sufficient to quickly introduce the frozen polymer solution into a coagulation bath that has been cooled to below the freezing temperature of the polymer solution. It is preferable to lower the temperature by 10°C or more.

溶媒除去等を済ませた高分子多孔体は、次いで水または
他の洗浄剤により洗浄され、必要があれば乾燥や液置換
等を施された後、後処理に供される。洗浄や乾燥の条件
についても特に制限されるものではなく、用途に応じた
条件が任意に選ばれて良い。
The porous polymer material from which the solvent has been removed is then washed with water or other cleaning agents, and if necessary, subjected to drying, liquid replacement, etc., and then subjected to post-treatment. The washing and drying conditions are not particularly limited either, and conditions may be arbitrarily selected depending on the application.

〔実施例〕〔Example〕

以下、実施例について本発明方法を具体的に説明する。 Hereinafter, the method of the present invention will be specifically explained with reference to Examples.

粒子の径および糸の径は、光学顕微鏡により適当な倍率
に設定して測定した。50側径以下の微小粒子および表
面の開孔径等は、金スパツタリング処理して走査型電子
顕微鏡(SIEM)で適当な倍率に拡大し観察測定を行
なった。
The diameter of the particles and the diameter of the thread were measured using an optical microscope at an appropriate magnification. The microparticles having a diameter of 50 mm or less and the diameter of the openings on the surface were subjected to gold sputtering treatment and then enlarged to an appropriate magnification using a scanning electron microscope (SIEM) for observation and measurement.

未乾燥物は液体窒素で急速冷却して構造を保ったまま凍
結した後、0.1トルの真空中で凍結乾燥(凍結乾燥処
理)後、SEM観察を行なった。多孔担体内部の開孔径
と膜厚は、上述のように液体窒素で凍結した後、同温度
で割断を行ない、そのまま真空中で乾燥以降の処理を施
しSEMで断面の観掬遣す定を行ない求めた。
The undried product was rapidly cooled with liquid nitrogen to freeze while maintaining its structure, and then freeze-dried (freeze-drying treatment) in a vacuum of 0.1 torr, followed by SEM observation. The open pore diameter and film thickness inside the porous carrier were determined by freezing it with liquid nitrogen as described above, cutting it at the same temperature, drying it in a vacuum, and then observing the cross section with an SEM. I asked for it.

粒子径、開孔径等については、それらが真球や真円でな
い場合は、最も短い直径をもって定義した。
Regarding the particle size, pore size, etc., if they were not a true sphere or a perfect circle, they were defined as the shortest diameter.

比較例1 分子量3万のポリスチレンをベンゼンに溶解し2%溶液
を得た。この溶液5gをポリエチレン袋に入れ脱気後シ
ールして平板上に静置し一10℃で凍結した。−10℃
に8時間維持した後、同温度でポリエチレン袋を取り去
り、0.1トルの真空中で凍結乾燥を行なったところ、
厚さ約1mmの多孔フィルムが得られた。
Comparative Example 1 Polystyrene with a molecular weight of 30,000 was dissolved in benzene to obtain a 2% solution. 5 g of this solution was placed in a polyethylene bag, deaerated, sealed, placed on a flat plate, and frozen at -10°C. -10℃
After maintaining the temperature for 8 hours, the polyethylene bag was removed at the same temperature, and freeze-drying was performed in a vacuum of 0.1 torr.
A porous film with a thickness of about 1 mm was obtained.

このフィルムに金を蒸着後、走査型電子顕微鏡(SBM
>で表面を観察すると、第1図に示すような多角形状の
孔が開孔していたが、孔間の隔壁の厚さは10〜407
/fflもあった。
After depositing gold on this film, it was subjected to scanning electron microscopy (SBM).
When observing the surface at
There was also /ffl.

実施例1 キトサン(東京化成製)3gを1.5%塩酸水溶液に溶
解し、キトサン溶液3%の水溶液を得た。
Example 1 3 g of chitosan (manufactured by Tokyo Kasei) was dissolved in a 1.5% aqueous hydrochloric acid solution to obtain a 3% aqueous chitosan solution.

一方、シリコーンオイル(信越シリコーン■社製KF9
6) 2βを3!ビーカーに入れ、−20℃で冷却し、
このオイル中に上記キトサン溶液をシリンジで滴下した
ところ、液滴となったキトサン溶液はシリコーンオイル
中をゆっくり沈降していく間に球形になると共に凍結し
て白くなり、ビーカーの底部に達した。このシリコーン
オイル温度を10℃に上昇させ30分間放置後、−7℃
の10%アンモニア水溶液500ccをビーカーに投入
した。
On the other hand, silicone oil (KF9 manufactured by Shin-Etsu Silicone Co., Ltd.)
6) 2β to 3! Place in a beaker and cool at -20°C.
When the chitosan solution was dropped into this oil using a syringe, the droplets of chitosan solution slowly settled in the silicone oil, became spherical, froze, turned white, and reached the bottom of the beaker. After raising the temperature of this silicone oil to 10℃ and leaving it for 30 minutes, -7℃
500 cc of 10% ammonia aqueous solution was put into a beaker.

ビーカーの底部に達したものをヘキサンと水で洗浄した
ところ、直径的5mmのキトサン粒子が得られた。この
粒子は、指で押して圧をかけると変形して内部の水を吐
き出すが、圧を取り除くと形状を直ぐに回復するスポン
ジ機能を有した球形粒子であり、外力による変形によっ
ても破壊されにくい強靭な構造であることが分かった。
When the material that reached the bottom of the beaker was washed with hexane and water, chitosan particles with a diameter of 5 mm were obtained. This particle is a spherical particle with a sponge function that deforms when pressure is applied with a finger and expels the water inside, but it quickly recovers its shape when the pressure is removed. It turned out to be a structure.

この粒子を凍結乾燥した後、粒子表面を走査型電子顕微
鏡で観察したところ、50〜100陶の孔が表面に均一
に開孔していた。孔間を隔てる膜は2〜3μ程度であっ
た(第2図参照)。
After freeze-drying the particles, the surface of the particles was observed using a scanning electron microscope, and it was found that 50 to 100 pores were uniformly formed on the surface. The membrane separating the pores was about 2 to 3 microns (see Figure 2).

実施例2 30℃に冷却したシリコーンオイル(信越シリコーン側
社製KP96 >を用意し、アルギン酸ナトリウム(東
京化成製)を1%水酸化ナトリウム水溶液に溶解したア
ルギン酸す) IJウム濃度2%の水溶液を孔径100
,17mのシリンジで、シリコーンオイル中に押し出し
たところ、糸状に凍結した。シリコーンオイルの温度を
一12℃に上昇させる、3時間放置した後、−20℃の
50%硫酸水溶液中に投入し、−20℃に1時間保った
のち、アルギン酸系状体を取り出した。
Example 2 Silicone oil (KP96 manufactured by Shin-Etsu Silicone Co., Ltd.) cooled to 30°C was prepared, and an aqueous solution of 2% IJium concentration (alginic acid prepared by dissolving sodium alginate (manufactured by Tokyo Kasei) in a 1% aqueous sodium hydroxide solution) was prepared. Pore diameter 100
When extruded into silicone oil using a 17 m syringe, it froze in the form of a thread. The temperature of the silicone oil was raised to -12°C, and after being left for 3 hours, it was poured into a 50% aqueous sulfuric acid solution at -20°C, and after being kept at -20°C for 1 hour, the alginic acid-based product was taken out.

また、シリンジとは別にスリット幅100卿、スリット
長15cmのグイから上記のアルギン酸溶液の押し出し
実験を行ない、同様の処理でアルギン酸フィルムを得た
Separately from the syringe, an extrusion experiment of the above alginic acid solution was carried out through a goo with a slit width of 100cm and a slit length of 15cm, and an alginic acid film was obtained by the same treatment.

水洗後、光学顕微鏡で糸とフィルムを観察したところ、
糸径は120加、フィルム厚も120μmで、ともに1
0〜40声の孔径の孔が表面から均一に開孔しているこ
とが認められた。
After washing with water, we observed the thread and film using an optical microscope.
The thread diameter is 120mm and the film thickness is 120μm, both of which are 1.
It was observed that pores with a diameter of 0 to 40 tones were uniformly opened from the surface.

また、SEMで観察したところ、膜で隔てられた径10
〜40pmの空胞が集合した形状の糸とフィルムである
ことを確S忍した。高倍率での観察により、空胞間を隔
てる膜が部分的に開通した連続孔構造を形成している様
子が明らかになった(第3図参照)。隔膜の厚さは1〜
27/fflであった。
In addition, when observed with SEM, the diameter of the membrane separated by 10
It was confirmed that the fibers and film had a shape of aggregates of ~40 pm vacuoles. Observation at high magnification revealed that the membrane separating the vacuoles formed a partially open continuous pore structure (see Figure 3). The thickness of the diaphragm is 1~
It was 27/ffl.

〔発明の効果〕〔Effect of the invention〕

本発明方法により製造される高分子多孔体は、約2//
mより大きい空胞が比較的均一に分布し、その空間容積
が極めて高く、且つ空胞を形成する隔膜が非常に薄いと
いう特長をもっている。
The porous polymer material produced by the method of the present invention is about 2//
It has the characteristics that vacuoles larger than m are distributed relatively uniformly, the spatial volume thereof is extremely high, and the septa that form the vacuoles are extremely thin.

この多孔体は、触媒、酵素、医薬品の担体やイオン交換
体、吸着体の原料、および細胞培養用マイクロキャリア
等に好適である。
This porous body is suitable for catalysts, enzymes, pharmaceutical carriers, ion exchangers, raw materials for adsorbents, microcarriers for cell culture, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高分子多孔体の一例の表面を示す走査型
電子顕微鏡(SEM)写真であり、第2図は本発明方法
により得られる高分子多孔体の一例の表面を示すSEM
写真であり、また、第3図は本発明方法により得られる
高分子多孔体の他の一例の表面を示すSEM写真である
FIG. 1 is a scanning electron microscope (SEM) photograph showing the surface of an example of a conventional porous polymer material, and FIG. 2 is an SEM photo showing the surface of an example of a porous polymer material obtained by the method of the present invention.
FIG. 3 is a SEM photograph showing the surface of another example of a porous polymer obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 高分子(セルロースを除く)溶液を該高分子溶液の固化
温度以下に冷却して凍結させ、次いで溶媒を抽出除去す
るかまたは溶解能力を失わせることを特徴とする、膜で
隔てられた径が約2μmより大きい多数の空胞を有し、
該空砲は隣接した空胞間を隔てる膜の開口部によりたが
いに連通した連続孔構造を形成している多孔体の製造方
法。
The membrane-separated diameter is characterized in that a polymer (excluding cellulose) solution is cooled to below the solidification temperature of the polymer solution, frozen, and then the solvent is extracted away or the solubility is lost. having numerous vacuoles larger than about 2 μm;
A method for producing a porous body, wherein the blank pores form a continuous pore structure that communicates with each other through openings in a membrane that separates adjacent vacuoles.
JP2759389A 1989-02-08 1989-02-08 Production of polymeric porous material Pending JPH02208332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2759389A JPH02208332A (en) 1989-02-08 1989-02-08 Production of polymeric porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2759389A JPH02208332A (en) 1989-02-08 1989-02-08 Production of polymeric porous material

Publications (1)

Publication Number Publication Date
JPH02208332A true JPH02208332A (en) 1990-08-17

Family

ID=12225247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2759389A Pending JPH02208332A (en) 1989-02-08 1989-02-08 Production of polymeric porous material

Country Status (1)

Country Link
JP (1) JPH02208332A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287348A (en) * 1991-07-11 1994-10-11 Lignyte Co Ltd Production of porous silicone
WO2002060971A1 (en) * 2001-01-31 2002-08-08 Seikagaku Corporation Crosslinked polysaccharide sponge
JP2005046538A (en) * 2003-07-31 2005-02-24 Jms Co Ltd Porous body for medical treatment and method for manufacturing it
JP2005080927A (en) * 2003-09-09 2005-03-31 Jms Co Ltd Production method of medical porous body
JP2005534741A (en) * 2002-07-30 2005-11-17 ユニリーバー・ナームローゼ・ベンノートシヤープ Porous beads and method for producing the same
WO2005113656A1 (en) * 2004-05-21 2005-12-01 Dr. Suwelack Skin & Health Care Ag Method for producing alginate-containing porous shaped bodies
US9211993B2 (en) 2011-03-01 2015-12-15 Advanced Technology Materials, Inc. Nested blow molded liner and overpack and methods of making same
US9522773B2 (en) 2009-07-09 2016-12-20 Entegris, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US9573747B2 (en) 2012-02-06 2017-02-21 Entegris, Inc. Folded liner for use with an overpack and methods of manufacturing the same
US9637300B2 (en) 2010-11-23 2017-05-02 Entegris, Inc. Liner-based dispenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109259A (en) * 1974-02-06 1975-08-28
JPS6245637A (en) * 1985-08-24 1987-02-27 Bio Material Yunibaasu:Kk Porous polyvinyl alcohol hydrogel microsphere
JPS6411141A (en) * 1987-07-03 1989-01-13 Nippi Collagen Kogyo Kk Production of porous article of hydrophilic polymer
JPH01131257A (en) * 1987-11-16 1989-05-24 Oji Paper Co Ltd Production of microcellular molded body of high polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109259A (en) * 1974-02-06 1975-08-28
JPS6245637A (en) * 1985-08-24 1987-02-27 Bio Material Yunibaasu:Kk Porous polyvinyl alcohol hydrogel microsphere
JPS6411141A (en) * 1987-07-03 1989-01-13 Nippi Collagen Kogyo Kk Production of porous article of hydrophilic polymer
JPH01131257A (en) * 1987-11-16 1989-05-24 Oji Paper Co Ltd Production of microcellular molded body of high polymer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287348A (en) * 1991-07-11 1994-10-11 Lignyte Co Ltd Production of porous silicone
US8536317B2 (en) 2001-01-31 2013-09-17 Seikagaku Corporation Crosslinked polysaccharide sponge
WO2002060971A1 (en) * 2001-01-31 2002-08-08 Seikagaku Corporation Crosslinked polysaccharide sponge
US7700747B2 (en) * 2001-01-31 2010-04-20 Seikagaku Corporation Crosslinked polysaccharide sponge
US7893225B2 (en) 2001-01-31 2011-02-22 Seikagaku Corporation Crosslinked polysaccharide sponge
JP4704039B2 (en) * 2002-07-30 2011-06-15 ユニリーバー・ナームローゼ・ベンノートシヤープ Porous beads and method for producing the same
JP2005534741A (en) * 2002-07-30 2005-11-17 ユニリーバー・ナームローゼ・ベンノートシヤープ Porous beads and method for producing the same
JP2005046538A (en) * 2003-07-31 2005-02-24 Jms Co Ltd Porous body for medical treatment and method for manufacturing it
JP2005080927A (en) * 2003-09-09 2005-03-31 Jms Co Ltd Production method of medical porous body
WO2005113656A1 (en) * 2004-05-21 2005-12-01 Dr. Suwelack Skin & Health Care Ag Method for producing alginate-containing porous shaped bodies
JP4838242B2 (en) * 2004-05-21 2011-12-14 ドクター.スェラック スキン アンド ヘルス ケアー アーゲー Method for producing porous molded article containing alginate
EP2270082A1 (en) * 2004-05-21 2011-01-05 Dr. Suwelack Skin & Health Care AG Method for producing alginate-containing porous mouldings
US7998379B2 (en) * 2004-05-21 2011-08-16 Dr. Suwelack Skin & Health Care Ag Process for the production of porous moulded articles containing alginate
US9522773B2 (en) 2009-07-09 2016-12-20 Entegris, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US9637300B2 (en) 2010-11-23 2017-05-02 Entegris, Inc. Liner-based dispenser
US9211993B2 (en) 2011-03-01 2015-12-15 Advanced Technology Materials, Inc. Nested blow molded liner and overpack and methods of making same
US9650169B2 (en) 2011-03-01 2017-05-16 Entegris, Inc. Nested blow molded liner and overpack and methods of making same
US9573747B2 (en) 2012-02-06 2017-02-21 Entegris, Inc. Folded liner for use with an overpack and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0441698B2 (en)
JP4704039B2 (en) Porous beads and method for producing the same
US4173606A (en) Method of manufacturing shaped articles from crystalline acrylonitrile polymers and copolymers
EP1490032B1 (en) Processes for manufacturing polymeric microspheres
ES2364041T3 (en) MEMBRANES TO FIND.
CA2801706C (en) Biodegradable polymer microparticle and preparation method thereof
JPH02208332A (en) Production of polymeric porous material
PT1651712E (en) Porous material and method of production thereof
US20020022673A1 (en) Process for producing porous polymer materials
JPH01118544A (en) Porous product of silk fibroin
JPS6227162B2 (en)
JPH04247227A (en) Porous polysulfone medium suitable for filtration and method of its production
US6635684B2 (en) Method for preparing hydrophilic porous polymeric materials
Roh et al. Fabrication of a pure porous chitosan bead matrix: influences of phase separation on the microstructure
Wang et al. Phase‐separation‐induced micropatterned polymer surfaces and their applications
CA1091419A (en) Method of manufacturing shaped articles from crystalline acrylonitrile polymers and copolymers
Scanlon et al. Peptide aerogels comprising self-assembling nanofibrils
Gu et al. Preparation of the porous chitosan membrane by cryogenic induced phase separation
Khan et al. Drying: a versatile fabrication of porou s biomaterials
JPH082992B2 (en) Manufacturing method of porous spherical particles
JPS5950364B2 (en) Ultrafiltration membrane and its manufacturing method
Singla et al. Nifedipine loaded chitosan microspheres: characterization of internal structure
JPS6148533B2 (en)
JPH01278534A (en) Bimodal particle
JPH02207785A (en) Porous carrier for cell culture