JPH02207996A - Flux cored wire electrode for gas shielded arc welding - Google Patents

Flux cored wire electrode for gas shielded arc welding

Info

Publication number
JPH02207996A
JPH02207996A JP2755189A JP2755189A JPH02207996A JP H02207996 A JPH02207996 A JP H02207996A JP 2755189 A JP2755189 A JP 2755189A JP 2755189 A JP2755189 A JP 2755189A JP H02207996 A JPH02207996 A JP H02207996A
Authority
JP
Japan
Prior art keywords
wire
flux
less
total weight
cored wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2755189A
Other languages
Japanese (ja)
Other versions
JPH0545360B2 (en
Inventor
Tomoyuki Suzuki
友幸 鈴木
Tsukasa Yoshimura
司 吉村
Hiroyuki Kyo
京 広之
Masakuni Wakabayashi
若林 正邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2755189A priority Critical patent/JPH02207996A/en
Publication of JPH02207996A publication Critical patent/JPH02207996A/en
Publication of JPH0545360B2 publication Critical patent/JPH0545360B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide the subject wire which is excellent particularly in sea water corrosion resistance and low-temp. toughness and above all, COD characteristic by incorporating respectively prescribed ratios of Cu, Ni, Ti, and B into either or both of a steel sheath and filling flux contg. specific components. CONSTITUTION:The steel sheath contg., by weight %, <=0.06% C, <=0.012% P, <=0.010% S, <=0.0040% N, and <=0.0150% O is prepd. The flux consisting, by the total weight of the wire, of 1 to 10% metal fluoride, 1 to 5% deoxidizing agent, and others including iron power, slag forming agent, arc stabilizer, and unavoidable impurities is filled at 8 to 25% of the total weight of the wire into the cavity enclosed by the above-mentioned steel sheath to constitute the flux-cored wire electrode mentioned above. In this case, 0.1 to 0.6% Cu, 0.2 to 2.5% Ni, 0.01 to 0.3% Ti, and 0.002 to 0.02% B, by the total weight of the wire, are incorporated as essential components into the steel sheath and/or flux. The flux cored wire electrode for gas shielded arc welding having the above-mentioned characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスシールドアーク溶接用フラックス入りワ
イヤであって、特に耐海水腐食性と低温靭性とくにCO
D (Crack Opening Displace
+nent)特性に優れたワイヤに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a flux-cored wire for gas-shielded arc welding, which has excellent seawater corrosion resistance and low-temperature toughness, especially CO
D (Crack Opening Displace
+nent) relates to a wire with excellent characteristics.

〔従来の技術] 近年エネルギー資源の開発は、極地化、深海化の方向に
あり、このため砕氷船や海洋構造物の建造においても、
低温靭性や更には耐海水腐食性に優れた鋼材及び溶接材
料の開発が要望されていた。
[Conventional technology] In recent years, the development of energy resources has been moving towards polarization and deepening of the sea, and for this reason, the construction of icebreakers and offshore structures has also become more difficult.
There has been a demand for the development of steel materials and welding materials with excellent low-temperature toughness and seawater corrosion resistance.

従来海中構造物用の鋼材及び溶接部の腐食防止方法とし
ては、十分な塗装を行なうのが一般的であった。しかし
北極海のように流氷が存在するところでは、流氷の衝突
によるひっかき疵が、塗装表面に発生し、この部分から
腐食が発生するので十分な防食手段とは言えない。特に
塗装が不十分な場合には、鋼材全体腐食と局部的な腐食
が発生する、この内鋼材全体腐食は板厚を厚くするなど
の対策をとりうるが、局部的な腐食は応力集中を生じ疲
労その他破壊の原因ともなり、大きな問題となっていた
。とりわけ 溶接部は、母材と化学成分や熱履歴が異な
ることにより耐食性に差が出るため、特に局部腐食の問
題となる箇所である。
Conventionally, the common method for preventing corrosion of steel materials and welded parts for underwater structures has been to apply sufficient coating. However, in places where drift ice exists, such as in the Arctic Ocean, scratches caused by collisions with drift ice occur on the painted surface, and corrosion occurs from these areas, so it cannot be said to be a sufficient anti-corrosion measure. Particularly if the coating is insufficient, corrosion of the entire steel material and local corrosion will occur. Countermeasures can be taken to prevent corrosion of the entire inner steel material, such as increasing the plate thickness, but local corrosion causes stress concentration. This was a major problem as it caused fatigue and other damage. In particular, welded parts are particularly prone to localized corrosion because their chemical composition and thermal history differ from those of the base metal, resulting in differences in corrosion resistance.

また海中構造物の建造では、その耐海水腐食性が重視さ
れてきたが、最近使用範囲が極地化してくるに伴い、同
時に低温靭性、特に脆性破壊の面からCOD特性の優れ
た構造物であることが大きな要求ポイントになって来た
Furthermore, in the construction of underwater structures, emphasis has been placed on their seawater corrosion resistance, but as the range of use has recently become more polarized, it is also important to construct structures with excellent COD characteristics in terms of low-temperature toughness, especially brittle fracture. This has become a major demand point.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来から使用されているフラックス入りワイヤは、ソリ
ッドワイヤに比較して特にアークの安定性、スパッター
が少なく、溶接作業性やビード外観の優れたチタニャ系
が土に使用されている。
Among the flux-cored wires that have been used in the past, titania-based wires have been used because they have particularly stable arcs, less spatter, and excellent welding workability and bead appearance compared to solid wires.

例えば特開昭58−119490号公報では、チタニャ
系ワイヤにおいて鋼製外皮と鉄粉の窒素量を規制して低
温靭性の向上が図られているが、チタニャの最大の欠点
は、溶接金属中の酸素量が500ppm以上と高いため
、溶接金属の性能が劣ることにある。
For example, in JP-A-58-119490, the low-temperature toughness of titania wire is improved by controlling the amount of nitrogen in the steel sheath and iron powder, but the biggest drawback of titania is that Since the amount of oxygen is as high as 500 ppm or more, the performance of the weld metal is poor.

また特開昭46−24124号、特開昭52−1254
37号公報等に示されるように、金属弗化物を主成分に
金属炭酸塩やスラグ生成剤1強脱酸剤の調整により、低
温靭性の向上が図られているが、耐海水局部腐食性を有
し、かつ低温靭性とCOD特性を合せ持つ性能を有する
ワイヤは無い。
Also, JP-A-46-24124, JP-A-52-1254
As shown in Publication No. 37, low-temperature toughness has been improved by adjusting metal fluoride as the main component, metal carbonate, slag forming agent, and 1-strong deoxidizer; There is no wire that has the properties of both low-temperature toughness and COD properties.

一方耐候性鋼用炭酸ガスアーク溶接フラシクス入りワイ
ヤ(JIS Z 3320)として、Cu、 Ni、 
Crの成分範囲が示されているが、これらは主に建材、
橋梁用に用いられる鋼材に使用され、大気中における耐
候性を向上させるのであって、耐海水腐食性に対しては
Crは逆に局部腐食を促進させる成分であり好ましくな
い。また、Cu、 Niだけでは低温靭性とCOD特性
を大幅に改善できるものには至っていない。
On the other hand, carbon dioxide gas arc welding flux cored wire for weathering steel (JIS Z 3320) uses Cu, Ni,
The range of Cr components is shown, but these are mainly used in building materials,
Cr is used in steel materials used for bridges to improve weather resistance in the atmosphere, and is not preferable for seawater corrosion resistance because it is a component that promotes local corrosion. Further, Cu and Ni alone have not yet been able to significantly improve low-temperature toughness and COD characteristics.

本発明はかかる現状に鑑み、氷海域などにおける海洋構
造物や砕氷船の建造等において、耐海水腐食性に優れる
と共に、優れたCOD特性を有する溶接金属が得られる
ワイヤを提供するものである。
In view of the current situation, it is an object of the present invention to provide a wire that can be used in the construction of marine structures and icebreakers in icy areas, etc., and can yield a weld metal having excellent seawater corrosion resistance and excellent COD characteristics.

〔課題を解ズするための手段〕[Means to solve the problem]

本発明の要旨とするところは、鋼製外皮の成分がC: 
0.06%以下、 P :0.012%以下、 S :
0.010%以下、 N : 0.0040%以下、 
O:0.0150%以下である鋼製外皮で囲まれた腔部
に、ワイヤ全重量に対して金属弗化物:1−1o%、脱
酸剤=1〜6%。
The gist of the present invention is that the steel outer skin contains C:
0.06% or less, P: 0.012% or less, S:
0.010% or less, N: 0.0040% or less,
O: 0.0150% or less Metal fluoride: 1-1o%, deoxidizer = 1-6%, based on the total weight of the wire, in a cavity surrounded by a steel jacket.

その他、鉄粉、スラグ生成剤、アーク安定剤、不可避的
不純物からなるフラックスをワイヤ全重量に対して8〜
25%充填してなるガスシールドアーク溶接用フラクッ
ス入りワイヤにおいて、鋼製外皮と充填フラックスの一
方又は両方においてワイヤ全重量に対して、Cu : 
0.1〜0.6%、 Ni :0.2〜2.5%、 T
i : 0.01〜0.3%、  B :0.002〜
0.02%を必須成分として含有することを特徴とする
ガスシールドアーク溶接用フラクッス入りワイヤ(以下
ワイヤと称す)にある。
In addition, flux consisting of iron powder, slag forming agent, arc stabilizer, and unavoidable impurities is added to
In a flux-cored wire for gas-shielded arc welding that is filled with 25%, Cu:
0.1-0.6%, Ni: 0.2-2.5%, T
i: 0.01~0.3%, B: 0.002~
A flux-cored wire (hereinafter referred to as wire) for gas shielded arc welding is characterized in that it contains 0.02% as an essential component.

従来より溶接金属のCOD特性を向上するために、溶接
金属中に適量のTi及びBを添加し、そのミクロ組織を
微細化・均一化することが有効であることが知られてい
る。また鋼の耐海水腐食性改善には、Cu、 Crの添
加が有効なことも知られている。
It has been known that it is effective to add appropriate amounts of Ti and B to the weld metal to make its microstructure finer and more uniform in order to improve the COD characteristics of the weld metal. It is also known that the addition of Cu and Cr is effective in improving the seawater corrosion resistance of steel.

鋼構造物における溶接部は、母材とは化学成分や熱履歴
が異なるために特に局部腐食を受は易く、溶接金属が母
材より先に選択腐食を受ける場合には、母材との面積比
により急速に腐食が進み重大な破壊につながるおそれが
ある。この防止には溶接金属を母材よりも電気化学的に
責にすることが必要であり、とりわけCu、 Niの添
加が局部腐食防止に有効なことを本発明者らは見い出し
たものである。
Welded joints in steel structures are particularly susceptible to localized corrosion because their chemical composition and thermal history are different from those of the base metal, and if the weld metal undergoes selective corrosion before the base metal, the area Corrosion may progress rapidly depending on the ratio, leading to serious destruction. To prevent this, it is necessary to make the weld metal more electrochemically sensitive than the base metal, and the present inventors have found that the addition of Cu and Ni is particularly effective in preventing local corrosion.

本発明はかかる知見に基づいてなされたものであり、以
下に作用と共に詳細に説明する。
The present invention has been made based on this knowledge, and will be explained in detail below along with its effects.

〔作 用〕[For production]

本発明におけるワイヤは、鋼製外皮の成分がワイヤ全重
量に対してC: 0.06%以下、  P :0.01
2%以下、  s : o、oio%以下、 N : 
0.0040%以下で且つO: 0.0150%以下で
ある鋼材を使用する必要がある。
In the wire according to the present invention, the components of the steel sheath are C: 0.06% or less and P: 0.01% based on the total weight of the wire.
2% or less, s: o, oio% or less, N:
It is necessary to use a steel material having an O content of 0.0040% or less and an O content of 0.0150% or less.

即ち高靭性の溶接金属を得るためには、溶接金属中のC
を0.07以下にする必要があるが、フラックスやワイ
ヤ表面の潤滑剤等の付着を考慮すると、鋼製外皮のCは
0.06%以下にすべきである。また、P、  S、 
NやOは不可避的不純物であるが、P。
That is, in order to obtain a weld metal with high toughness, C in the weld metal must be
However, considering the adhesion of flux, lubricant, etc. to the wire surface, the C content of the steel shell should be 0.06% or less. Also, P, S,
N and O are unavoidable impurities, but P.

Sは溶接金属の耐高温割れ性を阻害し、Nは靭性を著し
く劣化させるため、Pは0.012%以下、Sは0.0
10%以下、Nは0.0040%以下にするのが好まし
い。さらに0は溶接時の溶滴移行性に影響を与える他、
脱酸剤特にSi、 Mn、 Tiの歩留りを低下させる
ので、これらの成分変動要因とならないように0.01
50%以下にすべきである。
S inhibits the hot cracking resistance of weld metal, and N significantly deteriorates toughness, so P is 0.012% or less and S is 0.0%.
It is preferable that N be 10% or less, and N be 0.0040% or less. Furthermore, 0 affects droplet migration during welding, and
The deoxidizing agent lowers the yield of Si, Mn, and Ti in particular, so it should be set at 0.01 to avoid causing fluctuations in these components.
It should be less than 50%.

さらに本発明ワイヤの特徴は、鋼製外皮と充填フラック
スのの一方又は両方においてCu、 Nl−TLBを添
加して溶接金属の耐海水腐食性を大幅に向上させ、なお
かつCOD特性をも合せ持つ性能を有する点にある。
Furthermore, the wire of the present invention is characterized by the addition of Cu and Nl-TLB to either or both of the steel sheath and the filling flux, which greatly improves the seawater corrosion resistance of the weld metal, and which also has COD characteristics. It is at the point where it has.

溶接部の局部腐食を防止するには、溶接金属の成分を母
材よりも電気化学的に責にする必要があり、Cu、 N
iは非常に有効な成分である。
In order to prevent local corrosion of welded parts, it is necessary to make the components of the weld metal more electrochemically responsible than those of the base metal, such as Cu, N,
i is a very effective ingredient.

まずC:0.05%、  P :0.010%、  S
 :0.008%。
First, C: 0.05%, P: 0.010%, S
:0.008%.

N : 0.0025%、 0 : 0.0120%で
ある軟鋼外皮材を用いて、ワイヤ全重量に対しCaFt
 3.0%、 SiO□0.5%、 MgOO,5%、
 Fe−3t (40χ5i)1.0%、 Mn2.5
%、 Fe−Ti(40χTt) 0.2%、 Mg 
O,5%、B(2%B含有鉄粉)0.4%、 Ni O
,3%、 Cu O〜0.9%。
Using a mild steel outer skin material with N: 0.0025% and 0: 0.0120%, CaFt was added to the total weight of the wire.
3.0%, SiO□0.5%, MgOO, 5%,
Fe-3t (40χ5i) 1.0%, Mn2.5
%, Fe-Ti (40χTt) 0.2%, Mg
O, 5%, B (iron powder containing 2% B) 0.4%, NiO
, 3%, CuO~0.9%.

残部鉄粉および不可避的不純物からなるフラックスを含
有フラックス入りワイヤ1.2 mφを10種類試作し
た。このワイヤを用いて深さ10mmのV溝をもつc:
0.1 %、Sk:0.3%、Mr:1.3%、C(1
:0.4%、Ni:0.3%、Mo:0.2%厚さ25
IIIIlの鋼材に溶接電流25OA、アーク電圧27
v、溶接入熱15KJicys 、  シールドガス(
80χAr−20χcow)2i/分の条件で溶接し、
表面下1ffII11から厚さ5IImの試験片を採取
して、これを3%食塩水中で3ケ月間の回転浸積試験を
行った。
Ten types of flux-cored wires 1.2 mφ containing flux consisting of the remainder iron powder and unavoidable impurities were fabricated. Create a V-groove with a depth of 10 mm using this wire:
0.1%, Sk: 0.3%, Mr: 1.3%, C(1
: 0.4%, Ni: 0.3%, Mo: 0.2% Thickness 25
Welding current 25 OA, arc voltage 27 for IIIl steel material
v, welding heat input 15KJicys, shielding gas (
Welded under the conditions of 80χAr-20χcow) 2i/min,
A test piece with a thickness of 5 IIm was taken from 1ffII11 below the surface and subjected to a rotational immersion test in 3% saline for 3 months.

その結果を第1図に示す。同図の横軸はワイヤ中のCu
量、縦軸は溶接金属の腐食減量である。尚腐食減量とは
、第3図に示すように腐食試験後の測定部溶接金属の最
低厚さ!を測定し、試験片1の試験前の厚さt(5mm
)との差を求めたものである。
The results are shown in FIG. The horizontal axis of the figure is Cu in the wire.
The vertical axis is the corrosion loss of weld metal. Corrosion loss is the minimum thickness of the weld metal at the measurement point after the corrosion test, as shown in Figure 3! was measured, and the thickness t of test piece 1 before the test (5 mm
).

ワイヤ中にCuを含まない溶接金属の腐食減量は1.5
閣もあるのに対し、ワイヤ中にCuを添加することによ
り腐食減量は低下する傾向を示している。
Corrosion loss of weld metal without Cu in the wire is 1.5
However, the corrosion weight loss tends to decrease by adding Cu to the wire.

特にCu1lが061%以上のものは、腐食減量が0.
4皿以下と全て良好な耐海水腐食性を示した。 Cuを
0.6%を超えて添加しても耐食性に大きな改善効果が
見られず、逆に粒界偏析による脆化をおこすので、Cu
の添加量を0.1〜0.6%と限定した。又Cu添加方
法として、フラックス中に添加せずにCuメツキ分のみ
でも同等の効果が得られ、外皮または充填フラックスの
一方又は両方から添加しても同等の効果が得られること
が判明した。
In particular, those with Cu1l of 0.61% or more have a corrosion loss of 0.06% or more.
All showed good seawater corrosion resistance with 4 plates or less. Adding Cu in excess of 0.6% does not significantly improve corrosion resistance, and on the contrary causes embrittlement due to grain boundary segregation.
The amount of addition was limited to 0.1 to 0.6%. It has also been found that the same effect can be obtained by adding Cu only to the plating without adding it to the flux, and that the same effect can be obtained by adding Cu from one or both of the outer skin and filling flux.

次にNiは、通常フェライトへの固溶効果よる靭性向上
のため添加されているが、Cuと同様溶接金属の耐海水
腐食性向上に有効なことが判った。
Next, although Ni is normally added to improve toughness through solid solution effect in ferrite, it has been found that, like Cu, it is effective in improving seawater corrosion resistance of weld metal.

第2図は、前期と同様の外皮とフラックスでCuを0.
3%に固定し、Ni添加量をO〜3.0%と変化してワ
イヤを試作し、回転浸積試験を行なってワイヤ中のNi
1lと腐食減量の関係を調査したものである。ワイヤ中
にNiを含まない溶接金属の腐食減量は1.2mmなの
に対し、Niの添加により腐食減量は大幅に小さくなる
。ワイヤ中のNi量が0.2%未満では耐海水腐食性の
向上が十分でなく、また2、5%を超えて添加してもそ
れ以上の改善効果が得られないばかりか高価番なるので
、Niのワイヤ中への添加範囲を0.2〜2.5%とし
た。Niは金属Niの外、 Pe−Ni 、 Ni−M
g等の合金として添加しても良い。
Figure 2 shows the same outer shell and flux as in the previous stage, but 0% Cu.
We fixed the amount of Ni at 3% and changed the amount of Ni added from O to 3.0% to make prototype wires, and conducted a rotating immersion test to determine the amount of Ni in the wire.
This study investigated the relationship between 1L and corrosion weight loss. The corrosion weight loss of a weld metal that does not contain Ni in the wire is 1.2 mm, whereas the corrosion weight loss is significantly reduced by the addition of Ni. If the amount of Ni in the wire is less than 0.2%, the improvement in seawater corrosion resistance will not be sufficient, and if it is added in excess of 2.5%, not only will no further improvement effect be obtained, but the product will be expensive. , the addition range of Ni to the wire was set to 0.2 to 2.5%. Ni includes metal Ni, Pe-Ni, Ni-M
It may be added as an alloy such as g.

又、NiはCuと同様に外皮、フラックスの一方または
両方に添加してもよい。
Further, like Cu, Ni may be added to one or both of the outer skin and flux.

次に前記ワイヤに加えて、Ti、 Bを添加する理由を
説明する。
Next, the reason for adding Ti and B in addition to the wire will be explained.

TiはTi酸化物を形成し、溶接金属のミクロ組織を微
細化し、靭性改善に有効であ°るが、0.01%未満で
はこの効果も望めず、下限を0.01%とする。
Ti forms Ti oxide, refines the microstructure of the weld metal, and is effective in improving toughness, but if it is less than 0.01%, this effect cannot be expected, so the lower limit is set at 0.01%.

また0、3%を超えると、靭性を著しく損なうので、上
限を0.3%とする。Tiは金属TiO外、 Fe−T
i等の合金として、またTiO□等の酸化物の形で添加
し、強膜酸剤により還元添加してもよい。
Moreover, if it exceeds 0.3%, toughness will be significantly impaired, so the upper limit is set at 0.3%. Ti is other than metal TiO, Fe-T
It may be added as an alloy such as i, or in the form of an oxide such as TiO□, and may be added by reduction using a sclerotic acid.

Bは強力な脱酸性炭化物生成元素であるから、これをワ
イヤに添加することによって溶接金属における結晶核生
成作用が促進され、柱状晶の成長が阻止される結果、結
晶粒は微細化する。また溶接金属の焼入れ性を高める効
果があり、この様な効果を得るためには最少限0.00
2%のB量が必要で、それ未満では効果がなく、又多す
ぎると溶接金属に高温割れが発生し易くなるので、上限
を0.02%とする。B源としては、Fe−B、 アト
マイズB等の合金として、又B、0.等の酸化物の形で
添加し、脱酸剤による還元添加することもできる。
Since B is a strong deoxidizing carbide-forming element, adding it to the wire promotes crystal nucleation in the weld metal, inhibits the growth of columnar crystals, and results in finer grains. It also has the effect of increasing the hardenability of weld metal, and in order to obtain this effect, the minimum
The amount of B is required to be 2%; if it is less than that, there is no effect, and if it is too much, hot cracking tends to occur in the weld metal, so the upper limit is set to 0.02%. B sources include alloys such as Fe-B and atomized B, as well as B, 0. It can also be added in the form of an oxide, such as, and reduced by a deoxidizing agent.

尚Ti、  Bも、Cu、 Niと同様に外皮、フラッ
クスの一方又は両方に添加してもよい。
Incidentally, Ti and B may also be added to one or both of the outer skin and the flux in the same manner as Cu and Ni.

本発明では上記特性を踏まえ、各成分の含有率を下記の
様に定めた。
In the present invention, the content of each component was determined as follows based on the above characteristics.

金属弗化物はスラグ剤として溶接金属を被包し、ビート
形状を良好にすると共に溶融金属内の不純物を浮上させ
て溶接金属を清浄化し、靭性を向上させる。金属弗化物
としては、CaFz、 MgFz、 BaF2゜MnF
z、 5rFt、等が有効であるが、アルカリ金属弗化
物を用いる場合は、アークの安定性を向上させる。1%
未満ではこれらの特徴が十分発揮されず、一方10%を
超えるとアークが不安定となる他、スラグ生成量が過剰
となって溶接作業性を劣化させる。従って金属弗化物は
1〜IO%の範囲とする。
The metal fluoride encapsulates the weld metal as a slag agent, improves the bead shape, and levitates impurities in the molten metal to clean the weld metal and improve toughness. Examples of metal fluorides include CaFz, MgFz, BaF2゜MnF
z, 5rFt, etc. are effective, but when using an alkali metal fluoride, the stability of the arc is improved. 1%
If it is less than 10%, these characteristics will not be fully exhibited, while if it exceeds 10%, the arc will become unstable and the amount of slag produced will be excessive, deteriorating welding workability. Therefore, the metal fluoride should be in a range of 1 to IO%.

なおアルカリ金属弗化物としては、K2SiF4. N
aF。
As the alkali metal fluoride, K2SiF4. N
aF.

NazSiFi 、 Na、A I Fb等が有効であ
る。
NazSiFi, Na, AIFb, etc. are effective.

一方安価なCaFzは、シールドガスとしてAr等を混
合させて使用する場合はCaFzのみでもスパッタの発
生量を減少させることができるので、金属弗化物として
CaF、のみを用いることが出来る。しかしシールドガ
スとしてCOZガスを用いる場合は、CaFzのみでは
スパッタの発生量が多くなるので、アルカリ金属弗化物
との併用することが好ましい。
On the other hand, when CaFz, which is inexpensive, is used in combination with Ar or the like as a shielding gas, the amount of spatter generated can be reduced even with CaFz alone, so CaF alone can be used as the metal fluoride. However, when COZ gas is used as a shielding gas, it is preferable to use it in combination with an alkali metal fluoride, since the amount of spatter generated increases when using only CaFz.

脱酸剤としてはSt、 Mn、  Al、 Mg等を添
加するが、その添加量は1〜6%である。これらの脱酸
剤の添加量が1%未満では、脱酸不足となるため溶接金
属は多孔質となり、X線性能が劣化する。
St, Mn, Al, Mg, etc. are added as deoxidizers, and the amount added is 1 to 6%. If the amount of these deoxidizers added is less than 1%, deoxidation will be insufficient and the weld metal will become porous, resulting in poor X-ray performance.

一方6%を超えて添加すると、脱酸剤が溶接金属に多量
に留まるため、溶接金属は硬化し、靭性と耐割れ性の低
下をきたす。このため本発明ワイヤではフラックス中の
脱酸剤は1〜6%の範囲とする。
On the other hand, if it is added in excess of 6%, a large amount of the deoxidizing agent remains in the weld metal, resulting in hardening of the weld metal and a decrease in toughness and cracking resistance. Therefore, in the wire of the present invention, the deoxidizing agent in the flux is in the range of 1 to 6%.

尚脱酸剤の添加方法は、単体もしくは鉄合金や合金の形
態で添加してもよい。
The deoxidizing agent may be added alone or in the form of an iron alloy or alloy.

その他鉄粉は、溶着速度を高める目的として、またスラ
グ生成剤は、スラグの粘性を調整すると共にアーク安定
剤としての効果があり、Sin、、 CaO。
In addition, iron powder is used for the purpose of increasing the welding speed, and slag forming agent is used to adjust the viscosity of the slag and also has the effect of acting as an arc stabilizer.

^1zOx 、 Ti0z、 MnO、MgO、FeO
、Zr0z等の酸化物やCaC0+ 、 LtzCOs
、 K2CO2、BaCO3,MgCo、1゜M n 
COs r S r COz等の炭酸塩が有効であるが
、炭酸塩は過剰に添加すると、アーク雰囲気中で分解さ
れたCO□ガス中のCが溶接金属中に留って靭性を劣化
させるので好ましくない。さらにアーク安定剤としては
、K、 Na、 Li等のアルカリ金属の酸化物や炭酸
塩が有効である。
^1zOx, Ti0z, MnO, MgO, FeO
, Zr0z and other oxides, CaC0+, LtzCOs
, K2CO2, BaCO3, MgCo, 1゜M n
Carbonates such as COs r S r COz are effective, but carbonates are not preferred because if they are added in excess, carbon in the CO□ gas decomposed in the arc atmosphere will remain in the weld metal and deteriorate the toughness. do not have. Furthermore, oxides and carbonates of alkali metals such as K, Na, and Li are effective as arc stabilizers.

本発明では、フラックスの充填率をワイヤ重量に対して
8〜25%の範囲に設定した。8%未満では十分な量の
スラグ形成剤を含ませることができなくなって、溶接作
業性を満足させることができない。一方25%を超える
と、逆にスラグ量は多くなりすぎて溶接作業性を劣化さ
せると共に、ワイヤ製造時に断線等のトラブルが多くな
るので好ましくない。
In the present invention, the filling rate of flux is set in the range of 8 to 25% based on the weight of the wire. If it is less than 8%, a sufficient amount of slag forming agent cannot be contained, and welding workability cannot be satisfied. On the other hand, if it exceeds 25%, the amount of slag becomes too large, which deteriorates welding workability and increases troubles such as wire breakage during wire manufacture, which is not preferable.

ワイヤ外皮としては、成分規制範囲内である低炭素鋼を
用いるが、成分規制範囲を満足する低合金鋼を用いるこ
とが出来る。
As the wire sheath, low carbon steel that falls within the composition regulation range is used, but low alloy steel that satisfies the composition regulation range can also be used.

尚ワイヤの断面形状は何ら制限は必要としないが、2餉
φ以下の細径の場合は比較的単純な円筒状のものがよ(
、また2、4〜3.2ma+φ程度の大径ワイヤの場合
は、鞘材を内部に折り込んだ構造のものが一船的である
。またシームレスワイヤにおいては、表面にメツキ処理
を施すことも有効である。
There is no need to limit the cross-sectional shape of the wire, but if the wire has a small diameter of 2 mm or less, a relatively simple cylindrical one is recommended (
, In the case of a large diameter wire of about 2.4 to 3.2 ma+φ, a structure in which the sheath material is folded inside is suitable. Furthermore, it is also effective to perform plating treatment on the surface of seamless wires.

〔実施例〕〔Example〕

第1表に示す成分の外皮を用い、第2表に示すフラック
ス組成にて試作したワイヤを用いて溶接をおこなった、
その試験結果を第3表に示す。
Welding was carried out using a wire prototyped with the flux composition shown in Table 2, using an outer skin with the components shown in Table 1.
The test results are shown in Table 3.

第2.第3表において、ワイヤ記号Nα1−15が本発
明になるワイヤの実施例であり、Nα16〜24は比較
例である。いずれも1.2111+1φのワイヤに仕上
げ、前述と同様の方法により耐海水腐食性を調査する回
転浸漬試験を行なうと共に、同一鋼材を50゜V開先に
組立て、平均入熱量30KJ/cmで立向溶接を行ない
、その際の溶接作業性および溶接部の機械的性能を調査
した。COD試験は英国規格B55762−1979に
基づき溶接金属の中心部に疲労/ツチを入れたCOD試
験片を作製し、−50°CにおいてCOD試験を行なっ
た。また、シールドガスは80%Ar −20χCO□
の混合ガスを用いた。
Second. In Table 3, wire symbols Nα1-15 are examples of wires according to the present invention, and Nα16-24 are comparative examples. Both wires were finished with a diameter of 1.2111 + 1φ, and a rotating immersion test was conducted to investigate seawater corrosion resistance using the same method as described above.The same steel materials were assembled into a 50°V groove and placed vertically with an average heat input of 30 KJ/cm. Welding was carried out and the welding workability and mechanical performance of the welded part were investigated. In the COD test, a COD test piece with a fatigue/puncture mark in the center of the weld metal was prepared based on British Standard B55762-1979, and the COD test was conducted at -50°C. In addition, the shielding gas is 80%Ar -20χCO□
A mixed gas of

尚試験結果の判定は、COD値が0.3 mm以上、腐
食HMが0.4mm以下を良好とした。
The test results were evaluated as good if the COD value was 0.3 mm or more and the corrosion HM was 0.4 mm or less.

第3表に示す試験結果から明らかなように、本発明にな
るNo、 1〜Nα15のワイヤは、いずれも遷移温度
が全て一70°C以下であり、またCOD値も0.7■
以上でかつ腐食減量も0.3 mm以下であることから
、良好な性能が得られることが確認できた。
As is clear from the test results shown in Table 3, the wires No. 1 to Nα15 of the present invention all have transition temperatures of -70°C or less, and also have a COD value of 0.7°C.
It was confirmed that good performance was obtained because the corrosion loss was also 0.3 mm or less.

一方比較例であるNα16.1?、 19.21.24
は、本発明の必須成分であるCu、 Ni、 Ti、 
 Bのいずれかの成分が範囲外で、耐腐食性およびCO
D性能を満足することができない。またNα20.23
は耐腐食性およびCOD値共に良好であるが、No、2
0ではフラックス充填率が少ないため溶接作業性が劣り
、阻23は金属弗化物量が多過ぎてメタルが垂れ易く、
溶接作業性が悪い。さらにNα18.22は、外皮成分
が本発明外であり、耐腐食性は良好であるが、低温靭性
およびCOD値の向上が認められなかった。
On the other hand, the comparative example Nα16.1? , 19.21.24
are Cu, Ni, Ti, which are essential components of the present invention.
Any component of B is out of range, corrosion resistance and CO
D performance cannot be satisfied. Also, Nα20.23
No.2 has good corrosion resistance and COD value, but No.2
0 has a low flux filling rate, resulting in poor welding workability, and 23 has too much metal fluoride, making the metal easy to sag.
Welding workability is poor. Further, in Nα18.22, the outer skin component was outside the scope of the present invention, and although the corrosion resistance was good, no improvement in low temperature toughness and COD value was observed.

第  1  表 事戻WOは良好、×は不良を示す。Table 1 Returned WO indicates good quality, and × indicates poor quality.

クイX中のCu量C1) 〔発明の効果〕 以上説明したように本発明ワイヤは、低温靭性。Amount of Cu in Cui X C1) 〔Effect of the invention〕 As explained above, the wire of the present invention has good low temperature toughness.

特にCOD特性が極めて優れ、かつ耐海水腐食性が格段
に向上したワイヤである。これは従来のガスシールドア
ーク溶接用フラックス入りワイヤでは到底達成し得ない
ものであり、特に、北極溝のような氷海域における海洋
構造物や砕氷船の建造等において優れた効果を発揮し、
これら産業の発展に貢献するところ極めて大である。
In particular, it is a wire with extremely excellent COD characteristics and markedly improved seawater corrosion resistance. This is something that cannot be achieved with conventional flux-cored wire for gas-shielded arc welding, and it is particularly effective in the construction of offshore structures and icebreakers in icy areas such as the Arctic Trench.
This will greatly contribute to the development of these industries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は耐海水腐食性試験におけるワイヤに含
まれるCu量、Ni量と腐食減量との関係を示す図面、
第3図は耐海水腐食性試験における腐食減量の測定要領
を示す側面図である。 ■・・・腐食減量の試験片 代理人 弁理士 秋 沢 政 光 他1名 、7i2面 π3図 β[」°1定@(5(瀉浮含愚の最佑厚さ)L′試yJ
灸泊の厚で 拍1つに客 シ0→17栄 (p2.ルノ上、イ’l 1j(c>郡
り どえね3゜(枠止e(1いて賞としtイO吻べ叶1
工函溶に四b11説り 補正をする者 事件との関係 伏バー4 住所(居所)東京都千代田区大手町2丁目6番3号居 所
Figures 1 and 2 are drawings showing the relationship between the amount of Cu and Ni contained in the wire and the corrosion weight loss in the seawater corrosion resistance test;
FIG. 3 is a side view showing the procedure for measuring corrosion loss in a seawater corrosion resistance test. ■...Test piece representative for corrosion weight loss Patent attorney Masamitsu Akizawa and one other person, 7i2 surface π3 diagram β [''°1 constant @ (5 (maximum thickness of buoyancy) L' test yJ
With the thickness of moxibustion, the customer 0 → 17 Sakae in one beat (p2. On the run, I'l 1j (c> Gunri Doene 3°) 1
Relationship with the case of the person who made the 4B11 amendments to Kokanyo. Address (residence): 2-6-3 Otemachi, Chiyoda-ku, Tokyo.

Claims (1)

【特許請求の範囲】 鋼製外皮の成分がC:0.06%(重量%:以下同じ)
以下、P:0.012%以下、S:0.010%以下、
N:0.0040%以下、0:0.0150%以下であ
る鋼製外皮で囲まれた腔部に、ワイヤ全重量に対して金
属弗化物:1〜10%、脱酸剤:1〜6%、その他鉄粉
、スラグ生成剤、アーク安定剤、不可避的不純物からな
るフラックスをワイヤ全重量に対して8〜25%充填し
てなるガスシールドアーク溶接用フラクッス入りワイヤ
において、鋼製外皮と充填フラックスの一方又は両方に
おいてワイヤ全重量に対して、 Cu:0.1〜0.6% Ni:0.2〜2.5% Ti:0.01〜0.3% B:0.002〜0.02% を必須成分として含有することを特徴とするガスシール
ドアーク溶接用フラクッス入りワイヤ。
[Claims] The component of the steel outer skin is C: 0.06% (weight %: the same below)
Below, P: 0.012% or less, S: 0.010% or less,
N: 0.0040% or less, 0: 0.0150% or less Metal fluoride: 1 to 10%, Deoxidizer: 1 to 6 based on the total weight of the wire %, other iron powder, slag forming agent, arc stabilizer, and unavoidable impurities in a flux-cored wire for gas-shielded arc welding that is filled with 8 to 25% of the total weight of the wire. In one or both fluxes, Cu: 0.1-0.6% Ni: 0.2-2.5% Ti: 0.01-0.3% B: 0.002-0 A flux-cored wire for gas shielded arc welding, characterized in that it contains .02% as an essential component.
JP2755189A 1989-02-08 1989-02-08 Flux cored wire electrode for gas shielded arc welding Granted JPH02207996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2755189A JPH02207996A (en) 1989-02-08 1989-02-08 Flux cored wire electrode for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2755189A JPH02207996A (en) 1989-02-08 1989-02-08 Flux cored wire electrode for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH02207996A true JPH02207996A (en) 1990-08-17
JPH0545360B2 JPH0545360B2 (en) 1993-07-08

Family

ID=12224202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2755189A Granted JPH02207996A (en) 1989-02-08 1989-02-08 Flux cored wire electrode for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPH02207996A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855240A1 (en) * 1997-01-27 1998-07-29 Nippon Steel Welding Products &amp; Engineering Co., Ltd. Apparatus and method for one side welding of curved steel plates
JP2010064087A (en) * 2008-09-09 2010-03-25 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas-shielded arc welding
WO2011074689A1 (en) * 2009-12-16 2011-06-23 新日本製鐵株式会社 Wire containing flux for gas-sealed arc welding, allowing all-position welding
US20120325786A1 (en) * 2009-12-16 2012-12-27 Esab Ab Welding process and a welding arrangement
JP2015044236A (en) * 2013-07-29 2015-03-12 新日鐵住金株式会社 Flux-cored wire for high-toughness gas shielded arc welding excellent in vertical welding work efficiency
CN104768701A (en) * 2012-07-30 2015-07-08 伊利诺斯工具制品有限公司 Apparatus for transreceiving signals and method for transreceiving signals
JP2016209931A (en) * 2015-05-01 2016-12-15 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. Improved welding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265736A (en) * 1975-11-28 1977-05-31 Nippon Steel Corp Fluxxcored electrode wire for low temperature high tenacity low alloy steel
JPS52116746A (en) * 1976-03-26 1977-09-30 Nippon Steel Corp Fluxxcored wire for gas shielded arc welding
JPS577396A (en) * 1980-06-12 1982-01-14 Nippon Steel Corp Compound wire for gas sealed arc welding
JPS6240994A (en) * 1985-08-16 1987-02-21 Nippon Steel Corp Seamless flux cored wire for welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265736A (en) * 1975-11-28 1977-05-31 Nippon Steel Corp Fluxxcored electrode wire for low temperature high tenacity low alloy steel
JPS52116746A (en) * 1976-03-26 1977-09-30 Nippon Steel Corp Fluxxcored wire for gas shielded arc welding
JPS577396A (en) * 1980-06-12 1982-01-14 Nippon Steel Corp Compound wire for gas sealed arc welding
JPS6240994A (en) * 1985-08-16 1987-02-21 Nippon Steel Corp Seamless flux cored wire for welding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855240A1 (en) * 1997-01-27 1998-07-29 Nippon Steel Welding Products &amp; Engineering Co., Ltd. Apparatus and method for one side welding of curved steel plates
JP2010064087A (en) * 2008-09-09 2010-03-25 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas-shielded arc welding
US20120325786A1 (en) * 2009-12-16 2012-12-27 Esab Ab Welding process and a welding arrangement
JP4834191B2 (en) * 2009-12-16 2011-12-14 新日本製鐵株式会社 Flux-cored wire for gas shielded arc welding that can be welded in all positions
CN102655978A (en) * 2009-12-16 2012-09-05 新日本制铁株式会社 Wire containing flux for gas-sealed arc welding, allowing all-position welding
US20120241433A1 (en) * 2009-12-16 2012-09-27 Kazuhiro Kojima Flux-cored wire for gas shield arc welding use enabling all-position welding
WO2011074689A1 (en) * 2009-12-16 2011-06-23 新日本製鐵株式会社 Wire containing flux for gas-sealed arc welding, allowing all-position welding
US8884183B2 (en) * 2009-12-16 2014-11-11 Esab Ab Welding process and a welding arrangement
US9211613B2 (en) 2009-12-16 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Flux-cored wire for gas shield arc welding use enabling all-position welding
CN104768701A (en) * 2012-07-30 2015-07-08 伊利诺斯工具制品有限公司 Apparatus for transreceiving signals and method for transreceiving signals
US9527152B2 (en) 2012-07-30 2016-12-27 Illinois Tool Works Inc. Root pass welding solution
JP2015044236A (en) * 2013-07-29 2015-03-12 新日鐵住金株式会社 Flux-cored wire for high-toughness gas shielded arc welding excellent in vertical welding work efficiency
JP2016209931A (en) * 2015-05-01 2016-12-15 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. Improved welding method

Also Published As

Publication number Publication date
JPH0545360B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
CN108296667B (en) Flux-cored wire for underwater welding and preparation method
CA1258192A (en) Weld bead analysis and electrode for producing same
JP2002511023A (en) Flux core wire for gas flow shield welding
WO2017188275A1 (en) Flux-cored wire
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
EP0688630B1 (en) Flux-cored wire for gas shielded arc welding
JPH02207996A (en) Flux cored wire electrode for gas shielded arc welding
JPH09277087A (en) Flux cored wire for arc welding
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
KR100265097B1 (en) Flux-cored wire for arc welding
JPH04224094A (en) Flux cored wire for gas shielded arc welding
JP2009050865A (en) Multiple electrode submerged arc welding method
JPH0561036B2 (en)
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP2756088B2 (en) Flux-cored wire for gas shielded arc welding
JPS6045996B2 (en) Flux-cored wire for self-shield arc welding
JPS58148095A (en) Wire for self-shielded arc welding
JPH01262094A (en) Low hydrogen type coated electrode
US4131781A (en) Submerged arc welding process for nickel containing steel
KR20190118898A (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
JPS61286090A (en) Flux-cored wire for arc welding
JPH0520199B2 (en)