JPH01186696A - Superconducting ceramic substrate - Google Patents

Superconducting ceramic substrate

Info

Publication number
JPH01186696A
JPH01186696A JP62310414A JP31041487A JPH01186696A JP H01186696 A JPH01186696 A JP H01186696A JP 62310414 A JP62310414 A JP 62310414A JP 31041487 A JP31041487 A JP 31041487A JP H01186696 A JPH01186696 A JP H01186696A
Authority
JP
Japan
Prior art keywords
superconducting ceramic
superconducting
substrate
ceramic substrate
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62310414A
Other languages
Japanese (ja)
Other versions
JPH0744323B2 (en
Inventor
Kiichi Yoshiara
喜市 吉新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62310414A priority Critical patent/JPH0744323B2/en
Publication of JPH01186696A publication Critical patent/JPH01186696A/en
Publication of JPH0744323B2 publication Critical patent/JPH0744323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To perform high speed signal transmission as well as microsignal transmission, by using a substrate which is equipped with an electrical element which is formed with superconducting ceramic materials having an oxygen deficiency type perovskite structure as well as with an insulation layer which is formed of insulation materials having the same composition components, yet having different composition ratios. CONSTITUTION:This substrate is equipped with an electrical element 1 and an insulation layer 2 and then, the electrical element 1 is formed of superconducting ceramic materials having an oxygen deficiency type perovskite structure and the insulation layer 2 is formed of insulation materials which have the principal components consisting of the same composition components but of different composition ratios and further, its insulation layer 2 is provided by coming into contact with the electrical element 1. As the insulation materials have the same composition components as those of the superconducting ceramic materials, the foregoing materials suppress the breakdown of superconducting structure which is caused by a reaction to the superconducting ceramic materials of the electrical element 1 when the reaction takes place in a process of burning. Thus, reflection is prevented and high speed signals wherein distortion is prevented from occurring are transmitted and accordingly microsignals may also be transmitted.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、扁速信号伝送、微小信号伝送可能で、発熱
の防止された超電導セラミック基板に関する。 〔従来の技術〕 従来のセラミック基板には、アルミナグリーンシート上
にW 、 Mo−Mn等の高融点導体ペーストを印刷し
湿潤水素雰囲気中で焼成した従来例Aがある。これは、
高融点金属のW 、 Mo−Mnを使用し、90%〜9
6%アルミナグリーンシート上に回路形成し、湿潤水素
雰囲気中で1500〜1600℃の温度で焼成する。こ
の従来例の利点は、グリーンシートの積層による信頼性
の高い多層化であり、多くの入出力端子を必要とするL
SI回路基板の小型化に利用される。一方、W 、 M
o−Mnは電気抵抗が高く配線の微細化には適さないた
め、実装密度を上げル事カできない。又、焼結したアル
ミナ基板上にAu 、 Ag 、 Ag −Pd 、 
Cu等の導体ペーストを印刷し大気中又は窒素雰囲気中
で焼成した従来例Bがあり、これは、焼結した96%ア
ルミナ基板に、Au 、Ag +Ag −Pd 、 C
uペーストを印刷し、大気中又は窒素雰囲気中で850
〜900℃の温度で焼成するものである。焼成温度が低
く抵抗体誘電体も使用できるため、焼成−印刷−焼成を
くり返す事により、導体・抵抗体・誘電体をもつ5〜6
層の多層ハイブリッド回路基板を作製する事ができる。 しかし、印刷多層のため多層化限界が低く、又2次元的
な配線の引き回わししかできないため、実装密度が上ら
ないという欠点がある。 従来例Bの欠点を補うものとして、ガラス−セラミック
複合系グリーンシート上にAu 、 Ag 、 Ag 
−Pd 、 Cu等の導体ペーストを印刷し大気中又は
湿潤窒素雰囲気中で焼成した従来例Cがあり、これは8
00〜1000℃で焼結する材料でグリーンシ、−トを
作り、 Au 、 Ag 、 Ag −Pd 、 Cu
ペーストをその上に印刷し積層後、大気中又は窒素雰囲
気中で焼成するものである。必要に応じて、抵抗の焼成
も可能でハイブリット化ができる。しかも、グリーンシ
ート積層のため、配線の三次元的引き回わしが可能で実
装密度を置くできる。又、セラミック層の誘電率が5〜
7とアルミナに比べて低く高速信号伝送に適している。 しかし、従来例A−Cは、いづれも有限の抵抗値を持つ
導体を配線材料に使用するため、高速動作素子[GaA
s )や超電導素子を搭載した場合、基板での信号体m
遅延、信号の反射、伝送損失等が大きな問題となる。 そこで、電波新聞(昭和62年5月12日付〕には酸化
物系超電導材料(イツトリウム、バリウム。 銅、酸素〕をペースト化し、アルミナ製FGA(Fin
e Grained Alumina)基板に印刷、焼
成し超電導セラミック基板を形成する従来例りがある。 これは、Y −Ba −Cu−0系からなる超電導セラ
ミック粉末を有機バインダーと混練してペースト状にし
一アルミナ基板上に焼成して超電導配線とし、上記の問
題を解決できるものである。 〔発明が解決しようとする問題点〕 しかし、例えばY −Ba −Cu −0系の超電導材
料を、通常のアルミナ基板上で焼成すると、 Cu 、
 BaとAllが相互拡散し超電導構造が容易に破壊さ
れ、超電導層が半導体又は絶縁体に転移してしまったり
、微細配線ができないという問題点がある二従来例りに
用いた表面平滑性の高いFGA基板の場合は、基板上に
超電導層を形成することができるが、基板と超電導層の
組成が異なるため、基板と超電導層との反応は生じてい
ると考えられる。 又5rTi03基板、安定化ジルコニア基板およびサフ
ァイヤ基板なども一般的に反応性が高い。 この発明は上記のような問題点を解消するためなされた
もので、■反射が防止されひずみの防止された高速信号
の伝播が可能となる。■微小信号の伝播が可能となる。 ■電力損失が防止され電源ラインの配線密度が上げられ
る。■導体と基板との反応が少なく微細配線が可能であ
る。等の利点を持つ超電導セラミック基板を得る事を目
的とする。 〔問題点を解決するための手段〕 この発明の超電導セラミック基板は、酸素欠損型ペロブ
スカイト構造を有する超電導セラミック材料で形成され
た電気要素、および上記超電導セラミック材料と同じ組
成成分で、組成比が異なる材料を主成分とする絶縁材料
で形成され、上記電気要素に接して設けられている絶縁
層を備えたものである。 〔作用〕 この発明における絶縁材料は、超電導セラミック材料の
組成成分と同じであるため、焼成で生じる電気要素の超
電導セラミック材料との反応による、超電導構造の破壊
を抑える。すなわち、電気素子の超電導セラミック材料
から拡散により消失する成分を基板中に多量に含ませ、
基板からの拡散で補い超電導構造を保つものである。 なお、基板と超電導層の組成成分が同じだから、従来と
同程度に反応が生じた場合、超電導層の組成変化が従来
より少ないのは明らかである。 〔実施例〕 実施例1 第1図は、この発明の一実施例の超電導セラミック基板
の断面図を示す。図において、(1)は例えばYBa2
 Cua O7−δ
[Industrial Application Field] The present invention relates to a superconducting ceramic substrate that is capable of flat signal transmission and minute signal transmission and that prevents heat generation. [Prior Art] As a conventional ceramic substrate, there is a conventional example A in which a high melting point conductor paste such as W, Mo--Mn, etc. is printed on an alumina green sheet and fired in a humid hydrogen atmosphere. this is,
Using high melting point metals W, Mo-Mn, 90% to 9
A circuit is formed on a 6% alumina green sheet and fired at a temperature of 1500 to 1600°C in a wet hydrogen atmosphere. The advantage of this conventional example is that it is highly reliable multi-layered by laminating green sheets, and L
Used for miniaturization of SI circuit boards. On the other hand, W, M
Since o-Mn has a high electrical resistance and is not suitable for miniaturizing wiring, it is impossible to increase the packaging density. In addition, Au, Ag, Ag-Pd,
There is a conventional example B in which a conductive paste such as Cu is printed and fired in the air or nitrogen atmosphere.
Print the u paste and heat it for 850 minutes in air or nitrogen atmosphere.
It is fired at a temperature of ~900°C. Because the firing temperature is low and resistors and dielectrics can also be used, by repeating firing, printing, and firing, 5 to 6
It is possible to fabricate a multilayer hybrid circuit board. However, since it is printed with multiple layers, the multilayer limit is low, and since wiring can only be routed two-dimensionally, the packaging density cannot be increased. To compensate for the drawbacks of Conventional Example B, Au, Ag, and Ag were added on a glass-ceramic composite green sheet.
- There is a conventional example C in which a conductive paste such as Pd or Cu is printed and fired in the air or a humid nitrogen atmosphere.
Green sheets are made from materials that sinter at temperatures of 00 to 1000°C, and are used to produce green sheets such as Au, Ag, Ag-Pd, and Cu.
After printing the paste and laminating the paste, it is fired in the air or in a nitrogen atmosphere. If necessary, the resistor can also be fired to create a hybrid. Furthermore, because the green sheets are laminated, wiring can be routed three-dimensionally and the packaging density can be increased. In addition, the dielectric constant of the ceramic layer is 5~
7 and is suitable for high-speed signal transmission. However, since conventional examples A to C all use conductors with a finite resistance value as wiring materials, high-speed operation elements [GaA
s) or a superconducting element, the signal body m on the board
Delay, signal reflection, transmission loss, etc. become major problems. Therefore, the Dempa Shimbun (dated May 12, 1986) reported that oxide-based superconducting materials (yttrium, barium, copper, oxygen) were made into a paste, and alumina FGA (Fin) was made.
There is a conventional example in which a superconducting ceramic substrate is formed by printing and firing a grained alumina (grained alumina) substrate. This method solves the above problems by kneading a Y-Ba-Cu-0 based superconducting ceramic powder with an organic binder to form a paste and baking it on an alumina substrate to form a superconducting wiring. [Problems to be solved by the invention] However, when a Y-Ba-Cu-0 based superconducting material is fired on a normal alumina substrate, Cu,
There are two problems: the superconducting structure is easily destroyed due to interdiffusion of Ba and All, the superconducting layer is transferred to a semiconductor or insulator, and fine wiring cannot be formed. In the case of an FGA substrate, a superconducting layer can be formed on the substrate, but since the compositions of the substrate and the superconducting layer are different, it is thought that a reaction between the substrate and the superconducting layer occurs. Furthermore, 5rTi03 substrates, stabilized zirconia substrates, sapphire substrates, etc. are also generally highly reactive. This invention was made to solve the above-mentioned problems. 1. It is possible to prevent reflections and to propagate high-speed signals without distortion. ■Enables the propagation of minute signals. ■Power loss can be prevented and wiring density of power lines can be increased. ■There is less reaction between the conductor and the substrate, allowing for fine wiring. The purpose is to obtain a superconducting ceramic substrate that has the following advantages. [Means for Solving the Problems] A superconducting ceramic substrate of the present invention includes an electric element formed of a superconducting ceramic material having an oxygen-deficient perovskite structure, and an electric element having the same composition as the superconducting ceramic material but having a different composition ratio. The electrical element is made of an insulating material whose main component is an insulating material, and includes an insulating layer provided in contact with the electrical element. [Operation] Since the insulating material in this invention has the same composition as the superconducting ceramic material, it suppresses destruction of the superconducting structure due to the reaction of the electric element with the superconducting ceramic material during firing. That is, the substrate contains a large amount of components that disappear by diffusion from the superconducting ceramic material of the electric element,
This is supplemented by diffusion from the substrate and maintains the superconducting structure. Note that since the compositional components of the substrate and the superconducting layer are the same, it is clear that when a reaction occurs to the same extent as in the conventional case, the change in the composition of the superconducting layer is smaller than in the conventional case. [Examples] Example 1 FIG. 1 shows a sectional view of a superconducting ceramic substrate according to an example of the present invention. In the figure, (1) is, for example, YBa2
Cua O7-δ

【0くδく7】 の酸素欠損型ペロ
ブスカイト構造を有する超電導セラミック材料で形成さ
れた電気要素で導線、端子および能動素子などがあり、
(2)は例えばY2 BaCu0sを主成分とする上記
超電導セラミック材料(1)と同じ組成成分で組成比が
異なる材料を主成分とする絶縁材料で形成された絶縁層
で、図は絶縁層が基板、である場合を示す。 第2図は、上記この発明の一実施例の超電導セラミック
基板を得るための製造工程図である。即ち、超電導セラ
ミック基板は、基板と超電導ペーストを別々に作製する
のである。 即ち、第2図に示すように、超電導ペーストは、BaC
O31Y2O3、CuOを原料とし、表1に示す組成で
乾式混合した後、溶剤(アセトン)を加えボールミルで
、24時間混合する。その後、溶剤を完全に乾燥させ、
950℃で16時間仮焼し、粉砕して平均粒径が数μm
の粉体とし、有機結合剤、有機ビークルを加え、混練し
てペーストとする。 また、基板は表2に示す組成で乾式混合し、溶剤(アセ
トン)を加えボールミルで24時間混合する。 表1超電導セラミック材料配合組成 りaCOs    52.9  wt%Y2O315,
1wt% CuO3ZOwt% その後、溶剤を完全に乾燥させ、1200℃で16時間
仮焼し、粉砕して平均粒径が数μmの粉体とし、焼結助
剤、有機結合剤、溶剤等を加え再びボールミル混合し、
スラリー化させ、ドクターブレード法により、厚さ0.
3〜0.4 mmのグリーンシートを作製する。このグ
リーンシートを数枚積層し、50mmx 50mm X
 1mm  の大きさの基板に切断する。 その基板を大気中で1100℃以上で焼結させて、Yz
BaCuOsの結晶を析出させる。この段階で、基板を
X線回折にかけ、析出している結晶をみると、Y2Ba
CuO5が80%程で残りは焼結助剤とその他の結晶構
造のものになる。 その後、前もって作製していた超電導ペーストをスクリ
ーン印刷し、900〜950℃の温度で焼きつけ、この
発明の一実施例の超電導セラミック基板を作製する。 表2基板用セラミックス配合組成 りaCOa    39.3  wt%Y2O344,
9wt% CuO15,8wt% 第3図に上記のようにして得られたこの発明の一実施例
の超電導セラミック基板の温度口0による電気抵抗(Ω
cm) の変化を示す特性図を示し、図において、横軸
は温度(K)を縦軸は電気抵抗(Ωcm)を示す。図か
ら90にで電気抵抗が下がり始め、84にでゼロになり
、超電導状態に転移する事がわかる。 実施例2 表3に示す組成に従って原料配合する以外は、実施例1
と同じ製造方法で、グリーンシートを作製し焼成して基
板を得る。この基板上に、超電導セラミックペーストを
印刷し、焼成しこの発明の他の実施例の超電導セラミッ
ク基板を得た。このものも、第3図に示す温度−抵抗図
と同様の特性を示し、液体窒素温度(77K)以上で超
電導状態になる。しかし、この場合、電気絶縁性が10
7〜1011Ωam  程度となった。 表3 基板用セラミックス配合組成 りaCO350,3wt% Cu0    30.5  wt% Y2O37,2wt% LaO3,4wt% BaF      8.6  wt% 実施例3 第4図は、この発明の他の実施例の超電導セラミック基
板の断面図を示す。図において、(1)は例えばYBa
2Cu30y−δ の酸素欠損型ペロブスカイト構造を
有する超電導セラミック材料で形成さねた電気要素で導
線、端子および能動素子などがあり、(2)は例えばY
2BaCuO5を主成分とする上記超電導セラミック材
料(1)と同じ組成成分で組成比が異なる絶縁材料で形
成した絶縁層、(3)は絶縁層とは異なる絶縁材料で形
成された基板である。 第5図は、この発明の他の実施例の多層の超電導セラミ
ック基板を得るための製造工程図である。 即ち、超電導セラミック多層基板は、基板に電気要素と
絶縁層を交互に形成し作製するものである。 即ち、第5図にへびように、超電導セラミック材料(Y
Ba2 Cu307−δ)とセラミック絶縁材料(Y。 BaCu0s)をペーストとし、基板上に印刷−焼成を
必要回数くり返し、この発明の他の実施例の多層の超電
導セラミック基板を作製した。 ここで、超電導ペーストおよび絶縁ペース゛トは、第2
図のペースト化方法に示すように、B a CO3、(
又はBaO) 、 Y2O3* CuOを原料とし、表
41表5に示す組成で乾式混合した後、溶剤(エタノー
ル、アセトン、トルエン等〕を加えボールミルで、lO
〜20時間混合する。その後、溶剤を完全に乾燥させ、
超電導材料は、970℃で24時間仮焼し、絶縁材料は
、1050℃で16時間仮焼して、それぞれ超電導相(
YBa2 Cu307−δ〕 と絶縁層(YzBaCu
Os)の単相セラミックスを作製する。ただし、超電導
相は、結晶系が斜方晶で、δが0゜6以下でないと超電
導特性を示さないため、粉末X線回折法等により斜方晶
系の単相である事を確認する必要がある。 又、仮焼後の粉末の電気抵抗を室温で測定し、数十mΩ
・cm  程度である事も超電導相がある確認になる。 次に、上記により仮焼した超電導セラミック材料と絶縁
材料を粉砕し、平均粒径が1μm〜10μmの微粉体と
し、これに有機結合剤にトロセルロース、イソブチルメ
タアクリレート、メチルメタアクリレート等〕、有機溶
剤(エタノール、トルエン、ブチルカルピトールアセテ
ート、テレピネオール等)と分散剤を加え、数時間混練
して超電導セラミックペーストと絶縁ペーストとした。 超電導セラミック多層基板は、第5図の製造工程図に従
い、基板上に超電導セラミックペーストで配線回路を印
刷し、乾燥後、800℃〜900℃の温度で焼成する。 冷却後、この発明の他の実施例の超電導セラミック基板
の斜視図の第6図に示すように、超電導セラミック材料
で形成された第1電気要素(1)上に絶縁ペーストを印
刷し、乾燥後、700℃〜1050℃の温度で焼成し、
絶縁層(2)を形成する。その後、超電導セラミックペ
ーストで、始めの@1電気要素(1)に交差する超電導
セラミック材料で形成された第2電気要素(υを印刷し
、800℃〜900℃の温度で焼成し、この発明の他の
実施例の多層の超電導セラミック基板とした。 表4 超電導セラミック材料配合組成 りaC03521)  wt% y2o、      15.I  wt%CuO32,
9wt% 表5セラミック絶縁材料配合組成 りaCO339,3wt% Yz03     449  wt% CuO15,8wt% 第7図に上記のようにして得られたこの発明の他の実施
例の超電導セラミック基板の温度(K)による電気抵抗
(Ωcm)の変化を示す特性図を示す。 図において、横軸は温度(′K〕を縦軸は電気抵抗(Ω
cm)を表わす。測定は、@6図における第2を気要素
(υで行なった。図から、電気抵抗は、0点(90’K
)付近から急激に下がり始め、6点[79’K)で完全
にゼロになり、超電導状態に転移した事がわかる。 実施例4 チタン酸ストロンチウム単結晶基板、マグネシア基板、
イツトリウム安定化ジルコニア基板等に実施例1と同様
の超電導材料で形成さねた電気要素をスパッタ法・蒸着
法等により薄膜として形成する。この場合も、第5図の
超電導セラミック多層基板の製造工程図に従い、電気要
素を形成後、600℃から900℃で熱処理し、その後
真空チャンバーから試料を取り出し、レジストを試料に
コートし、写真製版法により望みの配線パターンを基板
上に形成する。次に、絶縁層を形成するため、試料′を
基び真空チャンバー内へ戻し、ターゲット材料又は蒸着
材料を絶縁材料(Y2 BaCu0s)に換えて、絶縁
層の形成を行なう。絶縁層形成後の熱処理は、引き続き
絶縁層上に超電導層を形成するために必要となる。熱処
理は、600℃から900℃が望ましい。絶縁パターン
も超電導配線パ々−ン七同様に写真製版法によりパ々−
ン形成を行なう。 以上の電気要素形成−絶縁層形成のプロセスを必要回数
くり返し、この発明の他の実施例の多層の超電導セラミ
ック基板を得た。電気抵抗の温度変化は、第7図に示し
た厚膜の場合に比べ、ゼロ抵抗になる温度が下がった。 実施例5 実施例3と同様に、基板上にYBa2Cu307−δの
超電導セラミック配線とY2 BaCu0sの絶縁層を
多層構造で形成し、実装密度の高い超電導セラミック多
層基板を作製する。さらに、この発明のさらに他の実施
例の超電導セラミック基板の断面図の第8図に示すよう
に、この基板の最上層を絶縁層でコートし、焼結して緻
密化する事により、超電導特性の経時変化を抑える事の
できるこの発明のさらに他の実施例の超電導セラミック
基板を得る。 経時変化は、主に空気中の水分等により超電導相である
YBa2Cu30t−δが分解し、CuOe Y2Ba
CuO5等になるためであり、臨界電流Jcも1ケ月〜
2ケ月で1/10 に減少したり、臨界温度Tcも2〜
5℃程低下するなどの経時変化を生じる。 しかし、超電導配線の周囲をY −Ba −Cu −0
系の絶縁材料で囲み、シール性良く焼結させると経時変
化は生じない。 なお、この発明の実施例の超電導セラミック基板を線材
に適用することができる。即ち、第9図はこの発明の実
施例の超電導セラミック基板を線材に適用した超電導セ
ラミック線材の部分断面斜視図であり、(4)はAg層
である。即ち、超電導セラミック材料で形成された電気
要素(1)を焼結し、その後電気要素の回りに、Y2B
aCuO5絶1R層を形成し、その外側にAgMを構成
した超電導セラミック線材である。これも、超電導セラ
ミック材料で形成された電気要素(υを絶M層(2)と
Ag(4)でシールして、雰囲気をしゃ断するため、上
記実施例5と同様雰囲気による劣化が少なく、超電導特
性が長期間、安定的に得られる。 なお、上記実施例では酸素欠損型ペロブスカイト構造を
有する超電導セラミック材料として、Y −Ba −C
u −0系の超電導セラミック材料を主体に実施例を説
明してきたが、Y −Ba −Cu −0系のYを他の
希土類元素、例えばLa 、 Sm 、 Eu 、 G
d 、 Dy。 Ho 、 Er 、 Tm 、 yb 、 Luで置換
した系や、0を他の元素、例えばF、C1で置換した系
の超電導セラミックス材料を使用しても、所期目的を達
成することができる。 又、上記実施例では、LaOおよびBaF等の焼結助剤
を添加した絶縁材料の場合を示したが、この場合、超電
導セラミック基板の特性は若干低下するが、主成分が上
記条件を満足する限り、所期目的を達成することができ
る。 〔発明の効果〕 以上説明したとおり、この発明は、酸素欠損型ペロブス
カイト構造を有する超電導セラミック材料で形成された
電気要素、および上記超電導セラミック材料と同じ組成
成分で、組成比が異なる材料を主成分とする絶縁材料で
形成され、上記電気要素に接して設けられている絶縁層
を備えたものを用いることにより、高速信号伝送、微小
信号伝送が可能で、発熱が防止さjた超電導セラミック
基板を得ることができる。 又、上記電気要素と絶縁層を交互に積層して、多層構造
とすれば、扁密度実装が可能な超電導セラミック基板を
得ることができる。
Electric elements such as conductive wires, terminals, and active elements are made of superconducting ceramic materials with an oxygen-deficient perovskite structure.
(2) is an insulating layer formed of an insulating material whose main component is a material having the same composition as the above-mentioned superconducting ceramic material (1) whose main component is Y2 BaCu0s, but with a different composition ratio. , indicates the case. FIG. 2 is a manufacturing process diagram for obtaining a superconducting ceramic substrate according to an embodiment of the present invention. That is, the superconducting ceramic substrate is produced by separately manufacturing the substrate and the superconducting paste. That is, as shown in FIG. 2, the superconducting paste contains BaC
Using O31Y2O3 and CuO as raw materials, they were dry mixed in the composition shown in Table 1, and then a solvent (acetone) was added and mixed in a ball mill for 24 hours. Then, dry the solvent completely and
Calcined at 950℃ for 16 hours and crushed to an average particle size of several μm.
Make a powder, add an organic binder and an organic vehicle, and knead to make a paste. Further, the substrate was dry mixed with the composition shown in Table 2, a solvent (acetone) was added, and the mixture was mixed in a ball mill for 24 hours. Table 1 Superconducting ceramic material composition aCOs 52.9 wt% Y2O315,
1wt% CuO3ZOwt% After that, the solvent was completely dried, calcined at 1200°C for 16 hours, pulverized to a powder with an average particle size of several μm, sintering aid, organic binder, solvent, etc. Ball mill mixing;
The slurry was made into a slurry, and the thickness was reduced to 0.
A green sheet with a thickness of 3 to 0.4 mm is prepared. Stack several of these green sheets and make a 50mm x 50mm x
Cut into 1 mm size substrates. The substrate is sintered in the atmosphere at a temperature of 1100°C or higher, and Yz
BaCuOs crystals are precipitated. At this stage, the substrate was subjected to X-ray diffraction and the precipitated crystals were found to be Y2Ba.
CuO5 accounts for about 80%, and the rest consists of sintering aids and other crystal structures. Thereafter, the previously prepared superconducting paste is screen printed and baked at a temperature of 900 to 950°C to produce a superconducting ceramic substrate according to an embodiment of the present invention. Table 2 Ceramic composition for substrate aCOa 39.3 wt% Y2O344,
9wt% CuO15.8wt% Figure 3 shows the electrical resistance (Ω
The graph shows a characteristic diagram showing the change in cm), in which the horizontal axis shows temperature (K) and the vertical axis shows electrical resistance (Ωcm). From the figure, it can be seen that the electrical resistance begins to decrease at 90, becomes zero at 84, and transitions to a superconducting state. Example 2 Example 1 except that the raw materials were blended according to the composition shown in Table 3.
Using the same manufacturing method as above, a green sheet is produced and fired to obtain a substrate. A superconducting ceramic paste was printed on this substrate and fired to obtain a superconducting ceramic substrate according to another embodiment of the present invention. This material also exhibits characteristics similar to the temperature-resistance diagram shown in FIG. 3, and becomes superconducting at temperatures above the liquid nitrogen temperature (77 K). However, in this case, the electrical insulation is 10
It was about 7 to 1011 Ωam. Table 3 Ceramic composition for substrate aCO350,3wt% Cu0 30.5wt% Y2O37,2wt% LaO3,4wt% BaF 8.6wt% Example 3 Figure 4 shows a superconducting ceramic according to another example of the present invention. A cross-sectional view of the substrate is shown. In the figure, (1) is, for example, YBa
Electric elements such as conductors, terminals, and active elements are made of a superconducting ceramic material having an oxygen-deficient perovskite structure of 2Cu30y-δ.
The insulating layer (3) is formed of an insulating material having the same composition as the superconducting ceramic material (1) with a different composition ratio as the superconducting ceramic material (1) mainly composed of 2BaCuO5, and the substrate (3) is a substrate formed of an insulating material different from the insulating layer. FIG. 5 is a manufacturing process diagram for obtaining a multilayer superconducting ceramic substrate according to another embodiment of the present invention. That is, a superconducting ceramic multilayer substrate is produced by alternately forming electrical elements and insulating layers on a substrate. That is, as shown in Fig. 5, superconducting ceramic material (Y
A multilayer superconducting ceramic substrate according to another embodiment of the present invention was prepared by making a paste of Ba2Cu307-δ) and a ceramic insulating material (Y. BaCu0s), and repeating printing and firing on the substrate as many times as necessary. Here, the superconducting paste and the insulating paste are
As shown in the pasting method in the figure, B a CO3, (
Or BaO), Y2O3* CuO was used as a raw material, and after dry mixing with the composition shown in Table 41 and Table 5, a solvent (ethanol, acetone, toluene, etc.) was added and a ball mill was used to reduce lO
Mix for ~20 hours. Then, dry the solvent completely and
The superconducting material is calcined at 970°C for 24 hours, and the insulating material is calcined at 1050°C for 16 hours to form the superconducting phase (
YBa2 Cu307-δ] and an insulating layer (YzBaCu
Os) single-phase ceramics are produced. However, the superconducting phase has an orthorhombic crystal system and does not exhibit superconducting properties unless δ is 0°6 or less, so it is necessary to confirm that it is an orthorhombic single phase using powder X-ray diffraction, etc. There is. In addition, the electrical resistance of the powder after calcination was measured at room temperature, and it was found to be several tens of mΩ.
・The fact that it is on the order of cm also confirms the existence of a superconducting phase. Next, the superconducting ceramic material and insulating material calcined as described above are crushed to form a fine powder with an average particle size of 1 μm to 10 μm, and an organic binder such as trocellulose, isobutyl methacrylate, methyl methacrylate, etc. A solvent (ethanol, toluene, butylcarpitol acetate, terpineol, etc.) and a dispersant were added and kneaded for several hours to form a superconducting ceramic paste and an insulating paste. A superconducting ceramic multilayer board is produced by printing a wiring circuit on a board using a superconducting ceramic paste according to the manufacturing process diagram of FIG. 5, drying it, and then firing it at a temperature of 800°C to 900°C. After cooling, an insulating paste is printed on the first electric element (1) made of superconducting ceramic material, as shown in FIG. 6 of the perspective view of a superconducting ceramic substrate according to another embodiment of the present invention, and after drying , fired at a temperature of 700°C to 1050°C,
Form an insulating layer (2). Then, with superconducting ceramic paste, print a second electric element (υ) formed of superconducting ceramic material intersecting the first @1 electric element (1) and firing at a temperature of 800 °C to 900 °C, A multilayer superconducting ceramic substrate of another example was used. Table 4 Superconducting ceramic material composition aC03521) wt% y2o, 15. I wt%CuO32,
9wt% Table 5 Ceramic insulating material composition aCO339.3wt% Yz03 449 wt% CuO15.8wt% Figure 7 shows the temperature (K) of the superconducting ceramic substrate of another example of the present invention obtained as described above. A characteristic diagram showing changes in electrical resistance (Ωcm) due to In the figure, the horizontal axis is temperature ('K) and the vertical axis is electrical resistance (Ω
cm). The measurement was carried out using the air element (υ) for the second part in Figure @6. From the figure, the electrical resistance is at the 0 point (90'
) It begins to drop rapidly from around ) and completely reaches zero at point 6 [79'K], indicating that it has transitioned to a superconducting state. Example 4 Strontium titanate single crystal substrate, magnesia substrate,
An electrical element made of the same superconducting material as in Example 1 is formed as a thin film on a yttrium-stabilized zirconia substrate or the like by sputtering, vapor deposition, or the like. In this case as well, according to the manufacturing process diagram of the superconducting ceramic multilayer substrate shown in Fig. 5, after forming the electrical elements, heat treatment is performed at 600 to 900°C, and then the sample is taken out from the vacuum chamber, a resist is coated on the sample, and photolithography is performed. A desired wiring pattern is formed on the substrate by a method. Next, in order to form an insulating layer, the sample' is returned to the vacuum chamber, and the target material or vapor deposition material is replaced with an insulating material (Y2 BaCu0s) to form an insulating layer. Heat treatment after forming the insulating layer is necessary to subsequently form a superconducting layer on the insulating layer. The heat treatment is preferably performed at 600°C to 900°C. The insulation pattern is also patterned using photolithography, similar to the superconducting wiring pattern 7.
formation of the tube. The above process of forming electric elements and forming insulating layers was repeated as many times as necessary to obtain a multilayer superconducting ceramic substrate according to another embodiment of the present invention. Regarding the temperature change in electrical resistance, the temperature at which resistance reaches zero was lower than in the case of the thick film shown in FIG. Example 5 As in Example 3, a superconducting ceramic wiring of YBa2Cu307-δ and an insulating layer of Y2 BaCu0s are formed in a multilayer structure on a substrate to produce a superconducting ceramic multilayer substrate with high packaging density. Furthermore, as shown in FIG. 8, which is a cross-sectional view of a superconducting ceramic substrate according to still another embodiment of the present invention, the uppermost layer of this substrate is coated with an insulating layer and sintered to make it denser. A superconducting ceramic substrate according to yet another embodiment of the present invention is obtained, which is capable of suppressing changes over time. The change over time is mainly due to the decomposition of superconducting phase YBa2Cu30t-δ due to moisture in the air, etc., and CuOe Y2Ba
This is because it becomes CuO5, etc., and the critical current Jc is also 1 month ~
It decreased to 1/10 in 2 months, and the critical temperature Tc also decreased by 2~
Changes occur over time, such as a drop in temperature by about 5°C. However, the area around the superconducting wiring is Y -Ba -Cu -0
If it is surrounded by a type of insulating material and sintered with good sealing properties, no deterioration will occur over time. Note that the superconducting ceramic substrate of the embodiment of this invention can be applied to a wire. That is, FIG. 9 is a partial cross-sectional perspective view of a superconducting ceramic wire in which the superconducting ceramic substrate of the embodiment of the present invention is applied to the wire, and (4) is an Ag layer. That is, an electric element (1) made of superconducting ceramic material is sintered, and then around the electric element Y2B
This is a superconducting ceramic wire in which an aCuO5 1R layer is formed and AgM is formed on the outside thereof. In this case, the electric element (υ) made of superconducting ceramic material is sealed with the absolute M layer (2) and Ag (4) to cut off the atmosphere, so there is little deterioration due to the atmosphere as in Example 5 above, and the superconducting The characteristics can be stably obtained over a long period of time. In the above examples, Y-Ba-C is used as the superconducting ceramic material having an oxygen-deficient perovskite structure.
Although embodiments have been mainly explained using u-0 series superconducting ceramic materials, Y-Ba-Cu-0 series Y may be substituted with other rare earth elements such as La, Sm, Eu, and G.
d, Dy. The desired purpose can also be achieved using superconducting ceramic materials in which Ho, Er, Tm, yb, or Lu are substituted, or in which 0 is substituted with other elements, such as F or C1. Further, in the above example, the case of an insulating material to which sintering aids such as LaO and BaF were added was shown, but in this case, the characteristics of the superconducting ceramic substrate are slightly degraded, but the main component satisfies the above conditions. As long as the intended purpose can be achieved. [Effects of the Invention] As explained above, the present invention provides an electric element formed of a superconducting ceramic material having an oxygen-deficient perovskite structure, and an electric element made of a material having the same composition as the superconducting ceramic material but having a different composition ratio. By using a superconducting ceramic substrate made of an insulating material with an insulating layer provided in contact with the electric element, high-speed signal transmission and minute signal transmission are possible, and heat generation is prevented. Obtainable. Furthermore, by alternately laminating the electrical elements and insulating layers to form a multilayer structure, it is possible to obtain a superconducting ceramic substrate that can be mounted in close density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の超電導セラミック基板の
断面図、第2図はこの発明の一実施例の超電導セラミッ
ク基板を得るための製造工程図、第3図はこの発明の一
実施例の超電導セラミック基板の基板温度(K〕による
電気抵抗(9cm)変化を示す特性図、第4図はこの発
明の他の実施例の超電導セラミック基板の断面図、第5
図はこの発明の他の実施例の超電導セラミック基板を得
るための製造工程図、第6図はこの発明の他の実施例の
超電導セラミック基板の斜視図、第7図はこの発明の他
の実施例の超電導セラミック基板の基板温度(′K〕に
よる電気抵抗(9cm)変化を示す特性図、第8図はこ
の発明のさらに他の実施例の超電導セラミック基板の断
面図、第9図はこの発明の実施例の超電導セラミック基
板を線材に適用した超電導セラミック線材の部分断面斜
視図である。 図において、(υは電気要素、(2)は絶縁層である。 なお、缶図中同−符号は同−又は相当部分を示す。
FIG. 1 is a sectional view of a superconducting ceramic substrate according to an embodiment of the present invention, FIG. 2 is a manufacturing process diagram for obtaining a superconducting ceramic substrate according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a cross-sectional view of a superconducting ceramic substrate according to another embodiment of the present invention, and FIG.
The figure is a manufacturing process diagram for obtaining a superconducting ceramic substrate according to another embodiment of this invention, FIG. 6 is a perspective view of a superconducting ceramic substrate according to another embodiment of this invention, and FIG. 7 is another embodiment of this invention. A characteristic diagram showing the change in electrical resistance (9 cm) due to substrate temperature ('K) of the superconducting ceramic substrate of the example, FIG. 8 is a cross-sectional view of a superconducting ceramic substrate of still another embodiment of the present invention, and FIG. 9 is the present invention. It is a partial cross-sectional perspective view of a superconducting ceramic wire in which the superconducting ceramic substrate of the embodiment is applied to the wire. In the figure, (υ is an electric element, and (2) is an insulating layer. In addition, the same symbol in the can diagram is Indicates the same or equivalent part.

Claims (5)

【特許請求の範囲】[Claims] (1)酸素欠損型ペロブスカイト構造を有する超電導セ
ラミック材料で形成された電気要素、および上記超電導
セラミック材料と同じ組成成分で、組成比が異なる材料
を主成分とする絶縁材料で形成され、上記電気要素に接
して設けられている絶縁層を備えた超電導セラミック基
板。
(1) An electric element formed of a superconducting ceramic material having an oxygen-deficient perovskite structure, and an electric element formed of an insulating material whose main component is a material having the same composition as the superconducting ceramic material but with a different composition ratio, and A superconducting ceramic substrate with an insulating layer provided in contact with.
(2)絶縁層は基板である特許請求の範囲第1項記載の
超電導セラミック基板。
(2) The superconducting ceramic substrate according to claim 1, wherein the insulating layer is a substrate.
(3)電気要素と絶縁層が交互に積層されている特許請
求の範囲第1項又は第2項記載の超電導セラミック基板
(3) A superconducting ceramic substrate according to claim 1 or 2, in which electrical elements and insulating layers are alternately laminated.
(4)積層した最外層が絶縁層である特許請求の範囲第
1項ないし第3項の何れかに記載の超電導セラミック基
板。
(4) The superconducting ceramic substrate according to any one of claims 1 to 3, wherein the outermost laminated layer is an insulating layer.
(5)絶縁材料は、焼結助剤を含有する特許請求の範囲
第1項ないし第4項の何れかに記載の超電導セラミック
基板。
(5) The superconducting ceramic substrate according to any one of claims 1 to 4, wherein the insulating material contains a sintering aid.
JP62310414A 1987-09-08 1987-12-07 Superconducting ceramic substrate Expired - Lifetime JPH0744323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310414A JPH0744323B2 (en) 1987-09-08 1987-12-07 Superconducting ceramic substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-224549 1987-09-08
JP22454987 1987-09-08
JP62310414A JPH0744323B2 (en) 1987-09-08 1987-12-07 Superconducting ceramic substrate

Publications (2)

Publication Number Publication Date
JPH01186696A true JPH01186696A (en) 1989-07-26
JPH0744323B2 JPH0744323B2 (en) 1995-05-15

Family

ID=26526121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310414A Expired - Lifetime JPH0744323B2 (en) 1987-09-08 1987-12-07 Superconducting ceramic substrate

Country Status (1)

Country Link
JP (1) JPH0744323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489493A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd Formation of superconductive film pattern
JPH0240992A (en) * 1988-08-01 1990-02-09 Mitsubishi Metal Corp Structure of superconductor wiring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021100398A1 (en) 2021-01-12 2022-07-14 Airbus Defence and Space GmbH Printed circuit board for the transmission of electrical energy and for signal transmission, and a system with such a printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489493A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd Formation of superconductive film pattern
JPH0240992A (en) * 1988-08-01 1990-02-09 Mitsubishi Metal Corp Structure of superconductor wiring

Also Published As

Publication number Publication date
JPH0744323B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
EP0794542B1 (en) Dielectric ceramic and monolithic ceramic electronic part using the same
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
JP3223199B2 (en) Method of manufacturing multilayer ceramic component and multilayer ceramic component
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JPH11273986A (en) Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
CA2345764C (en) Capacitance-coupled high dielectric constant embedded capacitors
JP3146967B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP2858073B2 (en) Multilayer ceramic parts
JP3523280B2 (en) Manufacturing method of multilayer ceramic parts
JP3471839B2 (en) Dielectric porcelain composition
JP3903781B2 (en) Composite multilayer ceramic electronic component and method for manufacturing the same
JPH01186696A (en) Superconducting ceramic substrate
JPH10308118A (en) Conductive paste, ceramic structure using the same and manufacture of the structure
JP2001313469A (en) Capacitor including wiring board
JP2005135821A (en) Conductor paste, and manufacturing method of laminated ceramic capacitor using the same
JP3457882B2 (en) Multilayer ceramic capacitors
JPS63280488A (en) Circuit board
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP2004292186A (en) Dielectric ceramic and multilayer ceramic capacitor
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JP2001278662A (en) Method for manufacturing dielectric ceramic
JP2006179844A (en) Wiring board with built-in capacitor
JP2860734B2 (en) Multilayer ceramic component, method for manufacturing the same, and internal conductor paste
JP2024048975A (en) Dielectric composition and electronic component
JPH11134941A (en) Dielectric ceramic and laminated ceramic capacitor