JPH02207539A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02207539A
JPH02207539A JP1028394A JP2839489A JPH02207539A JP H02207539 A JPH02207539 A JP H02207539A JP 1028394 A JP1028394 A JP 1028394A JP 2839489 A JP2839489 A JP 2839489A JP H02207539 A JPH02207539 A JP H02207539A
Authority
JP
Japan
Prior art keywords
solder
particles
semiconductor element
semiconductor device
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028394A
Other languages
Japanese (ja)
Inventor
Kazumi Takahata
高畠 和美
Shigeo Yoshizaki
茂雄 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP1028394A priority Critical patent/JPH02207539A/en
Publication of JPH02207539A publication Critical patent/JPH02207539A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To reduce the thermal resistance of a layer between a semiconductor element and a part to be fixed, and improve the heat dissipating properties by a method wherein, in a conductive bonding layer fixing a semiconductor element on a part to be fixed, at least one kind of metal particle of copper, silver and aluminum having a grain diameter smaller than the thickness of the conductive bonding layer is mixed in solder whose main component is lead. CONSTITUTION:When a semiconductor device is manufactured, paste is printed on a retaining plate 1; a semiconductor element 2 is mounted on the paste layer, and subjected to heat treatment, thereby fixing the semiconductor element 2 on the retaining plate 1. As to the above paste, particle 5 of Cu and the like whose grain diameter is smaller than the thickness of a bonding layer 3 is mixed into paste type solder 4 containing high melting point solder of Pb and Sn. The thermal conductivity of the particle 5 is larger than the solder 4, so that the particle 5 acts as a thermal conduction route. As the result, the thermal resistance of the bonding layer 3 becomes smaller than the case where solder only is used, thereby improving heat dissipating properties.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発8Aは、半導体素子か支持板等の被固着部に半田層
を介して固着された構造を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] Misfire 8A relates to a semiconductor device having a structure in which a semiconductor element is fixed to a fixed part such as a support plate through a solder layer.

〔従来の技術〕[Conventional technology]

電力用半導体装置の多くは、半導体素子が放熱板金兼ね
る支持板に半田で固着された構造を有する。この半田は
、後の製造工程における加熱や動作時の発熱によって接
着強度等が変化しないことが望ましく、一般にpb (
鉛)を多く含有する半田が使用されている。この半田は
湾融温度が300℃以上と比較的高い牛田即ち高融点半
田であり、パワーサイクル耐量等が良好に得ら才りると
いう利点を有する。
Many power semiconductor devices have a structure in which a semiconductor element is soldered to a support plate that also serves as a heat dissipation plate. It is desirable that the adhesive strength of this solder does not change due to heating in the subsequent manufacturing process or heat generated during operation, and generally PB (
Solder containing a large amount of lead) is used. This solder is a high melting point solder with a relatively high melting temperature of 300° C. or higher, and has the advantage of good power cycle durability.

〔発明が屏決しよ5とする課題〕 しかしながら、上記の高融点半田の主成分であるl−b
は熱伝導率が[J、35 w/cmdegと小さい。こ
のため、これらPb2多く含有する高融点半田を半導体
素子の固着に使用すると、半導体素子からの発熱か半田
層を介して支持板へと良好に熱伝導されず、放熱性が良
好に得られない。
[Problem to be solved by the invention 5] However, l-b, which is the main component of the above-mentioned high melting point solder,
has a low thermal conductivity of [J, 35 w/cmdeg. For this reason, when these high melting point solders containing a large amount of Pb2 are used for fixing semiconductor elements, the heat generated from the semiconductor elements is not well conducted to the support plate through the solder layer, and good heat dissipation performance cannot be obtained. .

そこで、本発明の目的は、熱伝導性に優れた半田層を有
する半導体装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor device having a solder layer with excellent thermal conductivity.

〔課題を解決するための手段] 上記目的を達成するための発明は、半導体素子が導電性
接着層により″c被固着部に固着されている半導体装置
vcおいて、前記導電性接着層が、鉛(Pb)を主成分
とする半田に、前記導電性接着層の厚みよジも小さい粒
径を有する銅CCu)、銀(Ag)及びアルミニウム(
AI Jの内の少なくとも1種の金属粒子が混在したも
のであることを特徴とする半導体装置に係わるものであ
る。
[Means for Solving the Problems] The invention for achieving the above object is, in a semiconductor device vc in which a semiconductor element is fixed to a fixed part "c" by a conductive adhesive layer, the conductive adhesive layer: Copper (CCu), silver (Ag) and aluminum (CCu), silver (Ag) and aluminum (CCu), which have a small particle size and a thickness of the conductive adhesive layer, are added to the solder whose main component is lead (Pb).
The present invention relates to a semiconductor device characterized by a mixture of metal particles of at least one type of AIJ.

上記発明にあ・いて、半田は鉛を90重i%以上含有す
るものであることが望ましく、また、金属粒子を半田に
対して[J、5〜2o重蓋%添加することが望ましい。
In the above invention, the solder preferably contains 90% by weight or more of lead, and it is also desirable to add metal particles to the solder in an amount of [J, 5 to 20% by weight].

上記目的全達成するための別の発明は、半田にこの半田
よりも熱伝導率の大きい熱良導体粒子が混在している接
着層によって半導体素子が被固着部に固着されており、
且つ前記熱良導体粒子は前記半田よシも熱伝導率が大き
い金属粒子を前記半田に溶融しにくい金属又は前記金属
粒子よりも酸化しにくい金属の屡で被覆したものである
ことを特徴とする半導体装置に係わるものである。
Another invention for achieving all of the above objects is that a semiconductor element is fixed to a part to be fixed by an adhesive layer in which solder is mixed with thermally conductive particles having a higher thermal conductivity than the solder,
The semiconductor is characterized in that the thermally conductive particles are metal particles that have a high thermal conductivity as well as the solder and are coated with a metal that is difficult to melt into the solder or a metal that is more difficult to oxidize than the metal particles. It is related to equipment.

〔作 用〕[For production]

請求項1に記載の発明において、Cu % Ag s 
AIは半田よりも熱伝導率が十分に大きい。従って、半
導体素子と被固着部との間の層の熱抵抗が小さくなり、
放熱性の良い半導体装置を提供することができる。特に
、Cuは牛田VC溶は込み難いので、半田の組成変化が
少なく、半田の接着作用の低下が少ない。
In the invention according to claim 1, Cu % Ag s
AI has a sufficiently higher thermal conductivity than solder. Therefore, the thermal resistance of the layer between the semiconductor element and the fixed part is reduced,
A semiconductor device with good heat dissipation can be provided. In particular, since Cu is difficult to incorporate into the Ushida VC melt, there is little change in the composition of the solder, and there is little deterioration in the adhesive action of the solder.

請求項2に記載のよ5に鉛を90重f%以上含有する半
田を使用し、金属粒子を0.5〜20重量るの範囲で含
めるようにすれば、接着性と熱伝導性との両方を良好に
満足さセることが可能になる。
If solder containing 90% by weight or more of lead is used as described in claim 2, and metal particles are included in the range of 0.5 to 20% by weight, the adhesiveness and thermal conductivity can be improved. It will be possible to satisfy both.

請求項3に従って、金属粒子を半田に溶融しにぐい金属
の膜で被覆すれば、金属粒子が半田に溶融して半田の組
成が変化することを確実に防止できる。金属の膜が金属
粒子より酸化しにぐい金属から成る場合は、金属粒子の
表面が酸化して半田との接着性、熱伝導性及び電気伝導
性が低下することが起こり難くなるので、半田固着の作
業や半田の品質管理が容易になるとともに、半田層の熱
伝導性及び電気伝導性が良好になり且つこれ等の特性が
安定に保たnる。
According to claim 3, if the metal particles are coated with a metal film that is difficult to melt into the solder, it is possible to reliably prevent the metal particles from melting into the solder and changing the composition of the solder. When the metal film is made of a metal that is more resistant to oxidation than the metal particles, the surface of the metal particles is less likely to oxidize and deteriorate adhesion with solder, thermal conductivity, and electrical conductivity, so solder adhesion is reduced. work and quality control of the solder become easier, the thermal conductivity and electrical conductivity of the solder layer become better, and these properties are kept stable.

〔第1の実施例〕 以下、本発明の第1の実施例に係わる半導体装置を第1
図全参照して説明する。
[First Embodiment] Hereinafter, a semiconductor device according to a first embodiment of the present invention will be described as a first embodiment.
This will be explained with reference to all the figures.

本実施例の半導体装置は、第1図に示すように放熱板を
兼ねる金属製支持板1の一方の主面に、半導体素子2が
接着層6を介して固着された構造を有する。接着層6は
、半田4の中に銅粉木部ち銅(Cu)粒子5を混在させ
たものから成る。
As shown in FIG. 1, the semiconductor device of this embodiment has a structure in which a semiconductor element 2 is fixed to one main surface of a metal support plate 1 which also serves as a heat sink via an adhesive layer 6. The adhesive layer 6 is made of solder 4 mixed with copper powder, wood, and copper (Cu) particles 5.

この半導体装置を製造する際には、Pb(鉛):Sn 
(錫)=95 : 5の高融点半田を含むペースト状半
田(クリーム手出)lC接着層3の厚さよりも小さい粒
径(直径)約IQAmのCu粒子を約2重量%混入した
ペーストを支持板1上に印刷し、このペースト層の上に
半導体素子2を載置して熱処理(す7o−)し、半導体
素子2を支持板1上に固着する。
When manufacturing this semiconductor device, Pb (lead):Sn
(Tin)=95: Paste-like solder containing high melting point solder of 5 (cream handmade) Supports a paste mixed with about 2% by weight of Cu particles having a particle size (diameter) of about IQAm smaller than the thickness of the IC adhesive layer 3 The paste layer is printed on the plate 1, and the semiconductor element 2 is placed on this paste layer and heat treated (step 7o-) to fix the semiconductor element 2 on the support plate 1.

接着層3の厚さは約60μmであフ、半田4に対するC
u粒子50割合は約2重量%である。Cu粒子5は半田
4の中にほぼ均一に分散している。
The thickness of the adhesive layer 3 is approximately 60 μm, and the thickness of the adhesive layer 3 is approximately 60 μm.
The u particle 50 proportion is approximately 2% by weight. The Cu particles 5 are almost uniformly dispersed in the solder 4.

なお、このCu粒子5の表面lCハ牛田との合金化層が
形成されている。
Note that an alloyed layer with IC and Ushida is formed on the surface of the Cu particles 5.

本実施例は次の効果を有する。This embodiment has the following effects.

(11CuはPb −Sn系の半田に溶融しにぐい今風
であり、溶融温度が半田に比べて十分に高いから半田を
加熱して溶融したとき、Cu粒子5が溶は工手出の組成
が変わることはほとんどない。従って、Cu粒子5を含
有させたことにより半田の溶融温度や粘性が変わること
はほとんどなく、従来のPb=Sn=95:5の半田の
溶融温度(314℃〕のままであり、従来と同様に容易
且つ確実に半導体素子2の半田付けを達成することかで
きる。
(11Cu is difficult to melt into Pb-Sn solder, and its melting temperature is sufficiently higher than that of solder, so when the solder is heated and melted, the Cu particles 5 are melted. Therefore, the melting temperature and viscosity of the solder hardly change due to the inclusion of Cu particles 5, and the melting temperature of the conventional Pb=Sn=95:5 solder (314°C) remains the same. Therefore, it is possible to easily and reliably solder the semiconductor element 2 as in the conventional method.

121  Cuは半田が良好に付着する金属であるから
、Cu粒子5は溶融した半田に良好に混在し、C0粒子
5を混合したことによる接着強度の実質的な低下は生じ
ない。
Since 121 Cu is a metal to which solder adheres well, the Cu particles 5 mix well with the molten solder, and the adhesion strength does not substantially decrease due to the mixing of the C0 particles 5.

+31  Cu粒子5は半田4よりも熱伝導率が大きい
ので、Cu粒子5が熱伝導路として機能し、接着層3の
熱抵抗が半田のみの場合よりも小さくなり、放熱性の良
好な半導体装置を提供することができる。
+31 Since the Cu particles 5 have higher thermal conductivity than the solder 4, the Cu particles 5 function as a heat conduction path, and the thermal resistance of the adhesive layer 3 is smaller than that of the solder alone, resulting in a semiconductor device with good heat dissipation. can be provided.

〔第2の実施例〕 次に、本発明の第2の実施例に係わる半導体装置を第2
因を参照して以下に説明する。
[Second Embodiment] Next, the semiconductor device according to the second embodiment of the present invention will be described in a second embodiment.
This will be explained below with reference to the causes.

第2図の半導体装置は、第1図の半導体装置と同様に放
熱板金兼ねる支持板1の一方の主面に接着層ろを介して
半導体素子2が固着されている。
In the semiconductor device shown in FIG. 2, like the semiconductor device shown in FIG. 1, a semiconductor element 2 is fixed to one main surface of a support plate 1 which also serves as a heat dissipation plate via an adhesive layer.

接着層6は半田4と熱良導体粒子6とρ・ら成る。The adhesive layer 6 consists of solder 4, thermally conductive particles 6, and ρ.

熱良導体粒子6はCu粒子6aの表面にNiにッケル〕
被膜6bを設けたものである。Cu粒子6aは第1図の
C0粒子5と同一のものであり、約1゜μmの粒径を有
する。Ni被膜6bは極めて薄い層であるので、これを
設けた後の熱良導体粒子6の粒径はCu粒子6aの粒径
と大差ない。なお、半田4の組成比はPb : 5n=
95 : 5であり、また、熱良導体粒子6の半田4に
対する割合は、約2重蓋カである。
The thermally conductive particles 6 are coated with Ni on the surface of the Cu particles 6a]
A coating 6b is provided. The Cu particles 6a are the same as the C0 particles 5 in FIG. 1, and have a particle size of about 1.mu.m. Since the Ni coating 6b is an extremely thin layer, the particle size of the thermally conductive particles 6 after it is provided is not much different from the particle size of the Cu particles 6a. The composition ratio of solder 4 is Pb:5n=
95:5, and the ratio of thermally conductive particles 6 to solder 4 is about double.

半導体素子20手半田付は、第1の実施例と同様に半田
ペーストに熱良導体粒子6を混入したペーストを支持板
1上に印刷し、リフO−jることによって行う。
The 20-hand soldering of the semiconductor elements is carried out by printing a paste prepared by mixing solder paste with particles 6 of good thermal conductivity on the support plate 1, and performing a refrigeration process in the same manner as in the first embodiment.

NiはCuよジもPb −Sn系半田に溶は込みにぐい
金属であるから、第2の実施例の熱良導体粒子6は、第
1の実施例のCu粒子5よりも半田に対する溶は込みが
少ない。従って、熱良導体粒子6を混入しても半田の組
成が実質的に変化セず、半田の溶融温度も殆んど変化し
ないし、パワーサイクル耐量等が低下しない。
Since Ni is a metal that is more difficult to penetrate into Pb-Sn solder than Cu, the thermally conductive particles 6 of the second embodiment have a higher melt penetration into the solder than the Cu particles 5 of the first embodiment. Less is. Therefore, even if the thermally conductive particles 6 are mixed, the composition of the solder does not substantially change, the melting temperature of the solder hardly changes, and the power cycle durability etc. do not decrease.

また、NiはCuと同様に半田に良好に付着する金属で
あるから、熱良導体粒子6は半田4vc良好に混在する
Further, like Cu, Ni is a metal that adheres well to solder, so the thermally conductive particles 6 are mixed well with the solder 4vc.

また、Niはeuよジも酸化し難い金属であるから、取
扱いが容易である。即ち、酸化に関してさほど注意を払
わなくてもよい。Cu粒子6aのみの場合Vcrri、
表面酸化によって熱伝導性及び電気伝導性の低下を招く
恐れがあるが、Ni″a膜6b全6bることによってこ
のような恐れがなくなる。
Further, since Ni is a metal that is difficult to oxidize like EU, it is easy to handle. That is, it is not necessary to pay much attention to oxidation. In the case of only Cu particles 6a, Vcrri,
Although surface oxidation may cause a decrease in thermal conductivity and electrical conductivity, this fear is eliminated by forming the entire Ni''a film 6b.

〔変形例〕 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and the following modifications are possible, for example.

(II  Cu粒子5及び熱良導体粒子6を多く含有さ
セればそれだけ接着層6の熱抵抗は減少するが、Cu粒
子5又は熱良導体粒子乙の含有量が多過ぎると、半田の
粘性、接着強度等が低下し、逆に含有量が少な過ぎると
熱電導性が十分に得られない。
(II) The more Cu particles 5 and thermally conductive particles 6 are contained, the more the thermal resistance of the adhesive layer 6 is reduced. However, if the content of Cu particles 5 or thermally conductive particles 6 is too large, the viscosity of the solder and the adhesion decrease. Strength etc. will decrease, and if the content is too low, sufficient thermal conductivity will not be obtained.

従って、 Cu粒子5又は熱良導体粒子6の半田4に対
する割合は、0.5〜2ON量るであることが望ましく
、1〜10重童鴨であることが更に望まし1、)。
Therefore, the ratio of Cu particles 5 or thermally conductive particles 6 to solder 4 is preferably 0.5 to 2 ON, more preferably 1 to 10 ON (1).

(2)  本発明はPbの含有率が90%以上の半田に
有効であるが、Pbの含有率がもつと小さく溶融温度が
さほど高くない半田にも有効である。
(2) The present invention is effective for solder with a Pb content of 90% or more, but is also effective for solder with a small Pb content and a not so high melting temperature.

+31  Cu粒子5又は熱良導体粒子6は粒径が比較
的大きい方が取り扱い易いので、粒径(直径)を接着層
乙の厚みの1/10以上にするのが良い。
+31 Cu particles 5 or thermally conductive particles 6 are easier to handle if they have a relatively large particle size, so the particle size (diameter) is preferably 1/10 or more of the thickness of the adhesive layer B.

(4)  第1図のCu粒子5及び第2図のCu粒子6
aの代すに、銀(Ag)粒子又はアルミニウム(A1)
粒子を使用することができる。しかし、Ni等の被膜6
bを設けない場合には、Pb −Sn系半田に対してA
gはCuよジも溶融し易いので、Cuの方が望ましい。
(4) Cu particles 5 in Fig. 1 and Cu particles 6 in Fig. 2
Instead of a, silver (Ag) particles or aluminum (A1)
Particles can be used. However, the coating 6 such as Ni
If b is not provided, A for Pb-Sn solder
As g, Cu is more easily melted than Cu.

但し、Sb (アンチモン)を含む半田はCuとsbが
金属間化合物を形成するので、この場合は金属粉末とし
てAgを使用するのが良い。
However, in solder containing Sb (antimony), Cu and sb form an intermetallic compound, so in this case it is better to use Ag as the metal powder.

(5)回路基板上の導体上に半導体素子を半田付けする
場合にも本発明を適用することができる。
(5) The present invention can also be applied to the case of soldering a semiconductor element onto a conductor on a circuit board.

(6)  支持板土の溶融した半田に半導体素子をこ丁
ジ付けて固着してもよい。
(6) Semiconductor elements may be firmly attached to the molten solder of the support plate.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、放熱性が良好であり且
つ信頼性の高い半導体装置を容易に提供することができ
る。
As described above, according to the present invention, a semiconductor device with good heat dissipation and high reliability can be easily provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の半導体装置の一部を概
略的に示す断面図、 第2図は本発明の第2の実施例の半導体装置の一部を概
略的に示す断面図である。 1・・・支持板、2・・・半導体素子、3・・・接着層
、4・・・半田、5・・・Cu粒子、6・・・熱良導体
粒子、6a・・・C1粒子、6b・・・Ni被膜。
FIG. 1 is a cross-sectional view schematically showing a part of a semiconductor device according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing a part of a semiconductor device according to a second embodiment of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Support plate, 2... Semiconductor element, 3... Adhesive layer, 4... Solder, 5... Cu particle, 6... Good thermal conductor particle, 6a... C1 particle, 6b ...Ni film.

Claims (1)

【特許請求の範囲】 〔1〕半導体素子が導電性接着層によつて被固着部に固
着されている半導体装置において、前記導電性接着層が
、鉛(Pb)を主成分とする半田に、前記導電性接着層
の厚みよりも小さい粒径を有する銅(Cu)、銀(Ag
)及びアルミニウム(Al)の内の少なくとも1種の金
属粒子が混在したものであることを特徴とする半導体装
置。 〔2〕前記半田は鉛を90重量%以上含有する半田であ
り、前記金属粒子は前記半田に0.5〜20重量%含有
していることを特徴とする請求項1記載の半導体装置。 〔3〕半田にこの半田よりも熱伝導率の大きい熱良導体
粒子が混在している接着層によつて半導体素子が被固着
部に固着されており、且つ前記熱良導体粒子は前記半田
よりも熱伝導率が大きい金属粒子を前記半田に溶融しに
くい金属又は前記金属粒子よりも酸化しにくい金属の膜
で被覆したものであることを特徴とする半導体装置。
[Scope of Claims] [1] In a semiconductor device in which a semiconductor element is fixed to a part to be fixed by a conductive adhesive layer, the conductive adhesive layer is made of solder containing lead (Pb) as a main component, Copper (Cu), silver (Ag) having a particle size smaller than the thickness of the conductive adhesive layer
) and aluminum (Al). [2] The semiconductor device according to claim 1, wherein the solder is solder containing 90% by weight or more of lead, and the metal particles are contained in the solder in an amount of 0.5 to 20% by weight. [3] The semiconductor element is fixed to the bonded part by an adhesive layer in which the solder contains particles of a good thermal conductivity that have a higher thermal conductivity than the solder, and the good thermal conductor particles have a higher thermal conductivity than the solder. A semiconductor device characterized in that metal particles having high conductivity are coated with a film of a metal that is difficult to melt into the solder or a metal that is more difficult to oxidize than the metal particles.
JP1028394A 1989-02-07 1989-02-07 Semiconductor device Pending JPH02207539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028394A JPH02207539A (en) 1989-02-07 1989-02-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028394A JPH02207539A (en) 1989-02-07 1989-02-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02207539A true JPH02207539A (en) 1990-08-17

Family

ID=12247444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028394A Pending JPH02207539A (en) 1989-02-07 1989-02-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02207539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216167A (en) * 1993-01-20 1994-08-05 Hitachi Ltd Semiconductor device and manufacture thereof
WO2001072466A3 (en) * 2000-03-24 2002-01-31 Motorola Inc Anti-scavenging solders for silver metallization and method
WO2002081143A1 (en) * 2001-04-04 2002-10-17 Motorola, Inc. Anti-scavenging solders for silver metallization
JP2005026702A (en) * 2000-06-12 2005-01-27 Hitachi Ltd Electronic apparatus, semiconductor device and semiconductor module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951872A (en) * 1972-06-13 1974-05-20
JPS54134656A (en) * 1978-04-11 1979-10-19 Sumitomo Electric Ind Ltd Picture image transforming element
JPS59217335A (en) * 1983-05-25 1984-12-07 Toshiba Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951872A (en) * 1972-06-13 1974-05-20
JPS54134656A (en) * 1978-04-11 1979-10-19 Sumitomo Electric Ind Ltd Picture image transforming element
JPS59217335A (en) * 1983-05-25 1984-12-07 Toshiba Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216167A (en) * 1993-01-20 1994-08-05 Hitachi Ltd Semiconductor device and manufacture thereof
WO2001072466A3 (en) * 2000-03-24 2002-01-31 Motorola Inc Anti-scavenging solders for silver metallization and method
JP2005026702A (en) * 2000-06-12 2005-01-27 Hitachi Ltd Electronic apparatus, semiconductor device and semiconductor module
KR100724030B1 (en) * 2000-06-12 2007-06-04 가부시키가이샤 히타치세이사쿠쇼 Semiconductor module
WO2002081143A1 (en) * 2001-04-04 2002-10-17 Motorola, Inc. Anti-scavenging solders for silver metallization

Similar Documents

Publication Publication Date Title
KR100867871B1 (en) Solder paste and electronic device
US10157877B2 (en) Semiconductor device and manufacturing method of semiconductor device
EP0834376A1 (en) Solder, and soldered electronic component and electronic circuit board
JP2002254194A (en) Electronic equipment
JPH10118783A (en) Soldering material, and electronic parts using it
JPH071178A (en) Three component solder
JPH06297185A (en) Dynamic solder paste composition
JP2001520585A (en) Lead-free solder
JPH08164496A (en) Sn-zn solder, sn-zn-bi solder, method for surface treatment of same, and mounted substrate using it
JP3752064B2 (en) Solder material and electronic component using the same
JP5169354B2 (en) Joining material and joining method using the same
JP2004241542A (en) Soldering method, and component and bond structure bonded thereby
JPH02207539A (en) Semiconductor device
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
JPH10180480A (en) Lead-free soldering material and electronic parts using the material
JPH07118498B2 (en) Electrical junction
JP2967929B2 (en) Conductor paste for aluminum nitride substrate
JP6267427B2 (en) Soldering method and mounting board
JP2000015479A (en) Solder alloy and mounting method of electronic part
JP4071049B2 (en) Lead-free solder paste
JP3596445B2 (en) Soldering method and mounting structure
JP3592054B2 (en) Electronic circuit and manufacturing method thereof
JP3670432B2 (en) Solder for thermoelectric cooling device
JP3460442B2 (en) Lead-free solder and mounted products using it
WO2001076335A1 (en) Mounting structure of electronic device and method of mounting electronic device