JPH02207589A - Oxide superconductor wiring board - Google Patents

Oxide superconductor wiring board

Info

Publication number
JPH02207589A
JPH02207589A JP1027929A JP2792989A JPH02207589A JP H02207589 A JPH02207589 A JP H02207589A JP 1027929 A JP1027929 A JP 1027929A JP 2792989 A JP2792989 A JP 2792989A JP H02207589 A JPH02207589 A JP H02207589A
Authority
JP
Japan
Prior art keywords
layer
powder
superconductor
oxide superconductor
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027929A
Other languages
Japanese (ja)
Inventor
Hiromi Imura
井村 ひろみ
Gentaro Kaji
源太郎 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1027929A priority Critical patent/JPH02207589A/en
Publication of JPH02207589A publication Critical patent/JPH02207589A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide an oxide superconductor wiring board without causing operations of semiconductor and the like to be misoperated even under the existence of temporal deterioration of charcateristics thereof or of any breakdown thereof by integrally laminating an oxide superconductor layer and a stabilizing layer selected from Ag, Au, and Pt. CONSTITUTION:An oxide superconductor raw material metal compound (chiefly oxide) is weighed to a predetermined amount and mixed, a resulting mixture is calcined and ground to yield calcined powder, which is then blended with an organic solvent of an amount less than that of the calcined powder and molded under pressure into a sheet product. On the other hand, powder of Ag and Au or Pt is blended with an organic solvent and molded under pressure into a sheet product. Both sheet products are alternately laminated and dried, and thereafter compressed and united together. Thereafter, it is fired.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体LSI等に用いられる酸化物超電導体
による配線基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wiring board made of an oxide superconductor used in semiconductor LSIs and the like.

(従来の技術) 近時の高Tc(臨界温度・・・超電導状態となる温度)
超電導体の出現により、半導体LSI用の配線基板等へ
の超電導体の応用について十分検討出来る状況になって
来た。一方、微細化技術の進歩に伴い半導体素子自体の
高速性能が向上した結果、集積線幅が減少し、それだけ
配線抵抗が増大し、常電導金属による配線の場合伝搬遅
延時間の増大を来すことが問題とされるようになった。
(Conventional technology) Recent high Tc (critical temperature...temperature at which superconducting state occurs)
With the advent of superconductors, it has become possible to fully consider the application of superconductors to wiring boards for semiconductor LSIs. On the other hand, as a result of advances in miniaturization technology, the high-speed performance of semiconductor elements themselves has improved, resulting in a reduction in integrated line width, which increases wiring resistance and, in the case of wiring made of normally conducting metal, increases propagation delay time. has become a problem.

その為。For that reason.

電気抵抗ゼロの超電導体は、このような問題点を一掃す
るものとして大きく期待されるところとなった・ (発明が解決しようとする課題) 本発明者等は、超電導体の上記配線基板への応用研究を
進めるにあたって、次のような解決すべき問題点がある
ことに着目した。即ち、雰囲気温度がオフセット温度(
Tce)以上になったとき、臨界電流密度(Jc)より
大きい電流が流れたとき、雰囲気の磁界が臨界磁界(H
e)より大きくなったとき、いずれも超電導体に抵抗が
発生して電流の変化を生じ半導体等の作動に一時的狂い
を生じて集積回路の誤動作の原因となること、亦、高集
積化に伴い配線の線幅が小さくなる為、電流密度が増大
し超電導体自体が発熱して超電導特性が破壊されること
、である。
A superconductor with zero electrical resistance is highly expected to eliminate these problems. In proceeding with applied research, we focused on the following problems that need to be solved. In other words, the ambient temperature is the offset temperature (
When the current density exceeds the critical current density (Jc), the magnetic field in the atmosphere reaches the critical magnetic field (H
e) When the superconductor becomes larger, resistance is generated in the superconductor, causing a change in current, causing temporary disturbances in the operation of semiconductors, etc., and causing malfunctions of integrated circuits. As the line width of the wiring becomes smaller, the current density increases and the superconductor itself generates heat, destroying its superconducting properties.

(発明の目的) 本発明は上記問題点に鑑みなされたものであり、超電導
体の一時的な特性減退・破壊(所謂クエンチ)があって
もその特性を補償し、半導体等の作動に狂いを生じさせ
ない新規な酸化物超電導体配線基板を提供せんとするも
のである。
(Purpose of the Invention) The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to compensate for the temporary deterioration or destruction of the characteristics of a superconductor (so-called quench), and to prevent the operation of semiconductors, etc. from being disrupted. It is an object of the present invention to provide a novel oxide superconductor wiring board that does not cause the above-mentioned problems.

(課題を解決する為の手段) 上記目的を達成する為の本発明の酸化物超電導体配線基
板は、酸化物超電導体層と、Ag、Au及びPtより選
ばれた安定化層とが一体的に積層されて成ることを要旨
とするものである。
(Means for Solving the Problems) An oxide superconductor wiring board of the present invention for achieving the above object includes an oxide superconductor layer and a stabilizing layer selected from Ag, Au, and Pt. The gist is that the material is laminated with two layers.

本発明を構成する酸化物超電導体としては、Y−Ba−
Cu−0或いはB i−8r−Ca−Cu−○等で表さ
れる複合酸化物が望ましく採用される。またこれと積層
される安定化層は、常電導金属の層でありAg、Au及
びPtのいずれかより選ばれるが、同じ常電導金属の代
表であるCuは超電導体層に固溶し組成変動を起す為使
用不可である。
The oxide superconductor constituting the present invention includes Y-Ba-
A composite oxide represented by Cu-0 or Bi-8r-Ca-Cu-○ is preferably employed. In addition, the stabilizing layer laminated with this is a layer of a normal conducting metal and is selected from Ag, Au, and Pt, but Cu, which is a typical normal conducting metal, is dissolved in the superconducting layer and its composition varies. It cannot be used because it causes

該安定化層と超電導体層との層構造としては、−層ずつ
を積層した場合、二層ずつを交互に積層した場合、更に
は複数層ずつを交互に積層した場合が採用され、これは
対象とする集積回路等の仕様に応じて適宜選択される。
The layer structure of the stabilizing layer and the superconductor layer may be one layer at a time, two layers at a time, or multiple layers at a time. It is selected as appropriate depending on the specifications of the target integrated circuit, etc.

次に、上記一体層に積層する方法についての望ましい二
つの例を略述する。
Next, two desirable examples of the method of laminating the above-mentioned monolithic layer will be briefly described.

く第1の方法〉 酸化物超電導体の原料金属化合物(主に酸化物)を所定
量秤量混合し、この混合物を仮焼・粉砕処理して仮焼粉
末を得、該仮焼粉末を有機溶媒で混練してペースト状と
する。一方Ag、O,Ag、Au或いはPtの粉末を有
機溶媒で混練してペースト状となし、両ペースト状物を
ジルコニア等の基板上に印刷し、乾燥後焼成処理する。
First method> Predetermined amounts of raw metal compounds (mainly oxides) for the oxide superconductor are weighed and mixed, this mixture is calcined and pulverized to obtain a calcined powder, and the calcined powder is mixed with an organic solvent. Knead to make a paste. On the other hand, powders of Ag, O, Ag, Au, or Pt are kneaded with an organic solvent to form a paste, and both pastes are printed on a substrate such as zirconia, dried, and then fired.

この場合仮焼粉末ペースト層単層の厚みは、その特性が
発現される限り、対象とする配線基板の大きさ、必要性
能等に応じて適宜選択可能であるが、A g z○粉末
等のペースト層単層の厚みは仮焼粉末ペースト層単層厚
みの1710〜2倍とすることが望ましい。1/10倍
未満の場合、室温での比抵抗が大きくなると共に冷却作
用が十分発揮し得なくなり、また2倍を超えると臨界電
流密度(Jc)が小さくなる傾向となるからである。
In this case, the thickness of the single layer of calcined powder paste layer can be selected as appropriate depending on the size of the target wiring board, required performance, etc., as long as its characteristics are expressed. The thickness of the single paste layer is preferably 1710 to 2 times the thickness of the single calcined powder paste layer. This is because if it is less than 1/10 times, the specific resistance at room temperature increases and the cooling effect cannot be sufficiently exerted, and if it exceeds twice, the critical current density (Jc) tends to decrease.

〈第2の方法〉 酸化物超電導体の原料金属化合物(主に酸化物)を所定
量秤量混合し、この混合物を仮焼・粉砕処理して仮焼粉
末を得、該仮焼粉末を上記より少ない量の有機溶媒で混
練し、圧縮成形してシート状となす。一方Ag、O1A
g、Au或いはPtの粉末を同有機溶媒で混練し、圧縮
成形してシート状となす。両シート状物を交互に層積し
乾燥後圧縮一体とし、更にこれを焼成処理する。この場
合、超電導体粉末成形シート層の厚みは上記同様制約は
ないが、Ag、0粉末等の成形シート層単層の厚みは超
電導体粉末成形シート層の厚みの0.1〜2倍であるこ
とが望ましい、この範囲外では上記と同様の傾向となる
からである。
<Second method> A predetermined amount of raw metal compounds (mainly oxides) for the oxide superconductor is weighed and mixed, this mixture is calcined and pulverized to obtain a calcined powder, and the calcined powder is It is kneaded with a small amount of organic solvent and compression molded to form a sheet. On the other hand, Ag, O1A
Powder of g, Au or Pt is kneaded with the same organic solvent and compression molded to form a sheet. Both sheet-like materials are layered alternately, dried, compressed into a single piece, and then fired. In this case, the thickness of the superconductor powder molded sheet layer is not limited as described above, but the thickness of a single layer of the molded sheet layer of Ag, 0 powder, etc. is 0.1 to 2 times the thickness of the superconductor powder molded sheet layer. This is desirable because outside this range, the same tendency as above will occur.

(作用) 上記構成の配線基板は、例えばプリント法や薄膜のエツ
チング等により適宜配線回路を形成し、所定位置に半導
体素子等を搭載し更にワイヤボンディングを施し半導体
モジュール等として構成される。そして該半導体モジュ
ール等は、超電導体のTc温度以下に維持された状態で
使用に供される。この使用状態に於いては、超電導体層
の電気抵抗がゼロとなるから、半導体素子自体が高速性
能を有している場合でもこれに十分対応し得る速度で信
号電流の伝搬を行なう、また、例えば冷媒が少なくなっ
た為に雰囲気温度が一時的にオフセット温度(Tea)
以上になった場合、臨界電流密度(Jc)より大きい電
流が流れた場合、雰囲気の磁界が臨界磁界(He)より
大きくなった場合には。
(Function) The wiring board having the above structure is configured as a semiconductor module or the like by forming a wiring circuit as appropriate by, for example, a printing method or etching a thin film, mounting a semiconductor element or the like at a predetermined position, and then performing wire bonding. The semiconductor module and the like are then used while being maintained at a temperature below the Tc temperature of the superconductor. In this state of use, the electrical resistance of the superconductor layer becomes zero, so even if the semiconductor element itself has high-speed performance, the signal current propagates at a speed that is sufficient to accommodate the high-speed performance of the semiconductor element itself. For example, the ambient temperature temporarily becomes offset temperature (Tea) due to a decrease in refrigerant.
or more, when a current larger than the critical current density (Jc) flows, or when the magnetic field of the atmosphere becomes larger than the critical magnetic field (He).

超電導体層がクエンチを起すが、層内に介在された安定
化層がこれにとって代り電流伝搬の機能を奏する。安定
化層の伝搬速度は超電導体層のそれよりは劣るが、−時
的なりエンチの間はこれで十分補うことが出来る。亦、
安定化層の放熱作用により電流密度の増大に伴う超電導
体層自体の発熱が抑えられ、超電導特性の破壊が未然に
防止される。従って、外的要因が原因して超電導体層が
一時的にクエンチしても、また電流密度が増大しても、
半導体素子等に対する悪影響が回避され、誤動作等の懸
念がなくなる。
Although the superconductor layer causes quenching, the stabilizing layer interposed within the layer performs the current propagation function instead. Although the propagation speed of the stabilizing layer is lower than that of the superconductor layer, it can sufficiently compensate for the temporary delay. also,
The heat dissipation effect of the stabilizing layer suppresses the heat generation of the superconductor layer itself due to an increase in current density, thereby preventing destruction of the superconducting properties. Therefore, even if the superconductor layer is temporarily quenched due to external factors or the current density increases,
Adverse effects on semiconductor elements and the like are avoided, eliminating concerns about malfunctions and the like.

(実施例) 次に実施例について述べる。(Example) Next, examples will be described.

(実施例−1) (1)Y203粉末30.26g、BaCO3粉末10
5.78g、CuO粉末17.34gを秤量・混合した
後880℃で5時間仮焼し、メノー乳鉢で粉砕し、更に
920℃で20時間仮焼して粉砕し平均粒径1.6μm
の仮焼粉末を得た。
(Example-1) (1) Y203 powder 30.26g, BaCO3 powder 10
After weighing and mixing 5.78 g and 17.34 g of CuO powder, they were calcined at 880°C for 5 hours, crushed in an agate mortar, further calcined at 920°C for 20 hours, and crushed to have an average particle size of 1.6 μm.
A calcined powder was obtained.

得られた仮焼粉末は、X線回折により Y I B a 2Cu 307−5の組成式を有する
結晶であることが確認された。
The obtained calcined powder was confirmed by X-ray diffraction to be a crystal having a composition formula of Y I B a 2 Cu 307-5.

(it)上記仮焼粉末に有機溶媒としてのエチルセルロ
ースを20〜35重量%添加し、よく混合してペースト
状とした。
(it) 20 to 35% by weight of ethyl cellulose as an organic solvent was added to the above calcined powder and mixed well to form a paste.

(ni)AgzO粉末に有機溶媒としてのエチルセルロ
ースを15〜25重量%添加・混合しペースト状とした
(ni) 15 to 25% by weight of ethyl cellulose as an organic solvent was added and mixed to AgzO powder to form a paste.

(iv)ジルコニア基板上に上記Ag2O粉末及び仮焼
粉末ペーストを2層ずつ交互に印刷積層した。
(iv) Two layers of the above Ag2O powder and calcined powder paste were alternately printed and laminated on a zirconia substrate.

各層の層厚は、仮焼粉末ペースト層を80μmに固定し
、Ag、O粉末ペースト層を40μm、160μm、1
65μm、8μm及び7.2μmとした。これらを夫々
実施例1−1.1−2.1−3.1−4及び1−5とし
た。
The layer thickness of each layer is fixed at 80 μm for the calcined powder paste layer, 40 μm for the Ag, O powder paste layer, 160 μm, and 1
They were 65 μm, 8 μm, and 7.2 μm. These were designated as Examples 1-1.1-2.1-3.1-4 and 1-5, respectively.

(v)上記積層体をよく乾燥した後、抵抗加熱管状炉に
て焼成した。焼成条件は、室温より950℃まで酸素ガ
スを流しながら50℃/hrの速度で昇温し、最高温度
(950℃)で5時間保持した後。
(v) After thoroughly drying the laminate, it was fired in a resistance heating tubular furnace. The firing conditions were to raise the temperature from room temperature to 950°C at a rate of 50°C/hr while flowing oxygen gas, and after holding at the maximum temperature (950°C) for 5 hours.

600℃まで50℃/ h rの速度で冷却し、5時間
保持し、室温まで50℃/ h rの速度で冷却するよ
うにした。
It was cooled to 600°C at a rate of 50°C/hr, held for 5 hours, and then cooled to room temperature at a rate of 50°C/hr.

〈比較例〉 比較例として、超電導体仮焼粉末をそのまま上記と同じ
条件で焼成したバルク体と、上記超電導体仮焼粉末ペー
スト(厚み、80μm)のみを同条件で焼成したものを
準備した。これらを夫々比較例1−1.1−2とした。
<Comparative Example> As a comparative example, a bulk body in which the superconductor calcined powder was fired as it was under the same conditions as above, and a bulk body in which only the above superconductor calcined powder paste (thickness, 80 μm) was fired under the same conditions were prepared. These were designated as Comparative Examples 1-1.1-2, respectively.

(実施例−2) (i)Bi、O,粉末45.29g、5rCO,粉末2
9.07g、CaC0,粉末9.80g、CuO粉末1
5.84gを秤量混合した後800℃で5時間仮焼し、
メノー乳鉢で粉砕し、更に820℃で20時間仮焼粉砕
して平均粒径5μmの仮焼粉末を得た。得られた粉末は
、X線回折によりBi25r2Ca1Cu208の組成
式を有する結晶であることが確認された。
(Example-2) (i) Bi, O, powder 45.29g, 5rCO, powder 2
9.07g, CaC0, powder 9.80g, CuO powder 1
After weighing and mixing 5.84 g, calcined at 800°C for 5 hours,
The mixture was ground in an agate mortar and further calcined and crushed at 820°C for 20 hours to obtain calcined powder with an average particle size of 5 μm. The obtained powder was confirmed to be a crystal having a composition formula of Bi25r2Ca1Cu208 by X-ray diffraction.

(ii)実施例−1と同様に上記仮焼粉末をペースト状
(厚み、80μm)にし、またAg2o粉末も同様にペ
ースト状(厚み、40μm)にし、これらを2層ずつジ
ルコニア基板上に交互に印刷して乾燥後焼成した。焼成
は室温から840℃まで大気中で50℃/hrの速度で
昇温し、最高温度(840℃)で5時間保持した後、室
温まで50℃/hrの速度で冷却するようにした。これ
で得た試料を実施例2−1とした。
(ii) In the same manner as in Example-1, the above calcined powder was made into a paste form (thickness, 80 μm), and the Ag2O powder was also made into a paste form (thickness, 40 μm), and two layers of these were alternately placed on a zirconia substrate. It was printed, dried and fired. For firing, the temperature was raised from room temperature to 840°C in the air at a rate of 50°C/hr, held at the maximum temperature (840°C) for 5 hours, and then cooled to room temperature at a rate of 50°C/hr. The sample thus obtained was designated as Example 2-1.

(it)超電導体層の組成が、Bi:Pb:Sr:Ca
:Cu=2:0.5:2:3:4となるようにし且つ上
記と同様に調製して仮焼粉末を得、これを用いて上記と
同様な方法で層積後焼成した。焼成は840℃まで大気
中で50℃/hrの速度で昇温し、最高温度(840℃
)で200hr保持した後、室温まで50”C/hrの
速度で冷却した。
(it) The composition of the superconductor layer is Bi:Pb:Sr:Ca
:Cu=2:0.5:2:3:4 and prepared in the same manner as above to obtain a calcined powder, which was used to stack and fire in the same manner as above. For firing, the temperature was raised to 840°C in the air at a rate of 50°C/hr, and the maximum temperature (840°C
) for 200 hours, and then cooled to room temperature at a rate of 50"C/hr.

このようにして得た試料を実施例2−2とした。The sample thus obtained was designated as Example 2-2.

なお、この時に用いた仮焼粉末はX線解析により110
に層のほぼ単層であった。
The calcined powder used at this time was determined by X-ray analysis to be 110
It was almost a single layer.

〈比較例〉 比較例として、上記実施例2−1.2−2に対応する仮
焼粉末ペースト(厚み、80μm)のみを同条件で焼成
したものを準備した。これらを夫々比較例2−1.2−
2とした。
<Comparative Example> As a comparative example, only a calcined powder paste (thickness, 80 μm) corresponding to Example 2-1.2-2 was calcined under the same conditions. Comparative Example 2-1.2-
It was set as 2.

上記で得た各焼成試料について、SEM(走査型電子顕
微鏡)にて組成観察を行なった。また、本試料を粉砕し
てXRD測定を行なった。四端子法により温度に対する
抵抗変化を調べ、オンセット温度(Tea)、オフセッ
ト温度(Tce)を測定した。更に、次の要領で電流密
度を測定した。即ち、四端子法に従い、試料を液体窒素
中に浸し、温度が安定した段階で電流を流し始め、徐々
にその値を大きくし、電圧が急激に発生し1μVの時の
電流値をIcとし、それを断面積で割った値を臨界電流
密度Jcとした。更に、各試料について室温での比抵抗
を測定した。これらの結果を第1表に示す。
The composition of each fired sample obtained above was observed using a SEM (scanning electron microscope). In addition, this sample was crushed and subjected to XRD measurement. The resistance change with respect to temperature was investigated using the four-probe method, and the onset temperature (Tea) and offset temperature (Tce) were measured. Furthermore, the current density was measured in the following manner. That is, according to the four-terminal method, the sample is immersed in liquid nitrogen, and when the temperature has stabilized, a current is started to flow, and the value is gradually increased, and the current value when the voltage suddenly occurs and is 1 μV is taken as Ic, The value divided by the cross-sectional area was defined as the critical current density Jc. Furthermore, the specific resistance of each sample at room temperature was measured. These results are shown in Table 1.

(以下余白) 実施例1−1.2.3.4.5及び実施例2−1.2に
ついてのSEM、XMAの結果から、銀の一部が拡散し
超電導体の粒間に存在していることがわかった。それら
は超電導体粒子とのぬれ性も良好であり、超電導体粒子
を覆う状態であった。
(Left below) From the SEM and XMA results for Example 1-1.2.3.4.5 and Example 2-1.2, some silver diffused and existed between the grains of the superconductor. I found out that there is. They also had good wettability with the superconductor particles and were in a state of covering the superconductor particles.

またXRDの解析結果から、超電導体とAgのピークが
混在していることが観測され、これにより、Agが超電
導体層に固溶または置換していないことが推察された。
Furthermore, from the XRD analysis results, it was observed that the superconductor and Ag peaks coexisted, and it was therefore inferred that Ag was not solidly dissolved or substituted in the superconductor layer.

温度に対する抵抗変化の測定結果においては、普通のバ
ルク体である比較例1−1及びその他の比較例はいずれ
も室温で10′′〜101オ一ダーmΩ/dであるのに
対し、実施例1−1.2,3.4及び実施例2−1.2
はいずれも室温で10−3オ一ダーmΩ/dであり、こ
れにより超電導層がクエンチしても一時的補償が十分可
能となることが示唆される。実施例1−5の比抵抗が高
くなったのは、Ag層の層厚が薄遇ぎその拡散により層
として存在しきれなくなった為と考えられる。オフセッ
ト温度及びオンセット温度はいずれも大差なかった。
In the measurement results of resistance change with respect to temperature, Comparative Example 1-1, which is an ordinary bulk body, and other comparative examples both have a resistance of 10'' to 101 orders of magnitude mΩ/d at room temperature, whereas Example 1-1.2, 3.4 and Example 2-1.2
are all 10<-3 >order mΩ/d at room temperature, which suggests that even if the superconducting layer is quenched, sufficient temporary compensation is possible. The reason why the specific resistance of Examples 1-5 was high is considered to be because the thickness of the Ag layer was so small that it could no longer exist as a layer due to its diffusion. There was no significant difference in either offset temperature or onset temperature.

実施例1−1.2.4.5の臨界電流密度は、比較例1
−1.2に比べいずれも高レベルにあり、また、実施例
1−1と比較例1−2との比較からAg層を積層するこ
とにより増大することが理解される。実施例2−1.2
と比較例2−1.2との比較に於いてもその傾向がうか
がえる。実施例1−3の臨界電流密度が低いのは、Ag
層が厚過ぎ試料の端がAg層によって覆われてしまった
からと考えられる。
The critical current density of Example 1-1.2.4.5 is the same as that of Comparative Example 1.
-1.2, and it is understood from the comparison between Example 1-1 and Comparative Example 1-2 that the increase is caused by laminating the Ag layer. Example 2-1.2
This tendency can also be seen in the comparison between Comparative Example 2-1.2 and Comparative Example 2-1.2. The reason why the critical current density of Example 1-3 is low is because of Ag.
This is thought to be because the layer was too thick and the edges of the sample were covered by the Ag layer.

(実施例−3) (i)実施例−1と同様にして、組成式がY1Ba2C
u3O7,9である仮焼粉末を得た。
(Example-3) (i) Same as Example-1, the composition formula is Y1Ba2C
A calcined powder of u3O7,9 was obtained.

(ii)この仮焼粉末に有機溶媒としてアクリル系共重
合体を7重量%添加し、よく混合した。
(ii) To this calcined powder, 7% by weight of an acrylic copolymer was added as an organic solvent and mixed well.

(in)AgzO粉末に有機溶媒としてアクリル系共重
合体を7重量%添加しよく混合した。
(in) 7% by weight of an acrylic copolymer was added as an organic solvent to the AgzO powder and mixed well.

(〜)上記仮焼粉末混和物及びAg2O粉末混和物を圧
縮成形して厚み80μm及び40μmのシート状とした
。この各上記シート状物を2層ずつ交互に層積し、よく
乾燥後ロール状の連続圧縮成形機に通して相互を圧着し
た。圧着成形物を10×25mの短冊状に切り取り、抵
抗加熱管状炉内で酸素ガスを流しながら、室温から50
C)Cまで25℃/ h rで昇温し、500℃から9
80℃まで200℃/ h rの速度で昇温し、最高温
度で10分間保持した後10℃/ h rの速度で室温
まで冷却した。これで得た焼成試料を実施例3−1とし
た。
(~) The above-mentioned calcined powder mixture and Ag2O powder mixture were compression molded to form sheets with thicknesses of 80 μm and 40 μm. Two layers of each of the above-mentioned sheet-like materials were stacked alternately, and after being thoroughly dried, they were passed through a roll-shaped continuous compression molding machine and pressed together. The crimped product was cut into strips of 10 x 25 m, and heated in a resistance heating tubular furnace with oxygen gas flowing from room temperature to 50 m.
C) Raise the temperature at 25 °C/hr to C, and from 500 °C to 9
The temperature was raised to 80°C at a rate of 200°C/hr, held at the maximum temperature for 10 minutes, and then cooled to room temperature at a rate of 10°C/hr. The fired sample thus obtained was designated as Example 3-1.

(v)上記仮焼粉末混和物シートの厚みを5μm、4.
5μm、Ag、O粉末混和物シートの厚みを5μm、4
.5μmとしたものについて上記と同様に層積し、連続
圧縮成形した後焼成処理して4種の試料を作成し、これ
らを夫々実施例−2,3,4,5とした。
(v) The thickness of the calcined powder mixture sheet is 5 μm; 4.
5 μm, thickness of Ag, O powder mixture sheet 5 μm, 4
.. The samples having a thickness of 5 μm were laminated in the same manner as above, subjected to continuous compression molding, and then fired to prepare four types of samples, which were designated as Examples 2, 3, 4, and 5, respectively.

上記各試料について、SEMにより組成観察を行なうと
共に粉砕試料のXRD測定を行なった。
For each of the above samples, the composition was observed by SEM, and the ground sample was subjected to XRD measurement.

また、前記と同要領で、温度に対する抵抗変化、オンセ
ット温度、オフセット温度を調べ、臨界電流密度を測定
した。更に、表面X線回折ピークが下記式に基づきら配
向度(f値)を算出した。
In addition, in the same manner as above, resistance change with respect to temperature, onset temperature, and offset temperature were investigated, and critical current density was measured. Furthermore, the degree of orientation (f value) was calculated based on the surface X-ray diffraction peak based on the following formula.

f=(P−Po)/(1−Po) 式中 P(配向試料)=ΣI(OOQ)/(Σx(hku)+
Σ■(ooQ))P昧配胡生)=ΣI’(OOffi)
/ (Σx′(hku)+Σx′(oon))これらの
結果を第2表に示す。
f=(P-Po)/(1-Po) where P(oriented sample)=ΣI(OOQ)/(Σx(hku)+
Σ■(ooQ))
/ (Σx'(hku)+Σx'(oon)) These results are shown in Table 2.

(以下余白) 実施例3の試料は、いずれも上記同様SEM、XMAの
結果から、銀の一部が拡散し超電導体の粒界に存在して
いることがわかった。それらは超電導体粒子とのぬれ性
も良好であり、超電導体粒子を覆う状態であった。また
XRDの解析結果から、超電導体とAgのピークが混在
していることが観測され、これにより、Agが超電導体
層に固溶または置換していないことが推察された。
(The following is a blank space) As with the samples of Example 3, it was found from the SEM and XMA results as above that some of the silver was diffused and present in the grain boundaries of the superconductor. They also had good wettability with the superconductor particles and were in a state of covering the superconductor particles. Furthermore, from the XRD analysis results, it was observed that the superconductor and Ag peaks coexisted, and it was therefore inferred that Ag was not solidly dissolved or substituted in the superconductor layer.

また、室温での比抵抗がいずれも低く、これにより超電
導層がクエンチしても一時的補償が十分可能であること
が示唆される。
Furthermore, the specific resistances at room temperature are all low, which suggests that even if the superconducting layer is quenched, temporary compensation is sufficiently possible.

f値からいずれも配向性の高い組織を有していることが
理解される。臨界電流密度は、実施例3−2.3を除い
て極めて高く、優れた超電導特性を有することがわかる
。これは、上記配向性と関係し、試料調製時の圧縮作用
によって結晶の配向性が良くなり、これが電流密度を高
める原因となったもの考えられ1本実施例の特筆すべき
効果として位置付けることが出来る。実施例3−2.3
の臨界電流密度が低いのは、超電導層の層厚が薄い為に
、その超電導特性が十分に発現されなかった為と考えら
れる。
It is understood from the f value that all of them have highly oriented structures. It can be seen that the critical current density was extremely high except for Example 3-2.3, indicating that the samples had excellent superconducting properties. This is related to the above-mentioned orientation, and it is thought that the compressive action during sample preparation improved the orientation of the crystals, which caused the increase in current density, and can be ranked as a noteworthy effect of this example. I can do it. Example 3-2.3
The reason for the low critical current density is thought to be that the superconducting properties were not fully expressed due to the thin layer thickness of the superconducting layer.

尚、上記実施例では、安定化層としてAgを用いた例を
示したが、Au及びPtでも同様の結果が得られること
が本発明者によって確認されている。この場合、Au及
びPtには酸化物が存在しないのでこれらを直接使用し
た。また、Agは酸化物の方が化学的に安定で且つ安価
であるので経済的に有利であるが、Agをそのまま使用
することも除外するものではない。
In the above embodiment, an example was shown in which Ag was used as the stabilizing layer, but the inventor has confirmed that similar results can be obtained with Au and Pt. In this case, Au and Pt were used directly since they do not have oxides. Further, an oxide of Ag is more economically advantageous because it is chemically stable and cheaper, but the use of Ag as it is is not excluded.

(発明の効果) 取上の如く、本発明の超電導体配線基板は、超電導体層
と、常電導金属より成る安定化層とを焼結一体に積層し
たものであって、超電導体層が何等かの原因で一時的に
クエンチしても、積層効果によって電流の伝搬機能が維
持され、従って半導体用LSIの配線基板等に応用した
場合でも半導体に対する悪影響が回避され、誤動作発生
の懸念がなくなる。また、高集積化に伴う線幅の減少を
強いられても、安定化層の冷却効果により超電導体層の
発熱が抑えられ、超電導体層の本来の特性が維持される
(Effects of the Invention) As mentioned above, the superconductor wiring board of the present invention has a superconductor layer and a stabilizing layer made of a normal conductive metal laminated in a sintered unit, and the superconductor layer is Even if the current is temporarily quenched due to the above reasons, the current propagation function is maintained due to the stacking effect, and therefore, even when applied to semiconductor LSI wiring boards, etc., adverse effects on semiconductors are avoided and there is no fear of malfunction. Furthermore, even if the line width is forced to decrease due to higher integration, heat generation in the superconductor layer is suppressed by the cooling effect of the stabilizing layer, and the original characteristics of the superconductor layer are maintained.

このように特筆すべき効果を有する本発明は、超電導体
の応用実用化の展望を拓くに大きく寄与するものであり
、その有用性極めて大である。
The present invention, which has such remarkable effects, greatly contributes to opening up prospects for the practical application of superconductors, and its usefulness is extremely large.

−以上−-And more-

Claims (1)

【特許請求の範囲】[Claims] 1.酸化物超電導体層と、Ag、Au及びPtより選ば
れた安定化層とが一体的に積層されて成る酸化物超電導
体配線基板。
1. An oxide superconductor wiring board formed by integrally laminating an oxide superconductor layer and a stabilizing layer selected from Ag, Au, and Pt.
JP1027929A 1989-02-07 1989-02-07 Oxide superconductor wiring board Pending JPH02207589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027929A JPH02207589A (en) 1989-02-07 1989-02-07 Oxide superconductor wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027929A JPH02207589A (en) 1989-02-07 1989-02-07 Oxide superconductor wiring board

Publications (1)

Publication Number Publication Date
JPH02207589A true JPH02207589A (en) 1990-08-17

Family

ID=12234581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027929A Pending JPH02207589A (en) 1989-02-07 1989-02-07 Oxide superconductor wiring board

Country Status (1)

Country Link
JP (1) JPH02207589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562535A (en) * 1991-09-04 1993-03-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconductive member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289691A (en) * 1985-06-18 1986-12-19 松下電器産業株式会社 Metalized composition
JPS63177496A (en) * 1986-09-10 1988-07-21 エンゲルハード・コーポレーシヨン Metallized board and manufacture of the same
JPS63280488A (en) * 1987-05-12 1988-11-17 Toshiba Corp Circuit board
JPS63310197A (en) * 1987-06-12 1988-12-19 Toshiba Corp Forming method for superconducting wiring pattern
JPS6473792A (en) * 1987-09-16 1989-03-20 Hitachi Chemical Co Ltd Superconductive circuit plate
JPS6481292A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Superconducting wiring board and its manufacture
JPH0195587A (en) * 1987-10-08 1989-04-13 Asahi Glass Co Ltd Superconductor wiring board
JPH01107593A (en) * 1987-10-20 1989-04-25 Mitsubishi Electric Corp Superconductive ceramic wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289691A (en) * 1985-06-18 1986-12-19 松下電器産業株式会社 Metalized composition
JPS63177496A (en) * 1986-09-10 1988-07-21 エンゲルハード・コーポレーシヨン Metallized board and manufacture of the same
JPS63280488A (en) * 1987-05-12 1988-11-17 Toshiba Corp Circuit board
JPS63310197A (en) * 1987-06-12 1988-12-19 Toshiba Corp Forming method for superconducting wiring pattern
JPS6473792A (en) * 1987-09-16 1989-03-20 Hitachi Chemical Co Ltd Superconductive circuit plate
JPS6481292A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Superconducting wiring board and its manufacture
JPH0195587A (en) * 1987-10-08 1989-04-13 Asahi Glass Co Ltd Superconductor wiring board
JPH01107593A (en) * 1987-10-20 1989-04-25 Mitsubishi Electric Corp Superconductive ceramic wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562535A (en) * 1991-09-04 1993-03-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconductive member

Similar Documents

Publication Publication Date Title
US5767564A (en) Semiconductor device with a decoupling capacitor mounted thereon having a thermal expansion coefficient matched to the device
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
DE68928155T2 (en) Oxide superconductor and method for its production
EP1547989B1 (en) Piezoelectric porcelain composition, piezoelectric element, and method for production thereof
JPH02207589A (en) Oxide superconductor wiring board
EP0290271A2 (en) Superconducting circuit board and process of manufacturing it
JP3170431B2 (en) Alumina-mullite laminated structure and method for producing the same
JP3187089B2 (en) Oxide superconducting structure
US20230230768A1 (en) Multilayer electronic component
JP3071627B2 (en) Semiconductor device
JPS63293910A (en) Ceramic capacitor and manufacture thereof
JPH01186696A (en) Superconducting ceramic substrate
JPH038754A (en) Oxide superconductor composition and production thereof
Wang et al. Electrical conductivity and thermal expansion coefficient of internal phases occurring in multilayer ceramic structures
JPH03263392A (en) Superconducting thick-film circuit board and manufacture thereof
JPH042183A (en) Superconducting thick film circuit board and manufacture thereof
JPS61225711A (en) Conducting paste
JP2906530B2 (en) Dielectric porcelain composition and capacitor
JPS61107605A (en) Donductive paste
JP2906531B2 (en) Dielectric porcelain composition and capacitor
Ueyama et al. Low temperature synthesis of electrode films from silver-palladium alloy powders for multilayer ceramic devices
JPS59136938A (en) Material of semiconductor substrate
JPS61251561A (en) Dielectric ceramic composition and manufacture
JPH01238190A (en) Manufacture of superconductor thick film
JPH04276436A (en) Composite object-of-oxide-superconductive substance and metal, and its manufacture