JPH02207525A - Substrate processing method and apparatus therefor - Google Patents

Substrate processing method and apparatus therefor

Info

Publication number
JPH02207525A
JPH02207525A JP2745589A JP2745589A JPH02207525A JP H02207525 A JPH02207525 A JP H02207525A JP 2745589 A JP2745589 A JP 2745589A JP 2745589 A JP2745589 A JP 2745589A JP H02207525 A JPH02207525 A JP H02207525A
Authority
JP
Japan
Prior art keywords
substrate
substrate processing
light
wavelength
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2745589A
Other languages
Japanese (ja)
Inventor
Takuya Fukuda
福田 琢也
Michio Ogami
大上 三千男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2745589A priority Critical patent/JPH02207525A/en
Publication of JPH02207525A publication Critical patent/JPH02207525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of substrate processing and realize adequate processing characteristics by introducing light of a specified wavelength exciting interatomic combination vibration into a vessel for substrate processing, and exciting oscillation of molecule turning to substrate processing species or parent body of substrate processing species. CONSTITUTION:In a plasma etching apparatus provided with an upper and a lower facing electrodes 2, 12, a substrate is arranged on the lower electrode 2, and SF6 is introduced through a gas feeding pipe 3, which gas is discharged from an exhaust vent 4. The above substrate is constituted as follows; an oxide film is formed on a single crystal silicon substrate surface, polycrystalline silicon is deposited thereon, and a pattern is drawn by using resist material. By a high frequency power supply 6, a specified RF wave is applied to the upper electrode, and plasma is generated. At the same time, infrared rays radiated from a globar lamp 7, whose wavelength is 2.5mum or less, is collected by a reflecting mirror 8; said infrared rays are made into infrared rays 11 by a spectroscope, and are introduced in a reaction vessel 5 through a window plate 10 arranged on the side surface of the reaction vessel. Thus etching is performed. In this manner, interatomic bonding of etching gas or etchant is excited by infrared rays irradiation, thereby increasing etching rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LSI製造等に用いるエツチング。[Detailed description of the invention] [Industrial application field] The present invention relates to etching used in LSI manufacturing, etc.

膜形成、不純物添加に係り、特に、上記基板処理効率の
向上化や処理特性の適正化に好適な基板処理方法及び装
置に関する。
The present invention relates to film formation and impurity addition, and particularly to a substrate processing method and apparatus suitable for improving the substrate processing efficiency and optimizing processing characteristics.

〔従来の技術〕[Conventional technology]

従来の装置では特開昭60−117711号に記載のよ
うに、基板を処理するために先めプラズマを生成させ、
該プラズマ中の未反応のガスをさらに分解するために、
紫外線を照射することで、基板の処理速度の向上を図っ
た方法や、特開昭59−172237号に記載のように
、プラズマ中にある基板に赤外線ランプから近赤外線を
照射して、基板を加熱して基板の処理効率を向上させる
方法があった。
In the conventional apparatus, as described in Japanese Patent Application Laid-Open No. 117711/1983, plasma is first generated in order to process the substrate.
In order to further decompose unreacted gas in the plasma,
There is a method that aims to improve the processing speed of substrates by irradiating them with ultraviolet rays, and a method described in JP-A-59-172237, in which near-infrared rays are irradiated from an infrared lamp to a substrate in plasma. There was a method to improve the processing efficiency of the substrate by heating it.

〔発明が解決しようとした課題〕[Problem that the invention sought to solve]

上記従来技術は、未反応あるいは未励起ガスを光(波長
1[μm]以上)により電子励起状態にし、基板処理種
の数を増加させる点や、赤外線ランプ(波長2.5[μ
m]以上)により基板を加熱することで基板と基板処理
種の反応を高める点については考慮されていたが、基板
処理種の生成機構から本質的に処理特性の優れた処理種
の濃度を高める方法については配慮されておらず、その
結果、上記従来技術においては、例えば、上記従来方法
に基づいてエツチング速度を増大させると。
The above-mentioned conventional technology has the following points: an unreacted or unexcited gas is brought into an electronically excited state by light (wavelength of 1 [μm] or more) to increase the number of substrate processing species;
Although consideration has been given to increasing the reaction between the substrate and the substrate treatment species by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by heating the substrate by increasing the reaction between the substrate and the substrate treatment species, increasing the concentration of the treatment species that inherently have excellent processing characteristics due to the generation mechanism of the substrate treatment species. No consideration is given to the method, and as a result, in the prior art, for example, if the etching rate is increased based on the prior art method.

下地材との選択性が低下したり、堆積速度を増大させる
と膜質が低下する問題があった。
There are problems in that selectivity with the base material decreases and film quality deteriorates when the deposition rate increases.

本発明の目的は、上記不都合を改善することにある。An object of the present invention is to improve the above-mentioned disadvantages.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、従来の基板処理方法に、基板を処理する容
器内へ原子間結合振動を励起する波長(2,5[μm]
以上)の光を導入し、基板処理種あるいは基板処理種の
母体となる分子を振動励起させる方法を付加させること
により達成される。
The above purpose is to add a wavelength (2.5 [μm]
This can be achieved by adding a method of introducing the above-mentioned light and vibrationally exciting the substrate processing species or the molecules that are the base of the substrate processing species.

〔作用〕[Effect]

少なくとも2原子以上の原子により形成された分子、あ
るいは、従来の基板処理方式において生成された分子、
ラジカル、イオン等、の粒子に。
Molecules formed by at least two or more atoms, or molecules produced in conventional substrate processing methods,
For particles such as radicals and ions.

該粒子を構成している原子の結合間の赤外活性振動に対
応した波長の光(波長領域2.5〜25[25μm])
が照射されると、該粒子は振動励起状態(ただし、電子
励起状態は、基底あるいは準安定状態)へと遷移する。
Light with a wavelength corresponding to the infrared active vibration between the bonds of atoms that make up the particle (wavelength range 2.5 to 25 [25 μm])
When irradiated with , the particle transitions to a vibrationally excited state (however, the electronically excited state is a ground or metastable state).

振動基底状態の粒子を、上記従来方式で励起、あるいは
励起し続けても、電子状態が準安定状態に存在する確率
が高く、原子間結合の解離には至らなかった系が多い状
況でも、上記粒子に振動遷移 v=n→v=n+1.n+3.n+4・・・(nは振動
準位、n=o、1,2,3−)があった場合は、解離に
関与する結合距離の短い状況の存在確率が高いため、フ
ランク−コントンの原理から、基板の処理種、あるいは
、高効率の処理種とならない系、すなわち、電子状態が
準安定状態への遷移が主である系であっても、解離エネ
ルギー値に達する系の確率は高くなる。この結果、基板
処理種の生成効率は著しく増大する。従って、従来方式
により得られた基板処理効率よりも、より高効率の基板
処理が可能となる。また、振動励起の状態を制御すると
、基板処理に好適な粒子等を高選択に制御でき、この結
合、基板処理の適正化、すなわち、エツチングにおいて
は高選択化、膜形成においては、膜質の高品質化等を達
成できる。
Even if a particle in the vibrational ground state is excited or continues to be excited using the conventional method described above, there is a high probability that the electronic state will exist in a metastable state, and the dissociation of interatomic bonds will not occur in many systems. Vibrational transition v=n→v=n+1 in the particle. n+3. If there is n+4... (n is a vibrational level, n=o, 1, 2, 3-), there is a high probability of the existence of a short bond distance involved in dissociation, so based on the Franck-Conton principle, , the probability of the system reaching the dissociation energy value is high even for systems that are not suitable for substrate processing or highly efficient processing, that is, systems whose electronic state mainly transitions to a metastable state. As a result, the production efficiency of substrate processing species is significantly increased. Therefore, it is possible to process a substrate with higher efficiency than that obtained by the conventional method. In addition, by controlling the state of vibrational excitation, it is possible to highly select particles suitable for substrate processing, and to optimize this bonding and substrate processing. Quality improvement etc. can be achieved.

〔実施例〕〔Example〕

以下、本発明を図面を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

実施例1゜ 第1図は本発明の一形態である装置の模式図である。対
向する上下2つの電極2,12を有する従来型の平行平
板型プラズマエツチング装置内に、単結晶シリコン基板
(直径too[mm])表面に酸化膜を形成し、その上
に多結晶シリコンを堆積させ、レジスト材でパターンを
描いた基板を下部電極、2上に置き、ガス導入管、3を
得て、SFeを導入し、排気口、4から所定の流量で排
気を行ない、反応容器、5内の圧力を1 [Torr]
程度とし、高周波電源6により上部電極に13.6[M
HzlのRF波を印加し、プラズマを発生させ、同時に
赤外光源であるグローバランプ、7により放射された光
を反射鏡8により、集光し、分光し、分光された赤外光
11は反応容器側面に設置した臭化ヨウ化タリウム系材
の窓板10を得て、基板処理を行なう反応容器5内に導
入して、エツチングを行なった。RF波パワが300[
W]時に照射光のパワを異ならせた時のエツチング速度
を第2図に、IR光源パワが400[W]時に印加した
RF波のパワに対するSiのエツチング速度を第3図に
示す。図中、AはIR光源パワO[W] 、BはIR光
源パワを300[W]にした時の値を示す。
Example 1 FIG. 1 is a schematic diagram of an apparatus that is one embodiment of the present invention. An oxide film is formed on the surface of a single crystal silicon substrate (diameter too [mm]) and polycrystalline silicon is deposited on it in a conventional parallel plate type plasma etching apparatus having two opposing upper and lower electrodes 2 and 12. A substrate with a pattern drawn with a resist material is placed on the lower electrode 2, a gas introduction tube 3 is obtained, SFe is introduced, and exhaust is performed at a predetermined flow rate from the exhaust port 4, and a reaction vessel 5 is formed. The internal pressure is 1 [Torr]
The high frequency power supply 6 applies 13.6 [M
An RF wave of Hzl is applied to generate plasma, and at the same time, the light emitted by the infrared light source, the global lamp 7, is collected and separated by the reflecting mirror 8, and the separated infrared light 11 is reacted. A window plate 10 made of a thallium bromide iodide material installed on the side of the container was obtained and introduced into the reaction container 5 in which substrate processing was performed, and etching was performed. RF wave power is 300 [
FIG. 2 shows the etching speed of Si when the power of the irradiation light was varied when the power of the IR light source was 400 [W], and FIG. 3 shows the etching speed of Si with respect to the power of the RF wave applied when the IR light source power was 400 [W]. In the figure, A indicates the IR light source power O [W], and B indicates the value when the IR light source power is set to 300 [W].

第2図よりエツチング速度は、IR光源パワの増加に伴
い大きくなる。すなわちエツチング種の生成効率が大き
くなることがわかる。第3図より。
From FIG. 2, the etching rate increases as the IR light source power increases. In other words, it can be seen that the generation efficiency of etching species increases. From Figure 3.

赤外光を照射しない場合(A)印加するRF波を大きく
しても、約50[W]以上では、エツチング速度は大き
くならないものの、赤外光を照射した場合(B)では、
RF波パワの増大に伴い、エツチング速度が大きくなる
こと、すなわち、エツチング種の生成効率が向上するこ
とがわかる。上記エツチング種の生成効率の向上が図れ
た要因を探るため、S−F結合が振動励起される波長1
゜[μm]の光のみ照射した場合(B’)、10[μm
]の波長を除いた光を照射した場合(C)、分子を加熱
するために赤外線ランプ光(発光体はガラス管内設置9
発光波長は近赤外領域(2,5[μm]以下))を照射
した場合(D)、分子を電子励起するために紫外光(H
gランプ)を照射した場合(E)を調べた。10[μm
]の光照射には干渉フィルタ9を用い、10[μml光
のみを除くためには、上記干渉フィルタ9をカットフィ
ルタに取り変え実験した。赤外線ランプとHgランプを
用いた時には、フィルタをはずして実験した。結果を第
4図に示す。横軸には、光源パワを取った。10[μm
]の波長の光、すなわち、エツチング用ガス分子あるい
はエッチャント種の原子間結合を振動励起する光を照射
した場合は、他の光照射に比して、著しくエツチング速
度が向上することがわかる。このことより、赤外線を照
射することによりエツチング速度が向上したのは、エツ
チングガスあるいはエッチャントの原子間結合を励起し
たことが主要因であることがわかった。
When infrared light is not irradiated (A), even if the applied RF waves are increased, the etching rate does not increase above approximately 50 [W], but in infrared light irradiation (B),
It can be seen that as the RF wave power increases, the etching speed increases, that is, the generation efficiency of etching species improves. In order to investigate the factors contributing to the improvement in the generation efficiency of the etching species mentioned above, we investigated the wavelength 1 at which the S-F bond is vibrationally excited.
When only light of ° [μm] is irradiated (B'), 10 [μm]
] (C), infrared lamp light (the luminous body is placed in a glass tube 9
When the emission wavelength is irradiated in the near-infrared region (2.5 μm or less) (D), ultraviolet light (H
The case (E) was investigated when irradiated with a g lamp). 10[μm
] was used for light irradiation, and in order to remove only the 10 [μml light, the interference filter 9 was replaced with a cut filter in an experiment. When using an infrared lamp and an Hg lamp, experiments were conducted with the filter removed. The results are shown in Figure 4. The horizontal axis shows the light source power. 10[μm
It can be seen that when irradiation is performed with light having a wavelength of . From this, it was found that the main reason why the etching rate was improved by irradiation with infrared rays was that the interatomic bonds of the etching gas or etchant were excited.

また、振動励起させる方法は、加熱や、電子励起させる
方法を付加させるよりも基板処理効率の向上には著しい
効果があることがわかった。第5図は、RF波パワを3
00[W]とした時のSiの5iOzに対するエツチン
グ速度の比、すなわち選択比の光源パワ依存性を示した
図である。S−F結合を振動励起させた場合のみパワの
増大に伴って選択比が向上しているすなわち、エツチン
グ特性が向上することがわかった。このことから、振動
励起を付加させると基板処理効率の向上のみならず、基
板処理特性の向上をも図れることがわかった。
Furthermore, it has been found that the method of vibrational excitation is more effective in improving substrate processing efficiency than the addition of heating or electronic excitation. Figure 5 shows the RF wave power of 3
FIG. 3 is a diagram showing the dependence of the etching rate of Si to 5iOz, that is, the selectivity, on the light source power when the etching rate is 00 [W]. It was found that only when the S-F bond was vibrationally excited, the selectivity improved as the power increased, that is, the etching characteristics improved. From this, it was found that adding vibrational excitation not only improves substrate processing efficiency but also improves substrate processing characteristics.

実施例2゜ 第6図は本発明の一形態である基板処理装置の主要部の
断面図である。本装置はプラズマを生成するのに、電子
サイクロトロン共鳴を利用したマイクロ波プラズマ方法
を用いている6本装置は。
Embodiment 2 FIG. 6 is a sectional view of the main parts of a substrate processing apparatus which is one embodiment of the present invention. This device uses a microwave plasma method using electron cyclotron resonance to generate plasma.

プラズマ生成室16.マイクロ波導波管14、(マイク
ロ波13の発振機は図省略)、磁界発生コイル17.基
板処理室5.排気ロ49反応ガス導入管3及び3’ 、
RF波を印加できる基板ホルダ2′、赤外光@7.反射
鏡8,4〜5[μm]の波長を通過させる干渉フィルタ
9′、赤外線透過窓10よりなる。被処理基板7として
シリコンウェハを用い、シリコン酸化膜(SiO2)を
形成した。プラズマ生成室16内に第1のガス導入管5
を通して酸素を200[mQ]導入し、2.45[GI
(zlのマイクロ波13を1石英製の窓15をえてプラ
ズマ生成室内に導入し、かつ、磁界発生コイル17によ
り875 [Guuss]以上の磁界を発生させて、プ
ラズマを生成させ、第2のガス導入管3′よりモノシラ
ン(S i H4)を50[mu/win]導入し、処
理室5内の圧力は排気系により3[mTorrlにした
。同時に、5i−H結合を励起する4〜5[μm]の波
長の赤外光11を処理室5内に照射して膜形成した。堆
積速度及び堆積膜の緻密さのR度として、緩衝フッ酸液
CHF:NH4F=1 : 6)によりエツチングした
■寺のエッチレート、及びオージェ分光より測定した堆
積膜の原子数比の、IR光源パワ依存性を第7〜9図に
示す。これらの結果から、材料ガスであるS i H4
あるいは、堆積種となるS i Ha、 S i H2
゜SiHを振動励起する率を高める、すなわち、IR光
源パワを増加させると、堆積速度が著しく増加するばか
りでなく、堆積膜の緻密度の向上や化学量論的組成(S
i10z=0.5)の膜が形成されることがわかった。
Plasma generation chamber 16. A microwave waveguide 14, (the oscillator of the microwave 13 is omitted from the illustration), a magnetic field generating coil 17. Substrate processing chamber 5. Exhaust tube 49 reaction gas introduction pipes 3 and 3',
Substrate holder 2' that can apply RF waves, infrared light @7. It consists of a reflecting mirror 8, an interference filter 9' that passes wavelengths of 4 to 5 μm, and an infrared transmission window 10. A silicon wafer was used as the substrate 7 to be processed, and a silicon oxide film (SiO2) was formed thereon. A first gas introduction pipe 5 is inserted into the plasma generation chamber 16.
200 [mQ] of oxygen was introduced through the
(The microwave 13 of zl is introduced into the plasma generation chamber through the quartz window 15, and a magnetic field of 875 [Guuss] or more is generated by the magnetic field generation coil 17 to generate plasma, and the second gas 50 [mu/win] of monosilane (S i H4) was introduced from the introduction pipe 3', and the pressure in the processing chamber 5 was set to 3 [mTorrl] by the exhaust system. A film was formed by irradiating infrared light 11 with a wavelength of [μm] into the processing chamber 5.The film was etched using a buffered hydrofluoric acid solution CHF:NH4F=1:6) as the deposition rate and R degree of the density of the deposited film. (2) The dependence of the etch rate and the atomic ratio of the deposited film on the power of the IR light source measured by Auger spectroscopy is shown in FIGS. 7 to 9. From these results, the material gas S i H4
Alternatively, S i Ha, S i H2 which becomes a depositing species
゜Increasing the rate of vibrational excitation of SiH, that is, increasing the IR light source power, not only significantly increases the deposition rate but also improves the density of the deposited film and changes the stoichiometric composition (S
It was found that a film with i10z=0.5) was formed.

干渉フィルタを取りはずし、グローバランプからの光を
分光せず導入した所、堆積速度については先と同じ結果
を得たが、堆積膜質については、先のような著しい膜質
の向上が見られなかった。この結果を一点破線で第8゜
9図に示す。この結果から、膜質の向上には堆積種の選
択励起が必要であることがわかる。
When the interference filter was removed and the light from the global lamp was introduced without being separated, the same results were obtained regarding the deposition rate as before, but no significant improvement in the quality of the deposited film was observed. The results are shown in FIG. 8-9 using a dashed line. This result shows that selective excitation of deposited species is necessary to improve film quality.

実施例3゜ 被処理基板としてn型(<100>面12[Ω■])の
シリコンウェハを用い、第1のガス導入管3からB2H
8を50[rnQ/minコ導入し、圧力は0 、5 
[mTorrl 、基板へのイオン入射を促進するため
に基板ホルダにRF波を200[W]印加しながら、ホ
ウ素、Bのドーピングを30[分]行なった。干渉フィ
ルタにはB−H結合を励起する光を透過するものにした
。他の条件は実施例2と同じである。第10図は、この
時のドーピングのプロファイルを示した図であり、基板
の深さ方向に対するBの1度を示す。Aは赤外照射しな
い場合、Bは赤外照射した場合である。この図かられか
るように、赤外光を照射し、ドーピングガスを振動励起
すると、その処理効率は著しく増加することがわかった
Example 3゜ Using an n-type (<100> plane 12 [Ω■]) silicon wafer as the substrate to be processed, B2H was supplied from the first gas introduction pipe 3.
8 was introduced at a rate of 50 [rnQ/min, and the pressure was 0,5
[mTorrl] While applying RF waves of 200 [W] to the substrate holder to promote ion injection into the substrate, doping with boron and B was performed for 30 [minutes]. The interference filter was designed to transmit light that excites the B-H bond. Other conditions are the same as in Example 2. FIG. 10 is a diagram showing the doping profile at this time, and shows 1 degree of B with respect to the depth direction of the substrate. A is the case without infrared irradiation, and B is the case with infrared irradiation. As can be seen from this figure, it was found that when the doping gas was vibrationally excited by irradiation with infrared light, the processing efficiency was significantly increased.

実施例4゜ ガスの励起に紫外線を使用し、これにより生じた励起種
により基板へ5iOz膜を堆積させた。
Example 4 Ultraviolet light was used to excite gas, and the excited species generated thereby deposited a 5iOz film on a substrate.

使用した本発明の一形態である装置の主要部を第11図
に示す。装置は、低圧水銀ランプ18.紫外線20を通
過させる石英窓19を有している。
FIG. 11 shows the main parts of the device used, which is one form of the present invention. The device is a low pressure mercury lamp18. It has a quartz window 19 that allows ultraviolet rays 20 to pass through.

5iOz膜の堆積には、ガス導入管3よりテトラエトキ
シシラン(C2H50)4siと酸素の混合ガスを導入
して行なった。この際、フィルタによりC−0,5i−
0結合を振起する波長7〜10[μm]の300[W]
の赤外線を装置内に導入した。この時の5iOz膜の堆
積速度と、堆積膜のエッチレートを第12.13図に示
す。この結果から、光励起による膜堆積方法に、堆積種
となるガスを振動励起させる方法を複合させると、堆積
速度の向上と、膜の著しい緻密性が図れることがわかる
。また、赤外用のフィルタをはずし、赤外光を照射した
ところ、堆積速度もエッチレートにも先と同一結果を得
たが、膜中の原子組成を調べた所、炭素、水素の混入が
見られた。分光した赤外線を照射した際には、炭素、水
素の混入が見られなかった。この原因は、(C2Ha○
)aSiのC−H結合も励起したため、炭素や水素が遊
離し、堆積膜中に含まれるようになったためと考えられ
る。このことから、照射する赤外光を分光することによ
り、振動励起させる原子間を選択すると、基板処理特性
の向上化がなされることがわかる。
The deposition of the 5iOz film was carried out by introducing a mixed gas of tetraethoxysilane (C2H50)4si and oxygen through the gas introduction tube 3. At this time, C-0,5i-
300 [W] with a wavelength of 7 to 10 [μm] that excites the 0 bond
Infrared rays were introduced into the device. The deposition rate of the 5iOz film and the etch rate of the deposited film at this time are shown in FIG. 12.13. These results show that by combining the film deposition method using optical excitation with the method of vibrationally exciting the gas that serves as the deposition species, it is possible to improve the deposition rate and make the film significantly denser. When the infrared filter was removed and infrared light was irradiated, the deposition rate and etch rate were the same as before, but when the atomic composition of the film was examined, it was found that carbon and hydrogen were mixed in. It was done. When irradiated with spectroscopic infrared rays, no contamination of carbon or hydrogen was observed. The cause of this is (C2Ha○
) This is thought to be because the C--H bonds of aSi were also excited, so that carbon and hydrogen were liberated and were included in the deposited film. From this, it can be seen that the substrate processing characteristics can be improved by selecting the atoms to be vibrationally excited by spectrally dispersing the irradiated infrared light.

実施例5゜ ガスの励起に熱照射あるいは熱解離を利用し、5iC)
z膜を堆積させた。使用した本発明の一形態である装置
の主要部を第14図に示す。装置はヒータ源を有してい
る。5iOz膜の堆積には、実施例3と同様にガス導入
管3より (CzH60)aS iと酸素の混合ガスを導して行な
った。フィルタ等の条件は実施例3と同じである。
Example 5 Using thermal irradiation or thermal dissociation to excite gas, 5iC)
z film was deposited. FIG. 14 shows the main parts of the device used, which is one form of the present invention. The device has a heater source. The deposition of the 5iOz film was carried out by introducing a mixed gas of (CzH60)aSi and oxygen from the gas introduction pipe 3 in the same manner as in Example 3. Conditions such as filters are the same as in the third embodiment.

堆積速度の赤外光パワ依存性を第15図に示す。FIG. 15 shows the dependence of the deposition rate on the infrared light power.

この結果から、熱CVD方法に振動励起方法を複合させ
ても堆積速度の向上が図れることがわかる。
This result shows that the deposition rate can be improved even when the vibration excitation method is combined with the thermal CVD method.

本実施例によれば、エツチング、ドーピング。According to this embodiment, etching and doping.

膜堆積等の基板処理の際、従来からの基板処理方法に、
基板処理種あるいはその母体であるガス分子に、原子間
結合を励起する赤外光を照射することを組み合わせると
、基板処理効率の向上や、処理特性の向上が図れる効果
があることがわかった。
When processing substrates such as film deposition, conventional substrate processing methods
It has been found that combining irradiation of substrate processing species or their parent gas molecules with infrared light that excites interatomic bonds has the effect of improving substrate processing efficiency and processing characteristics.

また、照射光を分光し、特定の原子間結合を励起すると
、基板処理種の選択が図れ、さらに処理特性の向上化が
図れる効果があることがわかった。
Furthermore, it has been found that dividing the irradiation light into spectroscopy and exciting specific interatomic bonds allows for the selection of substrate processing types, and also has the effect of improving processing characteristics.

尚、本実施例では、光源にグローバランプを用いたが、
他の赤外線発光源を用いてももちろん同一の効果がある
、また分光にフィルタを用いたがもちろん、回折格子や
プリズム等を利用して分光しても良い。
In this example, a global lamp was used as the light source, but
Of course, the same effect can be obtained by using other infrared light emitting sources, and although a filter is used for spectroscopy, it is also possible to use a diffraction grating, a prism, etc. to perform spectroscopy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の基板処理方式よりも、基板処理
種の生成効率の向上が図れるため、基板処理のスループ
ットが上がる効果があり、また、基板処理種の選択が図
れるため、基板処理特性を向上される効果がある。放電
等を利用してプラズマを形成するプロセスにおいては、
放電を行なうパワにほぼ比例して、基板へのダメージが
上がるが、本発明方式を用いると、放電パワの低減化が
図れるため、低ダメージの基板処理ができる効果がある
According to the present invention, the production efficiency of substrate processing species can be improved compared to conventional substrate processing methods, which has the effect of increasing the throughput of substrate processing.Also, since the substrate processing type can be selected, substrate processing characteristics It has the effect of improving In the process of forming plasma using electrical discharge,
Although damage to the substrate increases almost in proportion to the power used for discharging, the method of the present invention allows for reduction of the discharge power, thereby providing the effect of processing the substrate with less damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一形態である装置を示す図、第2図、
第3図、第4図はエツチング速度の光源パワあるいはR
Fパワ依存性を示す図、第5図はSiO2に対するSi
の選択比の各種光源のパワ依存性を示す図、第6図は本
発明の一形態である装置を示す図、第7図、第8図、第
9図はS i O2膜の堆積速度、堆積膜のエッチレー
ト及び原子数比のIR光源パワ依存性を示す図、第10
図はプ示す図、第11図は本発明の一形態である装置を
示す図、第12図、第13図は5iOz膜の堆積速度、
堆積膜のエッチレートのIR光源パワ依存性を示す図、
第14図は本発明の一形態である装置を示す図、第15
図はSiO2膜の堆積速度のIR光源パワ依存性を示す
図である。 1・・・基板、5・・・基板処理容器、6・・・RF波
発振機、7・・・赤外光源、9・・・フィルタ、10・
・赤外透過窓、11・・・赤外線、13・・・マイクロ
波、17・・・磁界発生コイル、18・・・低圧Hgラ
ンプ、21・・・ヒータ源、A・・・赤外照射なし、B
・・・赤外照射、B′・・・振動励起波長光照射、C・
・・振動励起波長カット、D・・・赤外ランプ光照射、
E・・・紫外光照射。 第 ! 乞
FIG. 1 is a diagram showing an apparatus which is one form of the present invention, FIG.
Figures 3 and 4 show the light source power or R of etching speed.
A diagram showing F power dependence, Fig. 5 shows Si on SiO2
FIG. 6 is a diagram showing an apparatus according to an embodiment of the present invention. FIGS. 7, 8, and 9 are graphs showing the dependence of the selectivity on the power of various light sources. FIG. 7, FIG. 8, and FIG. Diagram showing the dependence of the etch rate and atomic ratio of the deposited film on the IR light source power, No. 10
Figure 11 is a diagram showing an apparatus according to one embodiment of the present invention, Figures 12 and 13 are diagrams showing the deposition rate of 5iOz film,
A diagram showing the dependence of the etch rate of the deposited film on the power of the IR light source,
FIG. 14 is a diagram showing an apparatus which is one form of the present invention, and FIG.
The figure shows the dependence of the deposition rate of the SiO2 film on the power of the IR light source. DESCRIPTION OF SYMBOLS 1... Substrate, 5... Substrate processing container, 6... RF wave oscillator, 7... Infrared light source, 9... Filter, 10...
・Infrared transmission window, 11...Infrared rays, 13...Microwave, 17...Magnetic field generating coil, 18...Low pressure Hg lamp, 21...Heater source, A...No infrared irradiation , B
...Infrared irradiation, B'...Vibrational excitation wavelength light irradiation, C.
...Vibration excitation wavelength cut, D...Infrared lamp light irradiation,
E: Ultraviolet light irradiation. No.! begging

Claims (1)

【特許請求の範囲】 1、励起した分子、ラジカル、イオンを用いて基板を処
理する方法において、基板を処理する容器内に、原子間
結合を励起する赤外光を導入しながら基板を処理するこ
とを特徴とした基板処理方法。 2、上記赤外光の波長は2.5[μm]以上であること
を特徴とした特許請求の範囲第1項記載の基板処理方法
。 3、上記基板を処理する方法において、処理種を生成す
るために、放電を用いたことを特徴とした特許請求の範
囲第1項または第2項記載の基板処理方法。 4、上記基板を処理する方法において、処理種を生成す
るために、分子に電子エネルギを供与する光を照射する
ことを特徴とした特許請求の範囲の第1項または第2項
記載の基板処理方法。 5、上記基板を処理する方法において、処理種を生成す
るために、分子に熱エネルギを与えることを利用した特
許請求の範囲第1項または第2項記載の基板処理方法。 6、上記赤外光を分光し、特定波長の光のみ容器内に導
入することを特徴とした特許請求の範囲第1項乃至第5
項記載の基板処理方法。 7、上記の基板処理として、基板上の所望材をエッチン
グすることを特徴とした特許請求の範囲第1項乃至第6
項に記載の基板処理方法。 8、上記の基板処理として、基板に膜形成することを特
徴とした特許請求の範囲第1項乃至第5項記載の基板処
理方法。 9、上記の基板処理として、基板に不純物を添加するこ
とを特徴とした特許請求の範囲第1項乃至第5項記載の
基板処理方法。 10、放電によりプラズマを生成させ、該プラズマによ
り基板を処理する装置において、該装置内に2.5[μ
m]以上の波長の光を導入することを特徴とした基板処
理装置。 11、1[μm]以下の波長の光をガス分子に照射し励
起させ、該励起分子により基板を処理する装置において
、該装置内に2.5[μm]以上の波長の光を導入する
ことを特徴とした基板処理装置。 12、ガス分子に熱エネルギを与えることで励起させ、
該励起分子により基板を処理する装置において、該装置
内に2.5[μm]以上の波長の光を導入することを特
徴とした基板処理装置。 13、上記2.5[μm]以上の波長を装置内に導入す
るために、タリウムの化合物、ハロゲン元素と原子周期
律表の第1属または第2属元素から構成される化合物、
あるいは亜鉛の化合物を母体とした材料を用いた窓を有
したことを特徴とした特許請求の範囲第10項乃至12
項記載の基板処理装置。 14、上記2.5[μm]以上の波長の光源を基板処理
する容器に設置したことを特徴とした特許請求の範囲第
10項乃至12項記載の基板処理装置。 15、2.5[μm]以上の波長の光源として、熱放射
型の発光体を用いることを特徴とした特許請求の範囲第
10項乃至第14項記載の基板処理装置。 16、2.5[μm]以上の波長の光源として、レーザ
及びSOR(¥S¥ychrotron ¥O¥rbi
tal ¥R¥adiation)光を用いることを特
徴とした特許請求の範囲第10項乃至第14項記載の基
板処理装置。 17、2.5[μm]以上の波長の光のうち、特定波長
の光のみ分光し、装置内へ導入することを特徴とした特
許請求の範囲第10項乃至第16項記載の基板処理装置
。 18、上記分光のため、光干渉フィルタ、カットフィル
タを用いたことを特徴とした特許請求の範囲第17項記
載の基板処理装置。 19、上記分光のため、スリットとプリズムあるいはス
リットと回折格子を用いたことを特徴とした特許請求の
範囲第17項記載の基板処理装置。
[Claims] 1. In a method of processing a substrate using excited molecules, radicals, or ions, the substrate is processed while introducing infrared light that excites interatomic bonds into a container for processing the substrate. A substrate processing method characterized by: 2. The substrate processing method according to claim 1, wherein the wavelength of the infrared light is 2.5 [μm] or more. 3. The substrate processing method according to claim 1 or 2, characterized in that in the method for processing a substrate, electric discharge is used to generate the processing species. 4. Substrate processing according to claim 1 or 2, characterized in that in the method for processing the substrate, light that provides electron energy to molecules is irradiated to generate the processing species. Method. 5. The substrate processing method according to claim 1 or 2, which utilizes applying thermal energy to molecules in order to generate processing species in the method of processing a substrate. 6. Claims 1 to 5, characterized in that the infrared light is spectrally divided and only light of a specific wavelength is introduced into the container.
Substrate processing method described in section. 7. Claims 1 to 6, characterized in that the above-mentioned substrate treatment involves etching a desired material on the substrate.
Substrate processing method described in section. 8. The substrate processing method according to any one of claims 1 to 5, wherein the substrate processing includes forming a film on the substrate. 9. The substrate processing method according to any one of claims 1 to 5, wherein the substrate processing includes adding an impurity to the substrate. 10. In an apparatus that generates plasma by electric discharge and processes a substrate with the plasma, a temperature of 2.5 [μ
1. A substrate processing apparatus characterized by introducing light having a wavelength of 100 m or more. 11.Introducing light with a wavelength of 2.5 [μm] or more into the device in which gas molecules are irradiated with light with a wavelength of 1 [μm] or less to excite them and a substrate is treated with the excited molecules. A substrate processing device featuring: 12. Excite gas molecules by giving them thermal energy,
A substrate processing apparatus for processing a substrate with the excited molecules, characterized in that light with a wavelength of 2.5 [μm] or more is introduced into the apparatus. 13. In order to introduce the above-mentioned wavelength of 2.5 [μm] or more into the device, a compound of thallium, a compound consisting of a halogen element and an element of Group 1 or Group 2 of the periodic table of atoms,
Alternatively, claims 10 to 12 are characterized in that the window is made of a material based on a zinc compound.
Substrate processing apparatus described in Section 2. 14. The substrate processing apparatus according to claims 10 to 12, wherein the light source having a wavelength of 2.5 [μm] or more is installed in a container for processing the substrate. 15. The substrate processing apparatus according to claim 10, wherein a thermal radiation type light emitter is used as a light source with a wavelength of 15, 2.5 [μm] or more. As a light source with a wavelength of 16, 2.5 [μm] or more, lasers and SOR (\S\ychromotron\O\rbi
15. The substrate processing apparatus according to claim 10, characterized in that the substrate processing apparatus uses light (tal \R\ adiation). 17. The substrate processing apparatus according to claims 10 to 16, characterized in that only light of a specific wavelength is separated out of the light having a wavelength of 2.5 [μm] or more and introduced into the apparatus. . 18. The substrate processing apparatus according to claim 17, wherein an optical interference filter and a cut filter are used for the spectroscopy. 19. The substrate processing apparatus according to claim 17, wherein a slit and a prism or a slit and a diffraction grating are used for the spectroscopy.
JP2745589A 1989-02-08 1989-02-08 Substrate processing method and apparatus therefor Pending JPH02207525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2745589A JPH02207525A (en) 1989-02-08 1989-02-08 Substrate processing method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2745589A JPH02207525A (en) 1989-02-08 1989-02-08 Substrate processing method and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH02207525A true JPH02207525A (en) 1990-08-17

Family

ID=12221595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2745589A Pending JPH02207525A (en) 1989-02-08 1989-02-08 Substrate processing method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02207525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466307B1 (en) * 1997-10-25 2005-05-19 삼성전자주식회사 Semiconductor device manufacturing apparatus and digas process, etching process and heat treatment process using the same
JP2007081341A (en) * 2005-09-16 2007-03-29 Canon Inc Processing apparatus
JP2010080868A (en) * 2008-09-29 2010-04-08 Toppan Printing Co Ltd Method and device for plasma etching

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466307B1 (en) * 1997-10-25 2005-05-19 삼성전자주식회사 Semiconductor device manufacturing apparatus and digas process, etching process and heat treatment process using the same
JP2007081341A (en) * 2005-09-16 2007-03-29 Canon Inc Processing apparatus
JP2010080868A (en) * 2008-09-29 2010-04-08 Toppan Printing Co Ltd Method and device for plasma etching

Similar Documents

Publication Publication Date Title
US4509451A (en) Electron beam induced chemical vapor deposition
US7897215B1 (en) Sequential UV induced chemical vapor deposition
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
US4664747A (en) Surface processing apparatus utilizing local thermal equilibrium plasma and method of using same
US5980999A (en) Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
KR100327950B1 (en) Process for treating a substrate and apparatus for the same
JP2012149278A (en) Method for producing silicon-containing film
Bergonzo et al. Low pressure photodeposition of silicon nitride films using a xenon excimer lamp
JPH1098032A (en) Formation of thin film and thin film forming device
JPH0496226A (en) Manufacture of semiconductor device
JP3062589B2 (en) Thin film formation method by radical control
JPH02207525A (en) Substrate processing method and apparatus therefor
US5112647A (en) Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process
JPS6289882A (en) Vapor phase etching method
JPH06151421A (en) Formation of silicon nitride thin film
JPH0543393A (en) Method for preparing carbon material
JPH1018042A (en) Thin film forming device
JPS6380525A (en) Formation of coat
JP2890693B2 (en) Optical reversal CVD method
JPH0748479B2 (en) Insulating film forming method and apparatus
JP2005123389A (en) Plasma treatment method, plasma film forming method, plasma etching method and plasma treatment device
EP0298126A1 (en) Optical cvd process
JP2975971B2 (en) Carbon film formation method
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPH01315140A (en) Plasma treatment and apparatus