JPH01315140A - Plasma treatment and apparatus - Google Patents

Plasma treatment and apparatus

Info

Publication number
JPH01315140A
JPH01315140A JP14572688A JP14572688A JPH01315140A JP H01315140 A JPH01315140 A JP H01315140A JP 14572688 A JP14572688 A JP 14572688A JP 14572688 A JP14572688 A JP 14572688A JP H01315140 A JPH01315140 A JP H01315140A
Authority
JP
Japan
Prior art keywords
plasma
substrate
processed
plasma processing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14572688A
Other languages
Japanese (ja)
Inventor
Takuya Fukuda
福田 琢也
Michio Ogami
大上 三千男
Naohiro Monma
直弘 門馬
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14572688A priority Critical patent/JPH01315140A/en
Publication of JPH01315140A publication Critical patent/JPH01315140A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance treatment efficiency and to make a treatment proper by a method wherein a face to be treated is irradiated with electromagnetic waves of a specific wavelength exciting an interatomic bond oscillation of a constitutive atom of a substrate to be treated or a formation film. CONSTITUTION:A silicon wafer is used as a substrate 1 to be treated; a silicon oxide film is formed. Oxygen is introduced into a plasma generation chamber 4 through a first gas introduction tube 5; in addition, microwaves 6 are introduced into the plasma generation chamber. In addition, a magnetic field is generated by using a field generation coil 9; a plasma stream 10 is generated; monosilane is introduced from a second gas introduction tube 11. When a film is deposited, a speed and the film quality such as denseness or the like of the deposited film are governed by a level of energy of an interatomic oscillation, rotation, translation and the like of a plasma species which has reached a face of the substrate to be treated. By this setup, a plasma treatment can be enhanced and the plasma treatment can be made proper without heating the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エレクトロニクスデバイス製造方法及び装置
に係り、特に、膜形成やプラズマドーピングにおいて、
処理効率の向上化や、処理の適正化に好適なプラズマ処
理方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for manufacturing an electronic device, particularly in film formation and plasma doping.
The present invention relates to a plasma processing method and apparatus suitable for improving processing efficiency and optimizing processing.

〔従来の技術〕[Conventional technology]

プラズマで薄膜を堆積させる方法として、特開昭57−
202739号に記載のように、プラズマの生成あるい
は基板加熱にレーザビームを利用する方法や特開昭57
−202740号、 60−117711号に記載のよ
うに、プラズマ処理中に、基板にX線あるいは紫外光を
照射して、膜形成の処理効率の向上を図った方法があっ
た。
As a method of depositing a thin film using plasma, Japanese Patent Application Laid-Open No. 1987-
As described in No. 202739, a method of using a laser beam for plasma generation or substrate heating, and Japanese Patent Laid-Open No. 57
As described in No. 202740 and No. 60-117711, there is a method in which a substrate is irradiated with X-rays or ultraviolet light during plasma processing to improve the processing efficiency of film formation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、プラズマ種との反応を促進し薄膜の堆
積速度を上げるために、基板をレーザビームで加熱する
点、あるいは基板や薄膜の構成原子の電子エネルギを励
起する点については、配慮されていたが、薄膜形成の機
構やプラズマ種の基板への拡散については配慮されてお
らず、その結果、薄膜の堆積速度を上げると膜質が低下
する問題やプラズマ酸化等による膜形成及びドーピング
の効率は、単にプラズマ処理した時に比較しても著しく
向上しないという問題があった。
The above conventional techniques do not take into account heating the substrate with a laser beam or exciting the electron energy of constituent atoms of the substrate or thin film in order to accelerate the reaction with plasma species and increase the deposition rate of the thin film. However, the mechanism of thin film formation and the diffusion of plasma species to the substrate were not considered, and as a result, increasing the deposition rate of the thin film resulted in the problem of deterioration of film quality and the efficiency of film formation and doping due to plasma oxidation, etc. However, there was a problem in that it did not significantly improve when compared with simply plasma processing.

本発明の目的は、上記不都合を改善することにある。An object of the present invention is to improve the above-mentioned disadvantages.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的するための本発明の特徴は、プラズマ処理中に
、被処理基板、あるいは形成膜の構成原子の原子間結合
振動を振起させる特定波長の電磁波を被処理面に照射す
ることにより達成される。
The feature of the present invention for the above-mentioned purpose is achieved by irradiating the surface to be processed with electromagnetic waves of a specific wavelength that excite vibrations of the interatomic bonds of constituent atoms of the substrate to be processed or the formed film during plasma processing. Ru.

また、その他の本発明の特徴は、上記電磁波をプラズマ
処理中に、処理物に照射する機構を有するプラズマ処理
装置にある。
Another feature of the present invention is a plasma processing apparatus having a mechanism for irradiating the object to be treated with the electromagnetic waves during plasma processing.

その他1本発明の特徴点は以下の説明より明らかになろ
う。
Another feature of the present invention will become clear from the following description.

〔作用〕[Effect]

膜の堆積において、その速度や堆積膜の緻密性等の膜品
質は、被処理基板面に到達したプラズマ種の原子間振動
2回転、及び並進等のエネルギの高さに支配されている
。このエネルギが高いと、基板に到達したプラズマ種の
反応効率が上がるばかりでなく、予め基板上に形成され
た原子あるいは分子層に対して、エネルギが最小となる
配列、再配向位置まで、再配列及び再配向運動する確率
が高くなるため、堆積速度は向上し、膜の品質も向上す
る。原子間振動エネルギは再配列及び再配向運゛動エネ
ルギへの散逸は速い。従って、逆に言えば予め基板上に
形成されている層に原子間振動エネルギを与えると、そ
の後に堆積するプラズマ種の堆積状況の好適化がなされ
るため、堆積速度の向上や、堆積膜の緻密性等の品質の
向上がなされる。尚、この時に、下地基板が蒸気圧の低
い、例えばG a A s等であった場合は、この構成
原子間Ga−As等の振動を励起する光を照射すると。
In film deposition, the speed and film quality such as the density of the deposited film are controlled by the energy level of the two rotations and translations of interatomic vibrations of the plasma species that have reached the surface of the substrate to be processed. If this energy is high, not only will the reaction efficiency of the plasma species that have reached the substrate increase, but also the atoms or molecules that have previously been formed on the substrate will be rearranged to the alignment or reorientation position where the energy is minimum. Since the probability of reorientation and reorientation movement increases, the deposition rate increases and the quality of the film also improves. Interatomic vibrational energy dissipates rapidly into rearrangement and reorientation kinetic energy. Therefore, in other words, if atomic vibration energy is applied to a layer that has been formed on a substrate in advance, the deposition conditions of the plasma species that will be deposited later will be optimized, which will improve the deposition rate and improve the quality of the deposited film. Quality such as precision is improved. At this time, if the base substrate is made of a material with a low vapor pressure, such as GaAs, light that excites the vibrations of the constituent atoms of Ga-As or the like is irradiated.

結果的に基板が加熱され、損傷を受けるため、このよう
な場合には、基板を励起せず、形成膜のみ励起する、例
えば、堆積膜が5iOzであった場合には、5i−0振
動のみ励起する1080[cm−11の赤外光等を照射
することが望ましい。
As a result, the substrate is heated and damaged, so in such a case, only the formed film is excited without exciting the substrate. For example, if the deposited film is 5iOz, only 5i-0 vibration is generated. It is desirable to irradiate with infrared light of 1080 [cm-11] for excitation.

プラズマ酸化等による膜形成やプラズマドーピングにお
いては、その処理効率は基板表面からの拡散効率と拡散
領域での原子間結器の反応効率に比例する。拡散は基板
を構成している原子間の結合間隔に正依存する。また、
結合に関与する振動の遷移v==n→v=n+1.n+
3.n+4・・・(nは振動準位、n ” O* 1 
g 2 HV ’  Vが小さい程遷移確率は高い、)
を与えた場合には、フランク−コントンの原理から、基
板構成材とプラズマ種の反応系の電子状態が直接、反応
に結びつかない準安定状態であっても、解離及び結合反
応が起きる確率が高くなるため、反応速度は向上する。
In film formation by plasma oxidation or plasma doping, the processing efficiency is proportional to the diffusion efficiency from the substrate surface and the reaction efficiency of interatomic junctions in the diffusion region. Diffusion is positively dependent on the bond spacing between the atoms that make up the substrate. Also,
Vibrational transition involved in bonding v==n→v=n+1. n+
3. n+4...(n is vibrational level, n''O* 1
g 2 HV ' The smaller V, the higher the transition probability.)
According to the Frank-Conton principle, even if the electronic state of the reaction system between the substrate constituent materials and the plasma species is a metastable state that does not directly lead to a reaction, there is a high probability that dissociation and bonding reactions will occur. Therefore, the reaction rate improves.

従って、基板構成材の原子間結合振動を励起すると、原
子間結合距離は広がり、またフランク−コントンの原理
からプラズマ処理の効率は向上する。尚、この時に、基
板表面にマスク材があった場合には、マスク材を振動励
起すると、マスクがプラズマ処理、主にエツチングや変
質が起きるため、照射光はマスク材を励起せず、基板構
成原子の振動のみ励起する光を照射することが望ましい
Therefore, when the interatomic bond vibrations of the substrate constituent material are excited, the interatomic bond distance increases, and the efficiency of plasma processing improves based on the Frank-Conton principle. At this time, if there is a mask material on the surface of the substrate, if the mask material is excited by vibration, the mask will undergo plasma treatment, mainly etching or deterioration, so the irradiation light will not excite the mask material and the substrate structure It is desirable to irradiate light that excites only the vibrations of atoms.

〔実施例〕〔Example〕

以下1本発明の実施例を図面を用いて詳細に説明する。 EMBODIMENT OF THE INVENTION Below, one embodiment of the present invention will be described in detail using the drawings.

第1図は本発明のプラズマ処理装置の主要部の断面図で
ある0本装置は、プラズマ種を生成するのに、電子サイ
クロトロン共鳴を利用したマイクロ波プラズマ方法を用
いている1本装置は、プラズマ生成室4.マイクロ波導
波管7(マイクロ波6の発振機は図省略)、磁界発生コ
イル9゜処理室2.排気口12(排気系は図省略)9反
応ガス供給管5及び11(反応ガス供給系は図省略)、
基板支持台3.赤外用グローバランプ13.凹面反射鏡
14.干渉フィルタ159反射鏡16゜赤外線透過窓1
7よりなる。プラズマ生成室4は直径240(+m)φ
、長さ250(mlの石英製で円錐形の頂部がマイクロ
波導入窓8となっている。磁界発生コイルはプラズマ生
成室の周囲に設置され最大磁束密度は1.2 (KGa
uss)である、処理室2は直径370(am)φのス
テンレス製で、中に設置された基板支持台3は直径12
0(m)φのアルミナ製で、基板を最大300(’C)
まで加熱できる。基板への赤外線18照射は、グローバ
ランプ13により赤外線を発生させ、凹面反射鏡14で
集光、平行光線とし、干渉フィルタ15で所望波長の赤
外線を得て、これを反射鏡16を用い、ヨウ化タリウム
材であるKR8S製の赤外線透過窓を通して行なった。
FIG. 1 is a sectional view of the main parts of the plasma processing apparatus of the present invention. This apparatus uses a microwave plasma method using electron cyclotron resonance to generate plasma species. Plasma generation chamber 4. Microwave waveguide 7 (the oscillator of the microwave 6 is omitted from the figure), magnetic field generating coil 9° processing chamber 2. Exhaust port 12 (exhaust system not shown) 9 Reactive gas supply pipes 5 and 11 (reactive gas supply system not shown),
Board support stand 3. Infrared globe lamp 13. Concave reflector 14. Interference filter 159 Reflector 16° Infrared transmission window 1
Consists of 7. Plasma generation chamber 4 has a diameter of 240 (+m)φ
It is made of quartz and has a length of 250 (ml), and the conical top serves as the microwave introduction window 8.The magnetic field generation coil is installed around the plasma generation chamber, and the maximum magnetic flux density is 1.2 (KGa).
The processing chamber 2 is made of stainless steel and has a diameter of 370 (am) φ, and the substrate support stand 3 installed inside has a diameter of 12 mm.
Made of alumina with a diameter of 0 (m), the substrate can be heated up to 300 ('C)
It can be heated up to. To irradiate the substrate with infrared rays 18, a global lamp 13 generates infrared rays, a concave reflector 14 condenses the infrared rays into parallel rays, an interference filter 15 obtains infrared rays of a desired wavelength, and a reflector 16 emits the infrared rays. The measurement was conducted through an infrared transmitting window made of KR8S, which is a thallium chloride material.

実施例1゜ 被処理基板1として、シリコンウェハ(直径100(n
a)φ)を用い、シリコン酸化膜(Si(h)を形成し
た。プラズマ生成室内4に第1のガス導入管5を通して
酸素を40 Cm Q /win)導入し、2.45(
GHz)のマイクロ波6をプラズマ生成室内に導入し、
かつ、磁界発生コイル9により875 (Gauss)
以上の磁界を発生させて、プラズマ流10を生成させ、
第2のガス導入管11よリモノシラン(SiHa)を6
 (m Q /win)導入し、処理室2内の圧力は排
気系により3 (mtorr)にした、初めに、基板加
熱及び赤外線照射を行なわずに堆積させた所、堆積速度
は50 (n m/win)であり、堆積膜を緩衝フッ
酸液(HF : NH4F=1:4)によりエツチング
した、そのエッチレートは1.0(μm/■in)であ
った1次に、基板を300(’C)に加熱し、同様に堆
積させた所、堆積速度は40 (nm/m1nl 、エ
ッチレートは0.5〔μm/win)となった0次に、
基板加熱は行なわず、赤外線を照射しながら、同様に堆
積させた。
Example 1 A silicon wafer (diameter 100 (n)
a) φ) to form a silicon oxide film (Si(h). Oxygen was introduced into the plasma generation chamber 4 through the first gas introduction pipe 5 at a rate of 40 Cm Q /win),
GHz) microwave 6 is introduced into the plasma generation chamber,
And 875 (Gauss) by the magnetic field generating coil 9
Generate the above magnetic field to generate the plasma flow 10,
6 limonosilane (SiHa) from the second gas introduction pipe 11
(m Q /win) was introduced, and the pressure inside the processing chamber 2 was set to 3 (mtorr) by the exhaust system. Initially, deposition was performed without substrate heating and infrared irradiation, and the deposition rate was 50 (n m /win), and the deposited film was etched with a buffered hydrofluoric acid solution (HF:NH4F=1:4) at an etch rate of 1.0 (μm/inch). 'C) and deposited in the same manner, the deposition rate was 40 (nm/m1nl) and the etch rate was 0.5 [μm/win].
Deposition was carried out in the same manner while irradiating infrared rays without heating the substrate.

赤外線は干渉フィルタを用いることにより、Si−〇振
動を励起する1 060〜1100[cs−’コの波数
の光を分光して用いた。この時の堆積速度は70 (n
 m/win) 、エッチレートは0.15〔μm/w
in)となった。基板に赤外照射しながら堆積した時の
基板温度は、サーモテープで測定した所120(”C)
であった、エッチレートは膜の緻密性を示し、そのエッ
チレートが遅い程、堆積膜は緻密である。例えば、10
00’Cで熱酸化して形成した膜のエッチレートは0.
1〔μm/win)である。先の結果から、赤外線を照
射しながらプラズマ処理すると、その堆積速度は向上し
、また、膜の緻密性も向上することがわかった。この赤
外線照射効果は、基板を加熱したことによるものではな
く、5iOz膜の振動を励起させて堆積させたことによ
ることがわかった。
Infrared light was used by using an interference filter to separate light with a wave number of 1060 to 1100 [cs-'] that excites Si-○ vibrations. The deposition rate at this time was 70 (n
m/win), the etch rate is 0.15 [μm/w
in). The substrate temperature when deposited while irradiating the substrate with infrared rays was 120 ("C) as measured with thermo tape.
The etch rate indicates the density of the film, and the slower the etch rate, the denser the deposited film. For example, 10
The etch rate of the film formed by thermal oxidation at 00'C is 0.
1 [μm/win]. From the above results, it was found that plasma treatment while irradiating with infrared rays increases the deposition rate and also improves the density of the film. It was found that this infrared irradiation effect was not caused by heating the substrate, but by exciting the vibrations of the 5iOz film and depositing it.

赤外線の波長としては、25μm以上としてもよい。The wavelength of the infrared rays may be 25 μm or more.

実施例2゜ 被処理基板1として、シリコンウェハ(<100>面)
を用い、プラズマ照射による酸化膜の形成を行なった。
Example 2 A silicon wafer (<100> plane) was used as the substrate 1 to be processed.
An oxide film was formed by plasma irradiation.

第1のガス導入管5を通して酸素を100 (m Q 
/win)導入し、圧力はQ、8 (+torr)で行
なった。他の条件は実施例1と同じである。
100 (m Q
/win), and the pressure was Q, 8 (+torr). Other conditions are the same as in Example 1.

第2図は、この時の形成膜厚の時間変化を示した図であ
る。Aはプラズマ処理のみ、Bはプラズマ処理土基板加
熱、Cはプラズマ処理+赤外線照射の実験条件による形
成膜厚の時間依存性を示した曲線である。この結果から
れかるように、赤外線を照射しながらプラズマ酸化を行
なうと、その処理効率は著しく増加し、基板を加熱する
効果よりも大きいことがわかった。
FIG. 2 is a diagram showing the time change in the thickness of the formed film at this time. A is a curve showing the time dependence of the formed film thickness under the experimental conditions of only plasma treatment, B is plasma treated soil substrate heating, and C is plasma treatment + infrared irradiation. As can be seen from these results, it was found that when plasma oxidation is performed while irradiating infrared rays, the processing efficiency increases significantly and is greater than the effect of heating the substrate.

実施例3゜ 被処理基板1としてn型((100>面12〔Ωl〕)
のシリコンウェハを用い、B2H8のプラズマ照射によ
るドーピングを90〔分〕行なった。第1のガス導入管
を通してB2H8を50(mff/win)導入し、圧
力は0.5 (mtorr)で行なった。他の条件は実
施例1と同じである。第3図は、この時のドーピングの
プロファイルを示した図で、Aはプラズマ処理のみ、B
はプラズマ処理土基板加熱、Cはプラズマ処理+赤外線
照射、による基板の深さ方向に対するBの濃度プロファ
イルを示したものである。照射した赤外線は、5i−3
iの基準変角振動の1つの波数である610[a1″″
1コ線である。第3図かられかるように、赤外線を照射
しながらプラズマドーピングを行なうと、その処理効率
は著しく増加し、基板を加熱した効果よりも大きいこと
がわかった。
Example 3 The substrate to be processed 1 is n-type ((100>plane 12 [Ωl])
Doping using B2H8 plasma irradiation was performed for 90 minutes using a silicon wafer. 50 (mff/win) of B2H8 was introduced through the first gas introduction pipe at a pressure of 0.5 (mtorr). Other conditions are the same as in Example 1. Figure 3 is a diagram showing the doping profile at this time, where A is only the plasma treatment and B is the doping profile.
1 shows the concentration profile of B in the depth direction of the substrate by heating the plasma-treated soil substrate, and C shows the plasma treatment + infrared irradiation. The irradiated infrared rays are 5i-3
610 [a1″″ which is one wave number of the standard bending vibration of i
It is one line. As can be seen from FIG. 3, it has been found that when plasma doping is performed while irradiating infrared rays, the processing efficiency increases significantly, which is greater than the effect of heating the substrate.

本実例によれば、膜の堆積やプラズマ照射による酸化等
の膜形成及びプラズマドーピング処理において、基板に
赤外線を照射しながらプラズマ処理すると、処理の高効
率化と処理の適正化がなされる効果があることがわかっ
た。
According to this example, in film deposition, oxidation, and other film formation by plasma irradiation, and plasma doping, performing plasma treatment while irradiating the substrate with infrared rays has the effect of increasing processing efficiency and optimizing processing. I found out something.

尚、本実施例では、プラズマ種の生成にマイクロ波プラ
ズマ方法を用いたが、もちろん、RFプラズマ等、他の
高周波励起プラズマ方法を用いても良い。また、分光に
干渉フィルタを用いたがもちろん1回折格子やプリズム
等を利用して分光しても良い。
In this embodiment, a microwave plasma method was used to generate the plasma species, but other high frequency excited plasma methods such as RF plasma may of course be used. Moreover, although an interference filter is used for spectroscopy, it is of course possible to use a single diffraction grating, a prism, or the like to perform spectroscopy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板を熱せずに、プラズマ処理の向上
やプラズマ処理の適正化がなされるため、特に、温度上
昇を嫌う化合物半導体装置の製造が高効率でできる効果
がある。
According to the present invention, plasma processing is improved and plasma processing is optimized without heating the substrate, so that compound semiconductor devices, which are particularly sensitive to temperature rises, can be manufactured with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプラズマ処理装置の断面図、第2図は
プラズマ酸化膜厚の時間依存性を示した図、第3図はプ
ラズマドーピングによるB濃度の深さ方向依存性を示し
た図である。 1・・・被処理基板、6・・・マイクロ波、9・・・磁
界発生コイル、13・・・赤外光源、15・・・干渉フ
ィルタ、17・・・赤外線透過窓、A・・・プラズマ処
理のみ、B・・・プラズマ処理土基板加熱、C・・・プ
ラズマ処理土地2図       建3凹
FIG. 1 is a cross-sectional view of the plasma processing apparatus of the present invention, FIG. 2 is a diagram showing the time dependence of plasma oxide film thickness, and FIG. 3 is a diagram showing the depth direction dependence of B concentration due to plasma doping. It is. DESCRIPTION OF SYMBOLS 1... Substrate to be processed, 6... Microwave, 9... Magnetic field generation coil, 13... Infrared light source, 15... Interference filter, 17... Infrared transmission window, A... Plasma treatment only, B... Plasma treated soil substrate heating, C... Plasma treated land 2 drawings, building 3 concave

Claims (1)

【特許請求の範囲】 1、被処理基板面をプラズマ種で処理する方法において
、被処理基板あるいは被処理基板上に形成する膜を構成
している原子間結合振動を励起させる特定波長の電磁波
を被処理面に照射しながらプラズマ処理することを特徴
としたプラズマ処理方法。 2、プラズマ種の生成に電子サイクロトロン共鳴を利用
したことを特徴とする特許請求の範囲の第1項に記載の
プラズマ処理方法。 3、上記電磁波は、結合原子間の伸縮振動、変角振動、
ねじれ振動を励起させる基本音、あるいは倍音、または
、複数の振動様式の結合音のうち、少なくとも1つを励
起させる波長を有することを特徴とした特許請求の範囲
第1項又は第2項記載のプラズマ処理方法。 4、被処理基板面をプラズマ種で処理する装置において
、被処理基板あるいは被処理基板上に形成する膜を構成
している原子間撮動結合振動を励起させる特定波長の電
磁波を、被処理面に照射しながらプラズマ処理ができる
ことを特徴としたプラズマ処理装置。 5、上記電磁波を得るために、光干渉フィルタ。 カットフィルタ、あるいはスリットとプリズマ、回折格
子、エシエレート格子を用いたことを特徴とした特許請
求の範囲第4項に記載のプラズマ処理装置。 6、上記電磁波をプラズマ処理容器内の被処理面に到達
させるために、ヨウ化タリウム系材、ハロゲン元素とア
ルカリ金属との化合物またはハロゲン元素とアルカリ土
類金属元素との化合物、硫化亜鉛系材およびセレン亜鉛
系材からなる群から選ばれた少なくとも1種の材料を用
いた真空容器を用いたことを特徴とする特許請求の範囲
の第4項又は第5項記載のプラズマ処理装置。 7、上記電磁波として、熱放射型ランプ、放電型ランプ
、レーザ、または、シンクロトロン放射光を用いたこと
を特徴とした特許請求の範囲の第4項乃至第6項のいず
れかに記載のプラズマ処理装置。 8、上記真空容器は窓を有することを特徴とする特許請
求の範囲第6項記載のプラズマ処理装置。
[Claims] 1. In a method of treating the surface of a substrate to be processed with a plasma species, electromagnetic waves of a specific wavelength are used to excite the vibrations of interatomic bonds constituting the substrate to be processed or a film formed on the substrate to be processed. A plasma processing method characterized by performing plasma processing while irradiating a surface to be processed. 2. The plasma processing method according to claim 1, wherein electron cyclotron resonance is used to generate plasma species. 3. The electromagnetic waves mentioned above are caused by stretching vibrations between bonded atoms, bending vibrations,
Claims 1 or 2, characterized in that it has a wavelength that excites at least one of a fundamental tone, overtones, or combined tones of a plurality of vibration modes that excites torsional vibrations. Plasma treatment method. 4. In an apparatus that processes the surface of a substrate to be processed with a plasma species, an electromagnetic wave of a specific wavelength that excites the atomic photocoupling vibration that constitutes the substrate to be processed or a film formed on the substrate to be processed is applied to the surface to be processed. A plasma processing device characterized by being able to perform plasma processing while irradiating. 5. Optical interference filter to obtain the above electromagnetic waves. 5. The plasma processing apparatus according to claim 4, which uses a cut filter, a slit, a prism, a diffraction grating, or an echelon grating. 6. In order to allow the electromagnetic waves to reach the surface to be treated in the plasma processing vessel, thallium iodide-based materials, compounds of halogen elements and alkali metals, compounds of halogen elements and alkaline earth metal elements, zinc sulfide-based materials are used. The plasma processing apparatus according to claim 4 or 5, characterized in that the vacuum vessel is made of at least one material selected from the group consisting of selenium and zinc-based materials. 7. The plasma according to any one of claims 4 to 6, wherein a thermal radiation lamp, a discharge lamp, a laser, or a synchrotron radiation light is used as the electromagnetic wave. Processing equipment. 8. The plasma processing apparatus according to claim 6, wherein the vacuum container has a window.
JP14572688A 1988-06-15 1988-06-15 Plasma treatment and apparatus Pending JPH01315140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14572688A JPH01315140A (en) 1988-06-15 1988-06-15 Plasma treatment and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14572688A JPH01315140A (en) 1988-06-15 1988-06-15 Plasma treatment and apparatus

Publications (1)

Publication Number Publication Date
JPH01315140A true JPH01315140A (en) 1989-12-20

Family

ID=15391715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14572688A Pending JPH01315140A (en) 1988-06-15 1988-06-15 Plasma treatment and apparatus

Country Status (1)

Country Link
JP (1) JPH01315140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196198A3 (en) * 2016-05-13 2018-02-08 Instituto Superior Técnico Process, reactor and system for fabrication of freestanding two-dimensional nanostructures using plasma technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196198A3 (en) * 2016-05-13 2018-02-08 Instituto Superior Técnico Process, reactor and system for fabrication of freestanding two-dimensional nanostructures using plasma technology
JP2019523695A (en) * 2016-05-13 2019-08-29 インスティツト スーペリア テクニコ Process, reactor and system for the fabrication of free-standing two-dimensional nanostructures using plasma technology
EP3567130A1 (en) * 2016-05-13 2019-11-13 Instituto Superior Técnico Reactor and system for fabrication of free-standing two-dimensional nanostructures using plasma technology
US11254575B2 (en) 2016-05-13 2022-02-22 Instituto Superior Técnico Process, reactor and system for fabrication of free-standing two-dimensional nanostructures using plasma technology

Similar Documents

Publication Publication Date Title
KR101046530B1 (en) Post-Processing of Low Dielectric Constant (κ) Films
KR101056199B1 (en) Plasma oxidation treatment method
KR100723899B1 (en) Method for manufacturing semiconductor device, substrate treater, and substrate treatment system
EP0184352A1 (en) Method of surface treatment
US5232749A (en) Formation of self-limiting films by photoemission induced vapor deposition
JPS6243335B2 (en)
JPS6175529A (en) Dry etching method and apparatus therefor
US5824455A (en) Processing method and apparatus
JPS63224233A (en) Surface treatment
JPS5982732A (en) Manufacture for semiconductor device
JPH01315140A (en) Plasma treatment and apparatus
TW564480B (en) Method and apparatus for radical oxidation of silicon
JPS6289882A (en) Vapor phase etching method
JPS59136130A (en) Device for forming plasma film by microwave
JPH02207525A (en) Substrate processing method and apparatus therefor
JP2969897B2 (en) Plasma processing equipment
JP3300781B2 (en) Method of forming oxide film
JPS60211847A (en) Forming method of insulating film
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS63313814A (en) Device for forming thin film
JPH0555186A (en) Surface processing method
JPS5967623A (en) Processing method for semiconductor device
JPH0978245A (en) Formation of thin film
GB2131608A (en) Fabricating semiconductor circuits
JPS60167316A (en) Formation of film