JPH0520199B2 - - Google Patents

Info

Publication number
JPH0520199B2
JPH0520199B2 JP2091289A JP2091289A JPH0520199B2 JP H0520199 B2 JPH0520199 B2 JP H0520199B2 JP 2091289 A JP2091289 A JP 2091289A JP 2091289 A JP2091289 A JP 2091289A JP H0520199 B2 JPH0520199 B2 JP H0520199B2
Authority
JP
Japan
Prior art keywords
flux
wire
fire
welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2091289A
Other languages
Japanese (ja)
Other versions
JPH02205298A (en
Inventor
Tomoyuki Suzuki
Shigemi Maki
Harutoshi Kubota
Hirotoshi Ishide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2091289A priority Critical patent/JPH02205298A/en
Publication of JPH02205298A publication Critical patent/JPH02205298A/en
Publication of JPH0520199B2 publication Critical patent/JPH0520199B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、建築、土木及び海洋構造物の分野に
おいて、利用される耐火鋼を溶接するガスシール
ドアーク溶接用フラツクス入りワイヤに関するも
ので、さらに詳しくは、600℃での高温耐力に優
れ、靱性、耐候性も良好な溶接金属を得ることの
できる高能率なガスシールドアーク溶接用金属粉
系フラツクス入りワイヤに係るものである。 〔従来の技術〕 金属粉系フラツクス入りワイヤは、一般のチタ
ニア系などのスラグ剤を多く含有するフラツクス
入りワイヤに比べてスラグの発生量が少なく高溶
着速度が得られるという利点を有しており、溶接
のトータルコスト低減を図れることから、近年そ
の使用量がますます増加する傾向にある。 例えば、その1例として特開昭61−169195号公
報、特開昭61−180696号公報には、スパツタ量の
少ない鉄粉を主体としたフラツクス入りワイヤが
開示されている。 ところで、各種構造物のうち、特に生活に密着
したビルや事務所及び住居などの建築物における
溶接部は、火災における安全性を確保するため十
分な耐火被覆を施すことが義務づけられており、
建築関係諸法令では、火災時に溶接部温度が350
℃以上にならぬよう規定されている。 これは、350℃程度で耐力が常温時の60〜70%
に低下し、建築物の倒壊を引き起こすおそれがあ
るためである。 このため、溶接部の表面にスラグウール,ロツ
クウール,ガラスウール,アスベストなどを基材
とする吹き付け材やフエルトを展着するほか、防
火モルタルで包被する方法及び前記断熱材層の上
に、更に金属薄板即ちアルミニウムやステンレス
スチール薄板等で保護する方法など耐火被覆を入
念に施し、火災時における熱的損傷を防止するよ
うにしている。 これに対し、上記従来の金属粉系フラツクス入
りワイヤは、特に耐火性を考慮して設計されたも
のでないために、高温特性が不良で溶接部を無被
覆あるいは軽い被覆で利用することができないの
で、上述した様な割高な耐火被覆を施さねばなら
なかつた。 一方近年建築物の高層化が進展し、設計技術の
向上とその信頼性の高さから、耐火設計について
見直しが行われ、昭和62年建築物の新耐火設計法
が規定されるに至り、前述の350℃の温度制限に
よることなく、溶接部の高温強度と建物に実際に
加わつてくる荷重により、耐火被覆の能力を決定
できるようになり、場合によつては無被覆で利用
することも可能になつた。 これに伴つて、耐火性に加えて耐候性を有する
新種鋼板も開発されており、これに対応できる溶
接材料の開発が強く要望されていた。 〔発明が解決しようとする課題〕 本発明は、こうした事情に着目してなれたもの
であつて、その目的は従来の金属粉系フラツクス
入りワイヤの特長である高能率性という特性を失
うことなく耐火性に優れかつ衝撃靱性も良好な溶
接金属を与えると共に耐候性を有する耐火鋼用の
ガスシールドアーク溶接用金属粉系フラツクス入
りワイヤを提供しようとするものである。 〔課題を解決するための手段〕 即ち本発明は、前述の課題を克服し目的を達成
するものでその具体的手段を下記項に示す。 ア 鋼製外皮にフラツクスを充填してなるガスシ
ールドアーク溶接用フラツクス入りワイヤにお
いて、ワイヤ全重量に対して、鉄粉:4.0〜
16.0%、脱酸剤:1.6〜6.0%、アーク安定剤:
0.05〜1.1%、スラグ形成剤:0.4〜3.6%で構成
される金属粉系フラツクスに鋼製外皮と充填フ
ラツクスの一方又は両方においてワイヤ全重量
に対して、Mo:0.10〜0.50%、Nb:0.005〜
0.025%を含有し、(0.5Mo+10Nb)が0.1〜0.4
%であることを特徴とする耐火鋼用ガスシール
ドアーク溶接用フラツクス入りワイヤ。 イ 付加成分として、Ti:0.05〜0.35%、B:
0.005〜0.01%の1種又は2種を鋼製外皮と充
填フラツクスの一方又は両方に含有してなる前
記項アに記載の耐火鋼用ガスシールドアーク溶
接用フラツクス入りワイヤ。 ウ 付加成分として、Cu:0.20〜0.60%、Cr:
0.30〜0.75%、Ni:0.05〜0.70%の1種又は2
種以上を鋼製外皮と充填フラツクスの一方又は
両方に含有してなる前記項アまたはイに記載の
耐火鋼用ガスシールドアーク溶接用フラツクス
入りワイヤ。 〔作用〕 現在耐火鋼として開発されている鋼材は、600
℃における高温耐力が常温時の70%以上となるよ
うに設計されている。 そこで本発明者らは上記耐火鋼の600℃におけ
る高温耐力値と同等以上を確保できる溶接金属を
得ることを目的として種々の試作ワイヤにより検
討した。その結果、例えばJIS規格Z3318に示さ
れた耐熱鋼用フラツクス入りワイヤのように高価
な合金元素を多量に含有させなくとも、微量の
MoとNbの複合添加により高温特性を改善でき、
さらにNi,Cr,Cu添加により耐候性を付与でき
ることを見出した。またその他の成分を限定する
ことにより、高能率で良好な溶接作業性を有す
る、ガスシールドアーク溶接用金属粉系フラツク
ス入りワイヤを開発したものである。 以下本発明フラツクス入りワイヤの特徴とする
各成分の限定理由について述べる。 Mo:0.10〜0.50%、Nb:0.005〜0.025%かつ
0.5Mo+10Nb:0.1〜0.4% Nb,Moは微細な炭窒化物を形成し、更にMo
固溶体強化によつて高温強度を増加させるが、
Mo単独添加では、600℃という高温領域におい
て十分な耐力を得ることが難しい。 本発明者らは、各種試作ワイヤによる試験研究
の結果、該高温領域における耐力増加には、Mo
とNbを複合添加させることが極めて有効である
ことを見出した。 しかし、Nb,Mo量が多すぎると溶接性が悪く
なると共に靱性が劣化するので、Nb,Mo含有量
の上限はそれぞれ0.025%、0.50%とする必要が
あり、また下限は複合効果が得られる最小量とし
てそれぞれ0.005%、0.10%を含有せしめる。 Mo,Nb量は前述する範囲内において、
(0.5Mo+10Nb)の和が0.1〜0.4%の場合に600℃
での高温耐力が耐火鋼材と同等かそれ以上の強度
を示すと共に衝撃靱性が良好になるので、
(0.5Mo+10Nb)の和を0.1〜0.4%の範囲に限定
した。 Mo,Nbの添加方法は外皮、フラツクスの一方
又は両方に添加してもよい。 なお、高温強度を上昇せしめるため、Moを利
用することは、従来の耐熱鋼用ワイヤでは知られ
ているが、建築用に用いる溶接ワイヤとして微量
のMoに加えてNbを複合添加した耐火鋼溶接用フ
ラツクス入りワイヤは知られていない。 鉄粉:4.0〜16.0% 金属粉系フラツクス入りワイヤの特徴である溶
接能率向上効果を十分達成させるためには鉄粉は
4.0%以上添加する必要がある。4.0%未満ではワ
イヤの溶着速度が遅くなり、溶接効率が低下す
る。一方16.0%を超えるとフラツクス中の他の成
分、例えば、スラグ形成剤、脱酸剤、合金剤など
の絶対量が不足してビード形状が劣化したり、所
定の強度が得られない。 従つて鉄粉は、4.0〜16.0%の範囲とする。 脱酸剤:1.0〜6.0% 脱酸剤はその名の通り脱酸作用によつて溶接金
属中の非金属介在物を減少し溶接金属の物性を高
めるのに有効な成分であり、代表的なものとして
は、Mn,Si,A,Mg等の金属あるいはこれ
らの鉄合金が挙げられる。脱酸剤が1.0%未満で
は脱酸不足となつてX線性能等が悪くなるのでこ
れ以上は含有させなければならない。しかし6.0
%を超えると脱酸過剰になつて溶接金属の靱性お
よび耐割れ性が低下する。 従つて脱酸剤は1.0〜6.0%とする。 アーク安定剤:0.05〜1.1% 鉄粉を主体とする本発明ワイヤにおいては、ア
ークを安定化してスパツタ発生量を低減させるに
はアーク安定剤の添加が必須である。アーク安定
剤が0.05未満では、アークが不安定でスパツタが
多発するなど溶接作業性の面で好ましくない。一
方1.1%を超えると逆にアーク長が極端に長くな
り溶滴の移行性を妨げるため溶滴が粗粒化し、ス
パツタが多発する。従つてアーク安定剤は0.05〜
1.1%とする。なおここでいうアーク安定剤とは、
Li,Na,K,Rb,Csなどのアルカリ金属および
その化合物が挙げられる。 スラグ形成剤:0.4〜3.6% スラグ形成剤は、ビード形状を改善するために
溶着速度の低下をきたさない範囲で添加する必要
がある。0.4%未満では、ビード形状改善効果は
認められず、3.6%を超えると、スラグ量が増大
してスラグ巻込み等の欠陥を生じたり溶接能率が
低下する。従つて、アーク安定剤を除くスラグ形
成剤は、0.4〜3.6%とする。なおスラグ形成剤と
しては、TiO2,SiO2,A2O3,MnO,FeO,
MgOなどの酸化物、CaF2,BaF2,LiFなどの弗
化物およびCaCO3,Li2CO3などの炭酸塩が使用
できる。 以上が本発明ワイヤの主要構成であるが、さら
に前記ワイヤにTi,Bを添加する理由を説明す
る。 Tiは、Ti酸化物を形成し、溶接金属のミクロ
組織を微細化し、靱性改善に有効であるが、0.05
%未満では効果がないので下限を0.05%とする。
一方0.35%を超えると靱性を著しく損なうので上
限を0.35%とする。 Bは強力な脱酸性炭化物生成元素であるから、
これをワイヤに添加することによつて溶接金属に
おける結晶核生成作用が促進され、柱状晶の成長
が阻止される結果、結晶粒は微細化する。又、溶
接金属の焼入れ性を高める効果があり、このよう
な効果を得るためには最小限0.005%のB量が必
要で、それ未満では効果がなく、又、多すぎると
溶接金属に高温割れが発生し易くなるので上限を
0.01%とする。 尚、Ti,BもMo,Nbと同様に外皮、フラツ
クスの一方又は両方に添加してもよい。 以上が耐火性能を向上させる手段であるが本発
明者らは更に耐火被覆しない無被覆で使用するこ
と(利用分野の拡大)を考え耐候性を併せ持つこ
とができないか検討した。 その結果、耐候性鋼用炭酸ガスアーク溶接用フ
ラツクス入りワイヤ(JIS Z 3320)のP.Wタイ
プの成分範囲であれば、溶接ままでの強度がやや
高いものの本発明の目的である600℃での高温特
性は十分満足することが確認できた。従つて
Cu:0.20〜0.60%,Cr:0.30〜0.75%,Ni:0.05
〜0.70%の1種または2種以上を鋼製外皮と充填
フラツクスの一方または両方に含有させることが
できる。Cu,Cr,Niが上記下限値未満では耐候
性効果が得られず、上限値を超えると、強度が高
くなりすぎて耐割れ性が劣化する。尚、Cuはワ
イヤ表面メツキ成分として添加することもでき
る。 更に、本発明に係るフラツクス入りワイヤのフ
ラツクス充填率は、8〜25%とすることが望まし
い。その理由は、充填率が25%を超えると伸線時
に断線トラブルが多発し生産性が悪くなるからで
あり、また8%より少なくなるとフラツクスの絶
対量が不足して所定の強度が得られなかつたり、
アークの安定性が損なわれるからである。 尚、ワイヤの断面形状には、何等の制限もなく
2mm以下の細径の場合は比較的単純な円筒状のも
のが、また2.4〜3.2mm程度の太径ワイヤの場合は
鞘材を内部へ複雑に折り込んだ構造のものが一般
的である。更にシームレスワイヤにおいては表面
にCu等のメツキ処理を施すことも有効である。 以下、本発明の効果を実施例により更に具体的
に示す。 〔実施例〕 第1表に試験に用いた代表的な耐火鋼材を、第
2表に試験に用いた鋼製外皮成分を、第3表に耐
火鋼溶接用フラツクス入りワイヤ組成を示す。 板厚25mmの第1表に示す鋼板を第1図に示す開
先形状(t=25mm、G=5mm、φ45°)に加工した
後、第3表に示すフラツクス入りワイヤを用い、
第4表に示す溶接条件で溶接継手を作製した。な
お、溶接時の溶接作業性の確認と共に、溶接後X
線試験によりスラグ巻込み、ブローホール等の欠
陥を調査した。試験材より引張試験片とシヤルピ
ー試験片を採取し溶接特性を調査した。 また、板厚20mmの第1表に示す鋼板上に第3表
に示すフラツクス入りワイヤを用い、第4表に示
す溶接条件で平板溶接を実施し、アークタイムと
鋼板の重さの差から溶着速度を測定した。 また、同時に銅製のスパツタ採取箱を用いてス
パツタ量も測定した。以上の結果をまとめて第5
表に示す。 第5表で明らかなように本発明ワイヤによる場
合の溶接継手の常温及び600℃高温強度特性、衝
撃靱性、X線性能および溶着速度、スパツタ量の
いずれもが良好な値を示しているのに対して、比
較ワイヤによる場合は悉く常温での強度が高すぎ
たり、あるいは高温強度が不足し、衝撃靱性値も
低いなどの問題があり、さらにX線性能が不良
で、溶着速度も低いなど耐火鋼用ワイヤとして不
適である。
[Field of Industrial Application] The present invention relates to a flux-cored wire for gas-shielded arc welding for welding fire-resistant steel used in the fields of architecture, civil engineering, and marine structures. The present invention relates to a highly efficient metal powder-based flux-cored wire for gas-shielded arc welding, which can yield a weld metal with excellent high-temperature yield strength, good toughness, and weather resistance. [Prior Art] Metal powder-based flux-cored wires have the advantage of generating less slag and achieving higher welding speeds than general flux-cored wires containing a large amount of slag agents such as titania-based wires. In recent years, there has been a tendency for its usage to increase more and more because it can reduce the total cost of welding. For example, Japanese Patent Laid-Open No. 169195/1982 and No. 180696/1987 disclose flux-cored wires mainly made of iron powder with a small amount of spatter. By the way, among various structures, welded parts in buildings, offices, residences, and other buildings that are closely connected to daily life are required to be covered with sufficient fireproof coating to ensure safety in the event of a fire.
Building-related laws and regulations require that the temperature of the welded part be 350℃ in the event of a fire.
It is specified that the temperature should not exceed ℃. This has a yield strength of 60 to 70% of that at room temperature at around 350℃.
This is because there is a risk that the amount of water may drop to a lower level and cause the building to collapse. For this purpose, in addition to spreading sprayed material or felt based on slag wool, rock wool, glass wool, asbestos, etc. on the surface of the welded part, there are also methods of covering the welded part with fireproof mortar and adding additional layers on top of the insulation layer. Fire-resistant coatings, such as protection with thin metal plates, such as aluminum or stainless steel plates, are carefully applied to prevent thermal damage in the event of a fire. On the other hand, the conventional metal powder-based flux-cored wires mentioned above were not designed with fire resistance in mind, so they have poor high-temperature properties and cannot be used with welded parts uncoated or lightly coated. However, it was necessary to apply a relatively expensive fireproof coating as described above. On the other hand, in recent years, buildings have become taller, and due to improvements in design technology and high reliability, fire-resistant design has been reviewed, and in 1985, a new fire-resistant design law for buildings was stipulated. The ability of fireproof coating can now be determined based on the high-temperature strength of the weld and the actual load applied to the building, without being limited by the 350℃ temperature limit, and in some cases it is also possible to use it without coating. It became. Along with this, new types of steel plates that have weather resistance in addition to fire resistance have been developed, and there has been a strong demand for the development of welding materials that can meet these requirements. [Problems to be Solved by the Invention] The present invention was developed in light of these circumstances, and its purpose is to solve the problem without losing the high efficiency characteristic of conventional metal powder-based flux-cored wires. The object of the present invention is to provide a metal powder-based flux-cored wire for gas-shielded arc welding for fire-resistant steel that provides a weld metal with excellent fire resistance and good impact toughness, and also has weather resistance. [Means for Solving the Problems] That is, the present invention overcomes the above-mentioned problems and achieves the objects, and specific means thereof are shown in the following section. A. In a flux-cored wire for gas-shielded arc welding in which a steel sheath is filled with flux, iron powder: 4.0~
16.0%, deoxidizer: 1.6~6.0%, arc stabilizer:
Metal powder flux composed of 0.05-1.1%, slag forming agent: 0.4-3.6%, Mo: 0.10-0.50%, Nb: 0.005 in one or both of the steel jacket and filling flux, based on the total weight of the wire. ~
Contains 0.025%, (0.5Mo+10Nb) is 0.1~0.4
% flux-cored wire for gas-shielded arc welding for fire-resistant steel. B: As additional components, Ti: 0.05 to 0.35%, B:
The flux-cored wire for gas-shielded arc welding for fire-resistant steel according to item (a) above, which contains one or both of 0.005 to 0.01% of the flux in one or both of the steel jacket and the filling flux. C. As additional components, Cu: 0.20-0.60%, Cr:
0.30-0.75%, Ni: 0.05-0.70% 1 or 2
The flux-cored wire for gas-shielded arc welding for fire-resistant steel according to item (a) or (b) above, wherein one or both of the steel jacket and the filling flux contain at least one of the following: [Function] The steel materials currently being developed as fire-resistant steels are
It is designed so that the high temperature proof strength at °C is 70% or more of that at room temperature. Therefore, the present inventors investigated various prototype wires with the aim of obtaining a weld metal that can secure a high-temperature yield strength equal to or higher than the above-mentioned fireproof steel at 600°C. As a result, even if the flux-cored wire for heat-resistant steel specified in JIS standard Z3318 does not contain large amounts of expensive alloying elements, trace amounts of
High-temperature properties can be improved by adding Mo and Nb together.
Furthermore, it was discovered that weather resistance could be imparted by adding Ni, Cr, and Cu. Furthermore, by limiting other components, we have developed a metal powder-based flux-cored wire for gas-shielded arc welding that has high efficiency and good welding workability. The reasons for limiting each component that characterizes the flux-cored wire of the present invention will be described below. Mo: 0.10~0.50%, Nb: 0.005~0.025% and
0.5Mo+10Nb: 0.1~0.4% Nb and Mo form fine carbonitrides, and further Mo
Although high temperature strength is increased by solid solution strengthening,
When Mo is added alone, it is difficult to obtain sufficient yield strength in the high temperature range of 600°C. As a result of test research using various prototype wires, the present inventors found that Mo
We have found that the combined addition of Nb and Nb is extremely effective. However, if the Nb and Mo contents are too large, weldability and toughness will deteriorate, so the upper limits of the Nb and Mo contents should be 0.025% and 0.50%, respectively, and the lower limit should be set to obtain a combined effect. The minimum amount is 0.005% and 0.10%, respectively. The amount of Mo and Nb is within the range mentioned above.
600℃ when the sum of (0.5Mo + 10Nb) is 0.1 to 0.4%
Its high-temperature yield strength is equivalent to or higher than that of fire-resistant steel, and its impact toughness is good.
The sum of (0.5Mo+10Nb) was limited to a range of 0.1% to 0.4%. Mo and Nb may be added to either or both of the outer shell and flux. The use of Mo to increase high-temperature strength is known in conventional wires for heat-resistant steel, but welding wire for fire-resistant steel with a compound addition of Nb in addition to a small amount of Mo is used for welding wire used in construction. No flux-cored wire is known for this purpose. Iron powder: 4.0 to 16.0% In order to fully achieve the effect of improving welding efficiency, which is a characteristic of metal powder-based flux-cored wire, iron powder must be
It is necessary to add 4.0% or more. If it is less than 4.0%, the wire welding speed will be slow and the welding efficiency will be reduced. On the other hand, if it exceeds 16.0%, the absolute amounts of other components in the flux, such as slag forming agents, deoxidizers, alloying agents, etc., will be insufficient, resulting in deterioration of the bead shape and failure to obtain the desired strength. Therefore, the iron powder should be in the range of 4.0 to 16.0%. Deoxidizing agent: 1.0 to 6.0% As the name suggests, deoxidizing agent is an effective ingredient for reducing non-metallic inclusions in weld metal and improving the physical properties of weld metal through its deoxidizing action. Examples include metals such as Mn, Si, A, and Mg, or iron alloys thereof. If the deoxidizing agent is less than 1.0%, deoxidizing will be insufficient and the X-ray performance will deteriorate, so it is necessary to contain more than this. But 6.0
%, the deoxidation becomes excessive and the toughness and cracking resistance of the weld metal decrease. Therefore, the amount of deoxidizer should be 1.0 to 6.0%. Arc stabilizer: 0.05-1.1% In the wire of the present invention, which is mainly composed of iron powder, it is essential to add an arc stabilizer in order to stabilize the arc and reduce the amount of spatter generated. If the arc stabilizer content is less than 0.05, the arc is unstable and spatter occurs frequently, which is unfavorable in terms of welding workability. On the other hand, if it exceeds 1.1%, the arc length becomes extremely long, which impedes droplet migration, resulting in coarse droplets and frequent spatter. Therefore, the arc stabilizer is 0.05~
The rate shall be 1.1%. The arc stabilizer mentioned here is
Examples include alkali metals such as Li, Na, K, Rb, and Cs and their compounds. Slag forming agent: 0.4 to 3.6% The slag forming agent must be added within a range that does not reduce the welding speed in order to improve the bead shape. If it is less than 0.4%, no bead shape improvement effect will be observed, and if it exceeds 3.6%, the amount of slag will increase, causing defects such as slag entrainment and reducing welding efficiency. Therefore, the slag forming agent, excluding the arc stabilizer, should be 0.4 to 3.6%. The slag forming agents include TiO 2 , SiO 2 , A 2 O 3 , MnO, FeO,
Oxides such as MgO, fluorides such as CaF 2 , BaF 2 and LiF, and carbonates such as CaCO 3 and Li 2 CO 3 can be used. The above is the main structure of the wire of the present invention, and the reason why Ti and B are added to the wire will be further explained. Ti forms Ti oxide, refines the microstructure of weld metal, and is effective in improving toughness, but 0.05
If it is less than %, there is no effect, so the lower limit is set at 0.05%.
On the other hand, if it exceeds 0.35%, toughness will be significantly impaired, so the upper limit is set at 0.35%. Since B is a strong deoxidizing carbide forming element,
By adding this to the wire, crystal nucleation in the weld metal is promoted, growth of columnar crystals is inhibited, and as a result, crystal grains become finer. Also, it has the effect of increasing the hardenability of the weld metal, and in order to obtain this effect, a minimum B content of 0.005% is required; less than that is ineffective, and too much B may cause hot cracking in the weld metal. is likely to occur, so set an upper limit.
It shall be 0.01%. Incidentally, like Mo and Nb, Ti and B may also be added to one or both of the outer shell and flux. The above are means for improving fire resistance performance, but the present inventors further considered whether it would be possible to use the material without a fire resistant coating (expansion of the field of application) and to have weather resistance as well. As a result, if the composition range of PW type flux-cored wire for carbon dioxide gas arc welding for weathering steel (JIS Z 3320) is used, the as-welded strength is somewhat high, but the high-temperature properties at 600°C, which is the objective of the present invention, are was confirmed to be fully satisfactory. Accordingly
Cu: 0.20-0.60%, Cr: 0.30-0.75%, Ni: 0.05
~0.70% of one or more types can be contained in one or both of the steel shell and the filling flux. If Cu, Cr, and Ni are less than the above-mentioned lower limit, no weather resistance effect can be obtained, and if it exceeds the upper limit, the strength becomes too high and the cracking resistance deteriorates. Incidentally, Cu can also be added as a wire surface plating component. Further, the flux filling rate of the flux-cored wire according to the present invention is preferably 8 to 25%. The reason for this is that if the filling rate exceeds 25%, wire breakage problems occur frequently during wire drawing and productivity deteriorates, and if it falls below 8%, the absolute amount of flux is insufficient and the specified strength cannot be obtained. Or,
This is because the stability of the arc is impaired. There are no restrictions on the cross-sectional shape of the wire; in the case of a wire with a small diameter of 2 mm or less, a relatively simple cylindrical shape is used, and in the case of a wire with a large diameter of about 2.4 to 3.2 mm, the sheath material is placed inside. Those with a complicated folded structure are common. Furthermore, it is also effective to plate the surface of the seamless wire with Cu or the like. Hereinafter, the effects of the present invention will be illustrated in more detail with reference to Examples. [Example] Table 1 shows typical fire-resistant steel materials used in the test, Table 2 shows the steel shell components used in the test, and Table 3 shows the composition of flux-cored wire for welding fire-resistant steel. After processing a 25 mm thick steel plate shown in Table 1 into the groove shape (t = 25 mm, G = 5 mm, φ45°) shown in Figure 1, using the flux-cored wire shown in Table 3,
Welded joints were produced under the welding conditions shown in Table 4. In addition, in addition to checking the welding workability during welding,
Defects such as slag entrainment and blowholes were investigated by wire tests. Tensile test pieces and Charpy test pieces were taken from the test materials and their welding properties were investigated. In addition, flat plate welding was performed using the flux-cored wire shown in Table 3 on the steel plate shown in Table 1 with a thickness of 20 mm under the welding conditions shown in Table 4. The speed was measured. At the same time, the amount of spatter was also measured using a copper spatter collecting box. Summarizing the above results, the fifth
Shown in the table. As is clear from Table 5, the welded joints using the wire of the present invention show good values in both room temperature and high temperature 600°C strength properties, impact toughness, X-ray performance, welding speed, and amount of spatter. In contrast, all comparison wires have problems such as too high strength at room temperature, insufficient high temperature strength, and low impact toughness, as well as poor X-ray performance and low welding speed. Not suitable as steel wire.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 を示す。
[Table] is shown below.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明のワイヤによれば、得られ
る溶接金属は高温特性に優れ、衝撃靱性も良好で
あることはもちろん、溶接施工時の溶接作業性、
溶着効率、ビード外観、形状も良く、溶接部への
耐火施工にかかるコストを大幅に引き下げること
が可能である。
As described above, according to the wire of the present invention, the weld metal obtained not only has excellent high-temperature properties and good impact toughness, but also has good welding workability during welding work.
It has good welding efficiency, bead appearance, and shape, and can significantly reduce the cost of fireproofing welded areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた開先形状を示す正面断
面図である。
FIG. 1 is a front sectional view showing the groove shape used in the example.

Claims (1)

【特許請求の範囲】 1 鋼製外皮にワイヤ全重量に対して 鉄粉:4.0〜16.0% 脱酸剤:1.0〜6.0% アーク安定剤:0.05〜1.1% アーク安定剤以外のスラグ形成剤:0.4〜3.6% その他合金,不可避不純物で構成されるフラツ
クスを充填してなるガスシールドアーク溶接用フ
ラツクス入りワイヤにおいて、鋼製外皮と充填フ
ラツクスの一方又は両方にワイヤ全重量に対して Mo:0.10〜0.50% Nb:0.005〜0.025% を含有し、かつ(0.5Mo+10Nb)が0.1〜0.4%で
あることを特徴とする耐火鋼用ガスシールドアー
ク溶接用フラツクス入りワイヤ。 2 付加成分として Ti:0.05〜0.35% B:0.005〜0.01% の1種又は2種を鋼製外皮と充填フラツクスの一
方又は両方に含有してなる請求項1記載の耐火鋼
用ガスシールドアーク溶接用フラツクス入りワイ
ヤ。 3 付加成分として Cu:0.20〜0.60% Cr:0.30〜0.75% Ni:0.05〜0.70% の1種又は2種以上を鋼製外皮と充填フラツクス
の一方又は両方に含有してなる請求項1又は2記
載の耐火鋼用ガスシールドアーク溶接用フラツク
ス入りワイヤ。
[Claims] 1. Iron powder: 4.0 to 16.0% Deoxidizing agent: 1.0 to 6.0% Arc stabilizer: 0.05 to 1.1% Slag forming agent other than arc stabilizer: 0.4 ~3.6% In a flux-cored wire for gas-shielded arc welding that is filled with a flux composed of other alloys and unavoidable impurities, one or both of the steel sheath and the filling flux contains Mo: 0.10 to 0.50 based on the total weight of the wire. % Nb: 0.005 to 0.025%, and (0.5Mo+10Nb) is 0.1 to 0.4%, a flux-cored wire for gas-shielded arc welding for fire-resistant steel. 2. Gas-shielded arc welding for fire-resistant steel according to claim 1, wherein one or both of Ti: 0.05 to 0.35% and B: 0.005 to 0.01% are contained as additional components in one or both of the steel outer skin and the filling flux. Flux-cored wire for use. 3. Claim 1 or 2, wherein one or more of Cu: 0.20 to 0.60%, Cr: 0.30 to 0.75%, and Ni: 0.05 to 0.70% are contained in one or both of the steel outer skin and the filling flux as additional components. Flux-cored wire for gas-shielded arc welding for fire-resistant steel.
JP2091289A 1989-02-01 1989-02-01 Flux cored wire for gas shielded arc welding of refractory steel Granted JPH02205298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091289A JPH02205298A (en) 1989-02-01 1989-02-01 Flux cored wire for gas shielded arc welding of refractory steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091289A JPH02205298A (en) 1989-02-01 1989-02-01 Flux cored wire for gas shielded arc welding of refractory steel

Publications (2)

Publication Number Publication Date
JPH02205298A JPH02205298A (en) 1990-08-15
JPH0520199B2 true JPH0520199B2 (en) 1993-03-18

Family

ID=12040433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091289A Granted JPH02205298A (en) 1989-02-01 1989-02-01 Flux cored wire for gas shielded arc welding of refractory steel

Country Status (1)

Country Link
JP (1) JPH02205298A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825063B2 (en) * 1991-09-20 1996-03-13 株式会社神戸製鋼所 Flux-cored wire for 0.5Mo steel, Mn-Mo steel and Mn-Mo-Ni steel for gas shielded arc welding
JP2500020B2 (en) * 1992-03-31 1996-05-29 株式会社神戸製鋼所 Basic flux-cored wire for gas shield arc welding
JP4838100B2 (en) * 2006-11-06 2011-12-14 日鐵住金溶接工業株式会社 Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP5194593B2 (en) * 2007-07-10 2013-05-08 新日鐵住金株式会社 Flux-cored welding wire for gas shielded arc welding of refractory steel

Also Published As

Publication number Publication date
JPH02205298A (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JP5644984B1 (en) Flux-cored wire, welding method using flux-cored wire, manufacturing method of welded joint using flux-cored wire, and welded joint
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
JP2009119497A (en) Flux-cored wire for self-shielded arc welding for fire resistant steel
KR20080035473A (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
JP4767592B2 (en) Submerged arc welding method for refractory structural steel
JPH0520198B2 (en)
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2780140B2 (en) Welding wire for fire-resistant steel with excellent weather resistance
JPH0520199B2 (en)
JP3106400B2 (en) Welding wire for fire-resistant steel with excellent weather resistance
JP2007054878A (en) Coated arc welding rod for steel for fire-resisting construction
JP2781470B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
JPH08197283A (en) Flux cored wire for mig welding by which high-toughness weld zone having lessened welding deformation is obtainable
KR102114091B1 (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance
JP3208556B2 (en) Flux-cored wire for arc welding
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP2565998B2 (en) Low-hydrogen coated arc welding rod for all positions with excellent fire resistance
JPH07276086A (en) Flux cored wire for mag welding small in welding deformation
JPH0545360B2 (en)
JP2684403B2 (en) Composite wire for self-shielded arc welding for refractory steel
JPH0510199B2 (en)
JPH07303991A (en) Wire and bonded flux for submerged arc welding of 780mpa or 960mpa steel
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
JP2003103399A (en) Flux-filled wire for welding weather resistant steel