JPH02207419A - Manufacture of oxide superconducting wire rod - Google Patents
Manufacture of oxide superconducting wire rodInfo
- Publication number
- JPH02207419A JPH02207419A JP1026097A JP2609789A JPH02207419A JP H02207419 A JPH02207419 A JP H02207419A JP 1026097 A JP1026097 A JP 1026097A JP 2609789 A JP2609789 A JP 2609789A JP H02207419 A JPH02207419 A JP H02207419A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconducting
- wire
- alloy
- wire rod
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005245 sintering Methods 0.000 claims abstract description 22
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 20
- 238000002844 melting Methods 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000011049 filling Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 239000002887 superconductor Substances 0.000 abstract description 9
- 239000000843 powder Substances 0.000 description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910001252 Pd alloy Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 3
- 238000001354 calcination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、酸化物超電導線材の製造方法に関するもの
で、特に、臨界電流密度を向上させるための改良に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconducting wire, and in particular to an improvement for increasing critical current density.
[従来の技術]
酸化物超電導材料に、金属粉末等、たとえばAg粉末ま
たはAg2O粉末を添加して、焼結することにより、得
られた焼結体の臨界電流密度が、そのような金属粉末等
を添加しない場合に比べて増加することが、たとえば、
Appl、Phys。[Prior Art] By adding metal powder, etc., such as Ag powder or Ag2O powder, to an oxide superconducting material and sintering it, the critical current density of the obtained sintered body is lower than that of such metal powder, etc. For example, compared to the case without adding
Appl, Phys.
Lett、52 (18)、1988年5月2日(Am
erican In5titute ofPhys
ics)pp、1525−1527に示されている。Lett, 52 (18), May 2, 1988 (Am
erican In5 position of Phys
ics) pp, 1525-1527.
上述した従来技術では、酸化物超電導材料に添加される
粉末を構成する銀の融点(960℃)よりも低い950
℃までの焼結温度が採用されている。しかしながら、こ
のような焼結温度で焼結された酸化物超電導体には、溶
融しなかった銀が、銀粒子の状態で、酸化物超電導材料
からなる結晶粒の間に位置しているにすぎない。そのた
め、銀粒子および超電導結晶粒相互間の密着性が悪く、
かつ、超電導結晶粒相互間の隙間は、焼結後においても
、比較的大きな空孔として残るため、焼結体すなわち酸
化物超電導体の緻密度を向上させ得ず、したがって、臨
界電流密度Jcのなお一層の向上を図ることが困難であ
った。In the above-mentioned conventional technology, the melting point (950° C.) of silver, which is lower than the melting point (960° C.) of silver constituting the powder added to the oxide superconducting material, is
Sintering temperatures up to °C have been employed. However, in the oxide superconductor sintered at such a sintering temperature, unmelted silver is only located in the form of silver particles between the crystal grains of the oxide superconducting material. do not have. Therefore, the adhesion between silver particles and superconducting crystal grains is poor,
Moreover, since the gaps between superconducting crystal grains remain as relatively large pores even after sintering, the density of the sintered body, that is, the oxide superconductor, cannot be improved, and therefore the critical current density Jc Furthermore, it was difficult to aim for further improvement.
また、従来、酸化物超電導体の製品の製造は、主に粉末
焼結によって行なわれており、プレス成形した後に焼結
したり、あるいはHIP成形すること等により、所望の
形状を得ていた。したがって、現状では、バルク焼結体
しが製造されておらず、このような酸化物超電導体を、
特に線状の製品すなわち線材として、実用的な電気伝送
媒体に用いる試みは、はとんど行なわれていない。Furthermore, conventionally, oxide superconductor products have been manufactured mainly by powder sintering, and desired shapes have been obtained by sintering after press molding, or by HIP molding. Therefore, at present, bulk sintered bodies are not manufactured, and such oxide superconductors are
In particular, very few attempts have been made to use it as a practical electrical transmission medium, especially as a wire product, ie, a wire rod.
[発明が解決しようとする課題]
そこで、本件出願人は、平成1年1月21日付特許願「
酸化物超電導体および酸化物超電導線材の製造方法」に
おいて、
a、 超電導性を与える酸化物超電導材料からなる第1
の粉末および前記第1の粉末と直接反応しない金属また
はその化合物(たとえば、AgまたはAg20)からな
る第2の粉末を含む混合粉末を、前記第2の粉末より高
い融点を有する金属シースに充填するステップと、
b、 前記混合粉末を充填した状態で前記金属シースを
長尺化するステップと、
C9前記長尺化された金属シース内の前記混合粉末を、
前記第2の粉末の融点以上がっ前記金属シースの融点未
満の温度で焼結するステップと、
を備えることを特徴とする、酸化物超電導線材の製造方
法を提案した。[Problem to be solved by the invention] Therefore, the applicant filed a patent application dated January 21, 1999 titled “
In the method for producing oxide superconductors and oxide superconducting wires, a.
and a second powder made of a metal or a compound thereof (for example, Ag or Ag20) that does not directly react with the first powder, is filled into a metal sheath having a melting point higher than that of the second powder. Step b. Lengthening the metal sheath in a state filled with the mixed powder; C9 The mixed powder in the elongated metal sheath,
We have proposed a method for manufacturing an oxide superconducting wire, comprising: sintering at a temperature higher than the melting point of the second powder and lower than the melting point of the metal sheath.
上述の先願において提案された方法は、それ自体満足な
方法であるが、臨界電流密度の向上のために添加される
第2の粉末が、金属シース内においてランダムに分布す
ることがあるため、かえって、局部的に超電導電流の流
れを阻害するおそれがあった。Although the method proposed in the above-mentioned earlier application is a satisfactory method in itself, the second powder added to improve the critical current density may be randomly distributed within the metal sheath. On the contrary, there was a risk that the flow of superconducting current would be locally obstructed.
そこで、本件発明者は、上記先願にががる方法を改良す
べく、検討および実験を重ねた結果、本発明を完成する
に至ったのである。Therefore, the inventor of the present invention has completed the present invention as a result of repeated studies and experiments in order to improve the method described in the earlier application.
この発明の目的は、より高い臨界電流密度Jcを有する
酸化物超電導線材をより確実に得ることができる、酸化
物超電導線材の製造方法を提供することにある。An object of the present invention is to provide a method for manufacturing an oxide superconducting wire that can more reliably obtain an oxide superconducting wire having a higher critical current density Jc.
[課題を解決するための手段]
この発明にかかる酸化物超電導線材の製造方法は、上述
した先願において開示された方法と比較して、簡単に言
えば、「第2の粉末」の代わりにAgバイブを用いるこ
とが特徴である。すなわち、この発明にかかる方法は、
a、 超電導性を与える酸化物超電導材料をAgパイプ
に充填して得られた第1の線材を長尺化する、第1のス
テップと、
b、 複数の前記第1の線材をAg合金バイブ内に挿入
して得られた第2の線材を長尺化する、第2のステップ
と、
C0前記第2の線材をAgの融点以上かっAg合金バイ
ブを構成するAg合金の融点未満の温度で焼結する、第
3のステップと、
を備えることを特徴とするものである。[Means for Solving the Problems] The method for producing an oxide superconducting wire according to the present invention, in comparison with the method disclosed in the above-mentioned prior application, can be summarized as follows: It is characterized by the use of an Ag vibe. That is, the method according to the present invention includes: a. A first step of lengthening a first wire obtained by filling an Ag pipe with an oxide superconducting material that imparts superconductivity; b. A plurality of the steps described above. a second step of lengthening the second wire obtained by inserting the first wire into the Ag alloy vibrator; A third step of sintering at a temperature below the melting point of the Ag alloy.
なお、前記第1のステップと前記第2のステップとの間
に、複数の前記第1の線材を別のAgバイブ内に挿入し
て得られた線材を長尺化する中間ステップを実施しても
よい。この場合、前記第2のステップは、前記中間ステ
ップにより得られた複数の線材を前記Ag合金バイブ内
に挿入して実施されることになる。なお、上述の中間ス
テップは、必要に応じて複数回繰返してもよ0゜好まし
い実施例では、前記Ag合金ノくイブは、AgにPdを
3〜2 Q w t%添加した合金から構成される。Note that between the first step and the second step, an intermediate step is performed in which the plurality of first wires are inserted into another Ag vibe and the obtained wire is lengthened. Good too. In this case, the second step is performed by inserting the plurality of wire rods obtained in the intermediate step into the Ag alloy vibe. Note that the above-mentioned intermediate step may be repeated multiple times as necessary. In a preferred embodiment, the Ag alloy tube is composed of an alloy in which 3 to 2 Qwt% of Pd is added to Ag. Ru.
また、前記焼結するステップは、好ましくは、酸素雰囲
気中960℃〜1100℃または大気中960℃〜10
00℃の条件下で実施される。The sintering step is preferably performed at 960°C to 1100°C in an oxygen atmosphere or at 960°C to 100°C in air.
It is carried out under conditions of 00°C.
[作用]
この発明によれば、酸化物超電導線材を得るために塑性
加工により線材を長尺化するステップ力(複数回実施さ
れるが、これら長尺化するステ・ツブを経た後であって
も、酸化物超電導材料は、あ(までもAgバイブ内に充
填されている状態を維持する。そして、焼結するステ・
ノブにお(1て、Ag合金バイブは溶融しないが、Ag
t<イブが溶融し、初めてその形状を変える。[Function] According to the present invention, in order to obtain an oxide superconducting wire, the step force for elongating the wire by plastic working (which is carried out multiple times, but after passing through the steps for elongating the wire), However, the oxide superconducting material remains filled in the Ag vibe until the sintering step.
On the knob (1), the Ag alloy vibrator does not melt, but the Ag
t<Eve melts and changes its shape for the first time.
[発明の効果]
この発明にかかる酸化物超電導線材の製造方法によれば
、まず、焼結するステップにお(Xで、酸化物超電導材
料を取囲んでいたA g )<イブが溶融するため、焼
結によって得られた内部の酸化物超電導体の空孔が、溶
融したAgによって埋められる。したがって、酸化物超
電導材料を焼結することによって得られた超電導体の緻
密度を高めることができ、それに応じて、臨界電流密度
を高めることができる。[Effects of the Invention] According to the method for manufacturing an oxide superconducting wire according to the present invention, first, in the sintering step, (A g surrounding the oxide superconducting material at X) < Eve is melted. The pores in the internal oxide superconductor obtained by sintering are filled with molten Ag. Therefore, the density of the superconductor obtained by sintering the oxide superconducting material can be increased, and the critical current density can be increased accordingly.
また、焼結するステップの直前までは、銀が長手方向に
延びるバイブの形態をなしているので、これが溶融され
た後であっても、銀は酸化物超電導線材の長手方向に延
びるように分布する。したがって、酸化物超電導線材の
長手方向に流れる超電導電流は、銀の存在によりほとん
ど阻害されないので、超電導線材の高臨界電流密度化に
有効である。In addition, until just before the sintering step, the silver is in the form of a vibrator that extends in the longitudinal direction, so even after it is melted, the silver is distributed so that it extends in the longitudinal direction of the oxide superconducting wire. do. Therefore, the superconducting current flowing in the longitudinal direction of the oxide superconducting wire is hardly inhibited by the presence of silver, which is effective in increasing the critical current density of the superconducting wire.
この発明において、好ましくは、最終段階で用いる前述
したAg合金バイブは、Ag−Pd合金から構成され、
さらに好ましくは、AgにPdを3〜20wt%添加し
た合金から構成される。このようなAg−Pd合金は、
電気抵抗が低く、熱伝導性に優れていることから、線材
を形成した場合の安定化材および内部の超電導体の保護
層として有利に機能させることができる。また、パラジ
ウムは、銀に対して全率固溶するため、銀単独の場合に
比べて、融点を上昇させる効果を持っている。したがっ
て、このようなAg−Pd合金からなるAg合金バイブ
を用いた場合、焼結するステップにおいて、八gの融点
以上かつAg合金パイプを構成するAg合金の融点未満
の温度を選ぶことが容易になる。なお、パラジウムの添
加量に関して、3wt%未満では、融点の上昇率が低く
、20wt%を超える場合には、パラジウムと酸化物超
電導材料との反応が起こりやすくなるとともに、塑性加
工性が悪くなる。In this invention, preferably, the above-mentioned Ag alloy vibe used in the final stage is composed of an Ag-Pd alloy,
More preferably, it is made of an alloy in which 3 to 20 wt % of Pd is added to Ag. Such Ag-Pd alloy is
Since it has low electrical resistance and excellent thermal conductivity, it can advantageously function as a stabilizing material when a wire is formed and as a protective layer for the superconductor inside. Moreover, since palladium is completely dissolved in silver, it has the effect of raising the melting point compared to the case of silver alone. Therefore, when using an Ag alloy vibrator made of such an Ag-Pd alloy, it is easy to select a temperature in the sintering step that is higher than the melting point of 8g and lower than the melting point of the Ag alloy constituting the Ag alloy pipe. Become. Regarding the amount of palladium added, if it is less than 3 wt%, the rate of increase in the melting point is low, and if it exceeds 20 wt%, the reaction between palladium and the oxide superconducting material tends to occur, and the plastic workability deteriorates.
また、焼結するステップは、酸素雰囲気中960℃〜1
100℃または大気中960℃〜1000℃の条件下で
実施されることが好ましい。いずれの雰囲気であっても
、960℃以上に選んだのは、Agバイブの溶融を可能
にするためである。In addition, the sintering step is performed at 960°C to 1°C in an oxygen atmosphere.
It is preferable to carry out under the conditions of 100°C or 960°C to 1000°C in the atmosphere. Regardless of the atmosphere, the temperature was selected to be 960° C. or higher in order to enable melting of the Ag vibe.
また、酸素雰囲気中1100℃以下または大気中100
0℃以下の条件を選んだのは、これらの条件を超えると
、酸化物超電導材料の溶融が生じ、そのため結晶粒の成
長が起こり、超電導性が極端に劣化したり消失したりす
るからである。In addition, 1100℃ or less in an oxygen atmosphere or 100℃ or less in the atmosphere.
The reason we chose conditions below 0°C is because if these conditions are exceeded, the oxide superconducting material will melt, which will cause crystal grain growth, leading to extreme deterioration or loss of superconductivity. .
[実施例]
実施例1〜3および比較例1.2
市販のy2o、粉末、BaCo3粉末、CuO粉末を、
1:4:6の割合で混合し、900℃で12時間の仮焼
および粉砕を2回繰返した後、940℃で12時間の大
気中での本焼結を行い、引き続き、600℃で24時間
の酸素気流中での熱処理を施して、YI B a 2
Cu s 07−sの組成を有する焼結体を得た。この
焼結体を、粉砕した後、外径12mm、内径9mmのA
gバイブに充填した。このようにして得られた第1の線
材を、直径1mmになるまで伸線した。次に、上述の第
1の線材を、外径12 m m s内径9mmの別のA
g/<イブ内に61本挿入して、複合化された線材を得
た。そして、この複合化された線材を、直径1mmにな
るまで伸線した。さらに、上述の複合化された線材を6
1本用意し、これら複合化された線材を、外径12mm
、内径9mmのA g 95 w t%−Pd5wt%
の合金バイブに挿入して、第2の線材を得た。そして、
この第2の線材を、直径2mmになるまで伸線した。[Example] Examples 1 to 3 and Comparative Example 1.2 Commercially available y2o, powder, BaCo3 powder, CuO powder,
After mixing at a ratio of 1:4:6 and repeating calcination and pulverization for 12 hours at 900°C twice, main sintering was performed at 940°C for 12 hours in the air, and then at 600°C for 24 hours. After heat treatment in an oxygen stream for hours, YI B a 2
A sintered body having a composition of Cu s 07-s was obtained. After crushing this sintered body, the outer diameter of the sintered body was 12 mm, the inner diameter of 9 mm was
I filled it into a g-vibrator. The thus obtained first wire rod was drawn to a diameter of 1 mm. Next, the above-mentioned first wire was transferred to another A having an outer diameter of 12 mm and an inner diameter of 9 mm.
A composite wire was obtained by inserting 61 wires into the wire. Then, this composite wire rod was drawn to a diameter of 1 mm. Furthermore, the above-mentioned composite wire was added to 6
Prepare one wire, and combine these composite wires with an outer diameter of 12 mm.
, inner diameter 9mm A g 95 wt%-Pd5wt%
A second wire rod was obtained by inserting the wire rod into an alloy vibrator. and,
This second wire rod was drawn to a diameter of 2 mm.
次に、上述の第2の線材を、以下の表に示すように、9
55℃〜1005℃の範囲の各温度で、12時間、大気
中で焼結し、次いで、600℃で24時間、酸素気流中
で熱処理を施した。このようにして得られた種々の試料
について、77.3にでの臨界電流密度J c [A/
Cm2]を測定した。これら測定値も、以下の表に併せ
て示されている。Next, as shown in the table below, the above-mentioned second wire is
Sintering was performed in the air at a temperature ranging from 55°C to 1005°C for 12 hours, and then heat treatment was performed at 600°C for 24 hours in an oxygen stream. For the various samples thus obtained, the critical current density J c [A/
Cm2] was measured. These measured values are also shown in the table below.
上の表かられかるように、965℃〜995℃の大気中
での焼結により得られた試料(実施例1〜3)は、それ
以外の温度条件の焼結により得られた試料(比較例1.
2)に比べて、臨界電流密度Jcの向上が図られている
。As can be seen from the table above, the samples obtained by sintering in the air at 965°C to 995°C (Examples 1 to 3) are different from the samples obtained by sintering at other temperature conditions (comparison). Example 1.
Compared to 2), the critical current density Jc is improved.
比較例3
上記実施例1〜3および比較例1,2の場合と同様の原
料粉末を同様の割合で混合し、同様の条件で仮焼および
粉砕を2回繰返した後、Ag2O粉末を、Ag原子のY
、Ba2 Cu、014に対するモル比が1の割合とな
るように、添加した後、980℃で12時間、大気中で
焼結し、引き続き、600℃で24時間の酸素気流中熱
処理を施した。Comparative Example 3 The same raw material powders as in Examples 1 to 3 and Comparative Examples 1 and 2 above were mixed in the same proportions, and after repeating calcination and pulverization twice under the same conditions, Ag2O powder was Atomic Y
, Ba2Cu, was added so that the molar ratio to 014 was 1, and then sintered in the air at 980°C for 12 hours, followed by heat treatment in an oxygen stream at 600°C for 24 hours.
このようにして得られた焼結体を、粉砕した後、外径1
2mm、内径9mmのA g 95 w t%−Pd
5 w t%の合金バイブに充填し、直径2mmになる
まで伸線した。このようにして得られた線材を、980
℃で12時間、大気中で焼結し、その後、600℃で2
4時間、酸素気流中で熱処理を施した。得られた線材の
77.3にでの臨界電流密度Jcを測定したところ、2
80 OA / c m 2と、実施例1〜3のものに
比べて、やや劣っていることがわかった。After pulverizing the sintered body thus obtained, the outer diameter is 1
2 mm, inner diameter 9 mm A g 95 w t%-Pd
It was filled into an alloy vibrator containing 5 wt% and drawn to a diameter of 2 mm. The wire rod obtained in this way was
Sintered at 600°C for 12 hours in air, then sintered at 600°C for 2 hours.
Heat treatment was performed in an oxygen stream for 4 hours. When the critical current density Jc at 77.3 of the obtained wire was measured, it was found to be 2
80 OA/cm2, which was found to be slightly inferior to those of Examples 1 to 3.
比較例4
実施例1〜3および比較例1,2において最終段階で用
いたAg合金バイブを、Ag97.1wt%−Pd2.
9wt%合金からなるものとし、同様のプロセスで作製
した線材を、960℃で12時間、大気中で熱処理した
ところ、当該合金バイブが溶融し、線材の形状を保つこ
とができなかった。Comparative Example 4 The Ag alloy vibrator used in the final stage in Examples 1 to 3 and Comparative Examples 1 and 2 was made of Ag97.1wt%-Pd2.
When a wire rod made of a 9wt% alloy and produced by a similar process was heat-treated in the air at 960° C. for 12 hours, the alloy vibe melted and the wire could not maintain its shape.
比較例5
比較例4で用いたAg合金バイブにおけるPdの添加量
を21.0wt%としたところ、硬くて、伸線が不可能
であった。Comparative Example 5 When the amount of Pd added in the Ag alloy vibrator used in Comparative Example 4 was set to 21.0 wt%, it was hard and impossible to draw.
Claims (4)
に充填して得られた第1の線材を長尺化する、第1のス
テップと、 複数の前記第1の線材をAg合金パイプ内に挿入して得
られた第2の線材を長尺化する、第2のステップと、 前記第2の線材をAgの融点以上かつ前記Ag合金パイ
プを構成するAg合金の融点未満の温度で焼結する、第
3のステップと、 を備えることを特徴とする、酸化物超電導線材の製造方
法。(1) A first step of lengthening a first wire rod obtained by filling an Ag pipe with an oxide superconducting material that imparts superconductivity, and inserting a plurality of the first wire rods into an Ag alloy pipe. a second step of lengthening the second wire rod obtained by the insertion; and sintering the second wire rod at a temperature higher than the melting point of Ag and lower than the melting point of the Ag alloy constituting the Ag alloy pipe. A method for producing an oxide superconducting wire, comprising: a third step of doing so;
に、複数の前記第1の線材を別のAgパイプ内に挿入し
て得られた線材を長尺化する中間ステップを備え、前記
第2のステップは、前記中間ステップにより得られた複
数の線材を前記Ag合金パイプ内に挿入して実施される
、請求項1記載の酸化物超電導線材の製造方法。(2) between the first step and the second step, an intermediate step of inserting a plurality of the first wire rods into another Ag pipe and lengthening the obtained wire rod; 2. The method for manufacturing an oxide superconducting wire according to claim 1, wherein the second step is performed by inserting a plurality of wires obtained in the intermediate step into the Ag alloy pipe.
t%添加した合金からなる、請求項1または2記載の酸
化物超電導線材の製造方法。(3) The Ag alloy pipe has 3 to 20 w of Pd added to Ag.
The method for producing an oxide superconducting wire according to claim 1 or 2, comprising an alloy to which t% is added.
1100℃または大気中960℃〜1000℃の条件下
で実施される、請求項1ないし3のいずれかに記載の酸
化物超電導線材の製造方法。(4) The third step is carried out at 960°C in an oxygen atmosphere.
The method for producing an oxide superconducting wire according to any one of claims 1 to 3, which is carried out under conditions of 1100°C or 960°C to 1000°C in the atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1026097A JPH02207419A (en) | 1989-02-04 | 1989-02-04 | Manufacture of oxide superconducting wire rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1026097A JPH02207419A (en) | 1989-02-04 | 1989-02-04 | Manufacture of oxide superconducting wire rod |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02207419A true JPH02207419A (en) | 1990-08-17 |
Family
ID=12184096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1026097A Pending JPH02207419A (en) | 1989-02-04 | 1989-02-04 | Manufacture of oxide superconducting wire rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02207419A (en) |
-
1989
- 1989-02-04 JP JP1026097A patent/JPH02207419A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04212215A (en) | Manufacture of bismuthal oxide superconductor | |
WO1989012028A1 (en) | Oxide superconductive material and process for its production | |
JPH0494019A (en) | Manufacture of bismuth-based oxide superconductor | |
JPH04292819A (en) | Manufacture of oxide superconductive wire | |
JP2685147B2 (en) | Superconducting wire and its manufacturing method | |
JP2821794B2 (en) | Oxide superconductor and manufacturing method thereof | |
JPH02207419A (en) | Manufacture of oxide superconducting wire rod | |
JPH01305823A (en) | Each production of superconductor and superconducting wire rod | |
JPH02192401A (en) | Production of oxide superconductor and oxide superconducting wire | |
JP3538620B2 (en) | Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method | |
JP3050573B2 (en) | Manufacturing method of oxide superconducting conductor | |
JP3050572B2 (en) | Manufacturing method of oxide superconducting conductor | |
JP3590567B2 (en) | Manufacturing method of oxide superconducting wire and oxide superconducting wire | |
JPH04292812A (en) | Manufacture of bismuth-based oxide superconductive wire | |
JPH04317415A (en) | Production of bi-based oxide superconductor | |
JPH07106906B2 (en) | Oxide superconducting material containing rare earth element and method for producing the same | |
JPH05254834A (en) | Oxide superconductor and production process thereof | |
JPH0248459A (en) | Production of compound oxide superconductor | |
JPH01169815A (en) | Manufacture of superconductive cable with high critical current density | |
JP2590096B2 (en) | Manufacturing method of sintered wire | |
JP2004296253A (en) | Manufacturing method of bismuth based oxide superconducting wire rod | |
JPH02207422A (en) | Manufacture of oxide superconducting wire rod | |
JPH09295813A (en) | Oxide superconducting material, production of superconducting material and superconducting wire rod | |
JPH03280308A (en) | Manufacture of bismuth group oxide superconductor | |
JPH01239713A (en) | Manufacture of oxide superconductive wire |