JPH02203914A - Adsorbing and desorbing apparatus - Google Patents

Adsorbing and desorbing apparatus

Info

Publication number
JPH02203914A
JPH02203914A JP1023150A JP2315089A JPH02203914A JP H02203914 A JPH02203914 A JP H02203914A JP 1023150 A JP1023150 A JP 1023150A JP 2315089 A JP2315089 A JP 2315089A JP H02203914 A JPH02203914 A JP H02203914A
Authority
JP
Japan
Prior art keywords
gas
activated carbon
adsorption
zones
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1023150A
Other languages
Japanese (ja)
Other versions
JPH06104180B2 (en
Inventor
Yasuhiro Satake
佐竹 恭洋
Kenji Seki
関賢 司
Mikio Akamatsu
赤松 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Engineering and Construction Co Ltd
Original Assignee
Toho Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Engineering and Construction Co Ltd filed Critical Toho Chemical Engineering and Construction Co Ltd
Priority to JP1023150A priority Critical patent/JPH06104180B2/en
Publication of JPH02203914A publication Critical patent/JPH02203914A/en
Publication of JPH06104180B2 publication Critical patent/JPH06104180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To lower the concn. of the org. solvent in exhaust gas at an outlet by radially partitioning an activated carbon packed drum into three or more zones to set the first zone to a desorbing zone and the second and third zones to adsorbing zones and passing gas to be treated through the adsorbing zones in series. CONSTITUTION:In a gas adsorbing and desorbing apparatus wherein an activated carbon packed drum-shaped adsorbing and desorbing chamber is tumbled, a drum 1 is radially partitioned into three or more independent zones A-C. In the rotary direction of the drum 1, the first zone is set to a desorbing zone C and the second and third zones are set to desorbing zones A, B. The gas to be treated supplied to the second zone A is further supplied to the third zone B and the adsorbing and desorbing chamber is arranged so as to treat the gas to be treated while gas is passed through two or more adsorbing zones in series. As a result, the concn. of the org. solvent in the exhaust gas at the outlet of this apparatus can be lowered. Further, the amount of desorbed vapor per recovered solvent amount can be reduced to a large extent.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明の吸脱着装置は、高濃度少風量の有機排ガス中の
有機溶剤を簡単なシステムでありながら、回収率95%
以上の高効率と安価なランニングコストで回収するため
に好適に使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The adsorption/desorption device of the present invention is a simple system that can collect organic solvents in high concentration and small amount of organic exhaust gas with a recovery rate of 95%.
It is suitably used for recovery with the above-mentioned high efficiency and low running cost.

装置の中に充填する活性炭は、繊維状、粒状、ビーズ状
、粉末状等特に種類は問わないが、組込みの容易さ、回
収溶剤の品質の良さ、破砕等消耗のなさという点で繊維
状が優位である。
The type of activated carbon to be filled into the device does not matter, such as fibrous, granular, beaded, or powdered, but fibrous is preferable because it is easy to assemble, the quality of the recovered solvent is good, and there is no wear and tear such as crushing. It is superior.

尚、高IfiU少風量とは、具体的には排ガス中の有機
溶剤11a磨5 、 OOOppm以上程麿、排ガス処
理風量iom X/min以下程度である。
It should be noted that the high IfiU low air flow rate specifically means that the organic solvent 11a in the exhaust gas is about 5 OOO ppm or more, and the exhaust gas treatment air flow is about iom X/min or less.

(従来技術及び問題点) 従来、少風量高濃度有機排ガスの処理について、吸着材
に活性炭素繊維を使用した場合の吸脱着方式では、次の
■〜■が指摘できる。
(Prior Art and Problems) Regarding the conventional treatment of high-concentration organic exhaust gas with a small air volume, the following points 1 to 2 can be pointed out in the adsorption/desorption method using activated carbon fiber as an adsorbent.

■ 希釈空気を加え、活性炭素繊維層を通過(るガス速
度を上げることにより、活性炭素繊維が水分過多になる
のを防いでいる。高ini排ガスを処理する場合、濃度
は高いが処理ガス量が少ないというのが一般的である。
■ By adding diluted air and increasing the gas velocity that passes through the activated carbon fiber layer, activated carbon fibers are prevented from becoming overly hydrated.When treating high ini exhaust gas, the concentration is high, but the amount of gas to be processed is reduced. It is common that there are few.

そのままの処理ガス量を活性炭素繊維に通したのでは、
活性炭素繊維層を通過するガス速度が大きすぎ活性炭素
繊維が水分過多になり、有効に働かない。
If the same amount of processed gas is passed through activated carbon fiber,
The gas velocity passing through the activated carbon fiber layer is too high and the activated carbon fiber becomes overly hydrated and does not work effectively.

通常、活性炭素繊維層を通過するガス速度は、20cm
/ s〜50cm/ sの範囲内で運転するのが適当で
ある。
Typically, the gas velocity passing through the activated carbon fiber layer is 20 cm
It is appropriate to operate within the range of /s to 50cm/s.

それは、脱着後に活性炭素繊維に残存した水蒸気や水を
被処理ガスにより、置換及び乾燥させる効果を期待でき
るからである。
This is because the effect of replacing and drying the steam and water remaining on the activated carbon fibers with the gas to be treated after desorption can be expected.

被処理ガス速度の下限を20cm/ Sとしているのは
、その時の乾燥効率を上げるためである。
The lower limit of the processing gas velocity is set at 20 cm/s in order to increase the drying efficiency at that time.

換言すれば、被処理ガスの活性炭素繊維層通過速度を、
ある程度以上に保たなければ、活性炭素繊維は水分過多
になる。
In other words, the rate at which the gas to be treated passes through the activated carbon fiber layer is
If it is not kept above a certain level, the activated carbon fiber will have too much moisture.

周知の如く、活性炭素IIの含水率が上がると、吸着率
は下がるという関係にあるため、活性炭素繊維を常にで
きるだけ乾燥した状態で運転することが効率の上昇に繋
がる。
As is well known, as the moisture content of activated carbon II increases, the adsorption rate decreases, so operating the activated carbon fiber in a state as dry as possible leads to an increase in efficiency.

■ 希釈空気を加え処理しやすい濃度まで排ガス濃度を
薄めて処理する。
■ Add dilution air to dilute the exhaust gas concentration to a concentration that is easy to treat.

従来の活性炭素繊維を用いた吸脱着方式においては、脱
着完了後の一時的に湿った状態の活性炭素繊維に有機排
ガスを供給することになる。そのため、切替直後の活性
炭素繊維が水分過多の状態で、なおかつ余熱が残り活性
炭素繊維が高温の状態で、活性炭素m帷吸着能力が一時
的に低下したとき、出口側に時的にリークする。そのリ
ーク量を下げるために希釈する必要があった。
In the conventional adsorption/desorption method using activated carbon fibers, organic exhaust gas is supplied to the activated carbon fibers in a temporarily moist state after completion of desorption. Therefore, if the activated carbon fiber has too much moisture immediately after switching, and residual heat remains and the activated carbon fiber is at a high temperature, when the activated carbon m-thread adsorption capacity temporarily decreases, temporary leakage occurs to the outlet side. . It was necessary to dilute it to reduce the amount of leakage.

活性炭素繊維を用いた従来の吸脱着装置では、切替時の
リークのピークは、前述のように活性炭素#AII&が
一時的に高温、多湿になっていることに伴い、活性炭素
繊維出側のガス濃度が一時的に上るためである。
In conventional adsorption/desorption devices using activated carbon fibers, the peak of leakage at the time of switching is due to the activated carbon #AII& temporarily becoming hot and humid as described above. This is because the gas concentration temporarily increases.

■ 乾燥及び冷却工程を組込む。■Incorporate drying and cooling processes.

活性炭素繊維の吸着性能は、活性炭素繊維を乾燥し、そ
の後冷却することにより」二昇する。
The adsorption performance of activated carbon fibers can be improved by drying the activated carbon fibers and then cooling them.

粒状活性炭を充填した吸脱着装置においては、この乾燥
、冷却の工程は必要不可欠であるが、活性炭素繊維を充
填した吸脱着装置の場合は、装置が重装備になることを
避(Jるため、この工程を付帯しない場合が多い。
This drying and cooling process is essential for an adsorption/desorption device filled with granular activated carbon, but in the case of an adsorption/desorption device filled with activated carbon fibers, it is necessary to avoid heavy equipment. , this process is often not included.

しかしそうすると、装置が簡単にはなるものの、前述の
如く切替時の装置出口側ガス濃度が瞬時、若干上昇する
のを容認せざるを得ないことになる。
However, although this would simplify the apparatus, it would be necessary to accept that the gas concentration on the outlet side of the apparatus would instantaneously rise slightly at the time of switching as described above.

活性炭による吸脱着装置は本来濃縮装置である。An adsorption/desorption device using activated carbon is essentially a concentrator.

その本来の目的からすると、前記■、■の如(希釈する
方法は、不合理である。
From its original purpose, the dilution methods described in (1) and (2) above are unreasonable.

(発明の目的及び構成〕 本発明は従来技術にみる問題点を解消した吸脱着装置を
提供しようとするものである。
(Object and Structure of the Invention) The present invention aims to provide an adsorption/desorption device that solves the problems seen in the prior art.

本発明は下記のとおりである。The present invention is as follows.

活性炭を充填したドラム型吸脱看室が軸動するガス用吸
脱着装置において、該ドラムを放射状で3以上の独立し
たゾーンに仕切り、ドラムの回転方向に第1ゾーンを脱
着ゾーンとし、第2、第3ゾーンを吸着ゾーンとし、且
つ、第2ゾーンに供給された被処理ガスを更に第3ゾー
ンに供給し、被処理ガスを2以上の吸着ゾーン=5 に直列に通しつつ処理するように吸脱着室を配設したこ
とを特徴とする回転ドラム型吸脱着装置。このような本
発明の吸脱着装置を示したものが第1図(第1図の1〜
3)である。
In a gas adsorption/desorption device in which a drum-shaped adsorption/desorption chamber filled with activated carbon moves axially, the drum is radially partitioned into three or more independent zones, with the first zone serving as the desorption zone and the second zone in the rotational direction of the drum. , the third zone is an adsorption zone, and the gas to be treated that is supplied to the second zone is further supplied to the third zone, and the gas to be treated is passed through two or more adsorption zones=5 in series for treatment. A rotating drum type adsorption/desorption device characterized by having an adsorption/desorption chamber. The adsorption/desorption device of the present invention is shown in Fig. 1 (1 to 1 in Fig. 1).
3).

第2図は回転ドラムを配置した吸脱着装置の切欠斜視図
である。
FIG. 2 is a cutaway perspective view of the adsorption/desorption device in which a rotating drum is arranged.

複数室に仕切ったドラム(第1図では3室)の内、第1
ゾーンの1室は脱着ゾーンにあり、水蒸気又は他の熱媒
体を供給することにより、活性炭に吸着された溶剤は脱
着される。他の第2ゾーン及び第3ゾーンの活性炭を充
填した2つの室は、直列に被処理ガスが流れるように弁
及び、弁座で仕切っである。
The first of the drums divided into multiple chambers (three chambers in Figure 1)
One of the zones is a desorption zone, where the solvent adsorbed on the activated carbon is desorbed by supplying water vapor or other heat carrier. The other two chambers filled with activated carbon in the second zone and the third zone are separated by a valve and a valve seat so that the gas to be treated flows in series.

室Aにドラム内周面側から供給された被処理ガスは活性
炭層を有機溶剤が吸着されながら通過し、ドラム外周面
側へ抜ける。次に、被処理ガスは室B外周面側から内周
面側へ向って流れながら、活性炭に有機溶剤が吸着され
ていく。
The gas to be treated is supplied to chamber A from the inner peripheral surface of the drum, passes through the activated carbon layer while the organic solvent is adsorbed, and exits to the outer peripheral surface of the drum. Next, as the gas to be treated flows from the outer peripheral surface of chamber B toward the inner peripheral surface, the organic solvent is adsorbed onto the activated carbon.

この時、室Aは11麿の高いガスを供給されている。室
Aの活性炭は濃度の高いガスを吸着しきれず短時間うち
に室温Aの出ロガスS度は破過しはじめる。
At this time, chamber A is being supplied with 11% high gas. The activated carbon in chamber A cannot adsorb the highly concentrated gas, and within a short period of time, the S degree of outgoing gas at room temperature A begins to break through.

ぞして、室Δを出た中濃度のガスは、室Bに送られる。Therefore, the medium concentration gas leaving chamber Δ is sent to chamber B.

室Bで再度吸着されるため、室Bの出[1、すなわち装
置出口の濃度を著しく低く押さえることが可能となる。
Since it is adsorbed again in chamber B, it becomes possible to keep the concentration at the outlet [1 of chamber B, that is, the outlet of the device] extremely low.

実際の設計においては、溶剤の種類等により最適運転か
できるように活性炭の量、切替時間等を設定する。
In actual design, the amount of activated carbon, switching time, etc. are set to achieve optimal operation depending on the type of solvent, etc.

(実施例〕 第1図において、矢印イば被処理ガスの流れ方向を示し
、矢印口は脱着ガスの流れ方向を示し、矢印ハは円筒の
回転方向を示したものである。
(Example) In FIG. 1, arrow I indicates the flow direction of the gas to be processed, arrow opening indicates the flow direction of the desorption gas, and arrow C indicates the rotation direction of the cylinder.

室Aと室Bとは直列に配列されており、室Aに供給され
た被処理ガスは、室Aの吸着材層を通過してのち、室B
の吸着材層に供給された。
Chamber A and chamber B are arranged in series, and the gas to be treated that is supplied to chamber A passes through the adsorbent layer of chamber A and then enters chamber B.
was supplied to the adsorbent layer.

その結果、被処理ガスは、高濃度の状態で室温Aで処理
され、濃度が低下した状態でB室に供給された。
As a result, the gas to be processed was processed at room temperature A in a high concentration state, and was supplied to chamber B in a reduced concentration state.

B室はA室に比較して吸猶に充分余裕があり、このため
被処理ガスに含まれる低濃度の吸容成分は、B室の活性
炭に吸着し、系外に排出されることはなかった。
Room B has more room for absorption than room A, so the low-concentration absorption components contained in the gas to be treated are adsorbed by the activated carbon in room B and are not discharged outside the system. Ta.

B室では、活性炭が脱着蒸気によって、湿磨が高い状態
になっても、A室M3だ吸着成分を低濃度で含む被処理
ガスによって乾燥が同時に行われた。
In room B, even though the activated carbon was highly moistened by desorption steam, in room A M3, drying was simultaneously performed by the gas to be treated containing adsorbed components at a low concentration.

A室の活性炭が吸着限度に達した時点で、円筒は矢印ハ
の方向に1/3回転し、A室はC室の位置で脱着され、
B室はA室の位置で高′a度ガスの吸着処理に供され、
C室は脱着が完了した状態でB室の位置で低淵瓜ガスの
吸着処理に供された。
When the activated carbon in chamber A reaches its adsorption limit, the cylinder rotates 1/3 in the direction of arrow C, and chamber A is desorbed at the position of chamber C.
Room B is located at the location of room A and is used for adsorption treatment of high-a degree gas.
After the desorption was completed, chamber C was placed in chamber B and subjected to adsorption treatment for melon gas.

以上の工程を繰り返して、連続的に被処理ガスの処理を
行った。
The above steps were repeated to continuously process the gas to be processed.

このようにした結果は、被処理ガスは、直列で吸着成分
の完全な除去が行われた。
As a result, adsorbed components were completely removed in series from the gas to be treated.

被吸着ガス中の吸着成分がA室でリークしても、B室で
更に吸着処理がなされるため、活性炭は飽和吸着量まで
有効に使用することができた。
Even if adsorbed components in the adsorbed gas leaked in chamber A, the adsorption process was further carried out in chamber B, so activated carbon could be used effectively up to its saturated adsorption amount.

(発明の効果) 装置出口濃度を低くおさえた状態での運転が求められる
ため、活性炭の吸着率(溶剤が活性炭に吸着した量の割
合)を低くおさえなければならない。この時の吸着率を
有効吸着率といい、殻内には出口濃度が入口温度の5%
をリークし始めた時点を指す。
(Effects of the Invention) Since operation is required to keep the concentration at the device outlet low, the adsorption rate of activated carbon (the ratio of the amount of solvent adsorbed to activated carbon) must be kept low. The adsorption rate at this time is called the effective adsorption rate, and the outlet concentration in the shell is 5% of the inlet temperature.
This refers to the point at which the data begins to leak.

ところが、装置出口濃度を無視してもよいと考えるなら
、活性炭の吸着限界まで溶剤を吸着させてもよいことに
なる。この詩の吸着率を平衡吸着率又は飽和吸着率とい
う。活性炭の内でも、例えば、活性炭素#&雑にトリク
ロロエチレンを吸着させた場合、有効吸着率は約30%
、平衡吸着率は約60%である。すなわち、等量の活性
炭でも出口siの状況により約2倍の吸着性=9= 能を活用できる。このことを実用化したのが、本発明で
ある。
However, if it is considered that the concentration at the outlet of the device can be ignored, then the solvent can be adsorbed up to the adsorption limit of activated carbon. This adsorption rate is called the equilibrium adsorption rate or the saturated adsorption rate. Among activated carbons, for example, when trichlorethylene is adsorbed on activated carbon #, the effective adsorption rate is approximately 30%.
, the equilibrium adsorption rate is about 60%. In other words, even with the same amount of activated carbon, approximately twice the adsorption capacity can be utilized depending on the situation at the outlet si. The present invention has put this into practical use.

づ°なわも、本発明の如く、活性炭を直列で2段配置す
ることにより、1段目の活性炭には平衡吸着近くまで溶
剤を吸着させることが可能となる。1段目でリークした
溶剤を2段目で再度吸着させる訳である。
Furthermore, by arranging activated carbon in two stages in series as in the present invention, it becomes possible to adsorb the solvent to the activated carbon in the first stage up to nearly equilibrium adsorption. This means that the solvent that leaked in the first stage is adsorbed again in the second stage.

本発明の効果は次のとおりである。The effects of the present invention are as follows.

■ 高濃度排ガスを多段で処理づ−るため、装置出口の
排ガス有機溶剤′a度を極めて低くすることができる。
(2) Since high-concentration exhaust gas is treated in multiple stages, the concentration of organic solvents in the exhaust gas at the outlet of the device can be extremely low.

a、前にも述べた如く、−段目で飽和吸着まで吸着させ
、二段目では有効吸着の時点で切り替えるため、出口排
ガス濃度を低く押えることが可能となった。
a. As mentioned before, the negative stage adsorbs until saturated adsorption, and the second stage switches at the point of effective adsorption, making it possible to keep the outlet exhaust gas concentration low.

b、脱着が完了し、切替える訳であるが、脱着完了直後
で活性炭層の吸着性能が一時的に低下している室が吸着
工程に回転してくる訳であるが、その位置は、直列吸着
のバックアップ側にまわってくる。
b. After the desorption is completed, the chamber is switched over. Immediately after the desorption is completed, the chamber where the adsorption performance of the activated carbon layer has temporarily decreased is rotated to the adsorption process, but its position is different from the serial adsorption. I'm going to turn to the backup side.

しかし、その時点では一段目から出て来るガス濃度は一
段目が有効に働いているため、低濃度で供給されること
になる。そのためバックアップ側の吸着性能が低下して
いても出口側へリークする溶剤11i1度は低くなる。
However, at that point, the gas coming out from the first stage is supplied at a low concentration because the first stage is working effectively. Therefore, even if the adsorption performance on the backup side is reduced, the amount of solvent 11i1 that leaks to the outlet side is reduced.

数秒間でバックアップ側の吸着性能は復元するので、そ
の後、バックアップ側入口濃度が上昇しても受は止める
ことができる訳である。
Since the adsorption performance on the backup side is restored in a few seconds, even if the concentration at the backup side inlet increases thereafter, the absorption can be stopped.

■ 回収溶剤量当りの脱着蒸気又は他の熱媒体の量の大
幅削減が達成できる。
■ Significant reductions in the amount of desorbed steam or other heat carrier per amount of recovered solvent can be achieved.

活性炭を用いた吸脱着装置の場合、脱着するための蒸気
量は、活性炭に吸着されている溶剤の量よりも充填され
ている活性炭の量そのものに概ね比例する。
In the case of an adsorption/desorption device using activated carbon, the amount of vapor to be desorbed is generally proportional to the amount of activated carbon filled rather than the amount of solvent adsorbed to the activated carbon.

換言すれば、脱着ゾーンに来た活性炭に飽和近くまで溶
剤が吸着していても、あまり吸着していなくても、脱着
蒸気量は殆んど変わらない。
In other words, whether the activated carbon that has arrived at the desorption zone has adsorbed the solvent to near saturation or not so much, the amount of desorption vapor hardly changes.

このようなことから、活性炭を用いた吸脱着装置では、
いかに活性炭に大量の溶剤を吸着させることができるか
ということが性能上大切なことになる。
For this reason, in adsorption/desorption devices using activated carbon,
What is important in terms of performance is how large amounts of solvent can be adsorbed onto activated carbon.

そして、前述の方法のように飽和近くまで溶剤を吸着し
た活性炭を脱着すれば、一定量の蒸気で多くの有機溶剤
を回収することが可能となり、回収した溶剤と使用した
水蒸気量の比、すなわち蒸気比が著しく小さくなる訳で
ある。
If activated carbon that has adsorbed solvent to near saturation is desorbed as in the method described above, it becomes possible to recover a large amount of organic solvent with a certain amount of steam, and the ratio of the recovered solvent to the amount of water vapor used, i.e. This means that the steam ratio becomes significantly smaller.

例えば、蒸気3kgで有機溶剤1kgを回収できたとす
れば、その時の蒸気比は3となる。
For example, if 1 kg of organic solvent can be recovered with 3 kg of steam, the steam ratio at that time will be 3.

また、脱着蒸気量と活性炭量はほぼ比例するので、仮り
に1k(lの活性炭に 1.2k17の脱着蒸気が必要
とすると、そのIkOの活性炭に60%有機溶剤が吸着
していた場合は0.6kgの有機溶剤を1.2k17の
蒸気で脱着したことになり、その時の蒸気比は2倍とな
る。そのlkOの活性炭に30%しか吸着していなかっ
た場合は、0.3k(]の有機溶剤を1.2kgの蒸気
で脱着するのであるから蒸気比は4となる訳である。
In addition, since the amount of desorption vapor and the amount of activated carbon are almost proportional, if 1k (l) of activated carbon requires 1.2k17 of desorption vapor, if 60% of the organic solvent is adsorbed on that IkO of activated carbon, the amount of desorption vapor will be 0. This means that .6 kg of organic solvent was desorbed with 1.2 k17 of steam, and the steam ratio at that time is doubled.If only 30% of that lkO was adsorbed on the activated carbon, 0.3 k(] Since the organic solvent is desorbed with 1.2 kg of steam, the steam ratio is 4.

従来型では、飽和吸着部と吸着帯を合わせて同時に脱着
することになる。それに比べ、本発明では脱着される活
性炭素繊維は、従来型の1/2.室Aの部分のみである
In the conventional type, the saturated adsorption part and the adsorption zone are combined and desorption is performed simultaneously. In comparison, in the present invention, the amount of activated carbon fiber that is detached is 1/2 that of the conventional type. This is only the room A part.

そして、その部分は殆んどが飽和吸着している活性炭素
4111fである。前述の如(、脱着に要する蒸気量は
活性炭量に概ね比例するものであるから、従来型に比べ
約1/2の蒸気量で脱着している。
Most of that portion is activated carbon 4111f that is saturated and adsorbed. As mentioned above, since the amount of steam required for desorption is roughly proportional to the amount of activated carbon, desorption is achieved with approximately 1/2 the amount of steam compared to the conventional type.

方、本発明装置によってフロンR−113を吸着させた
場合は、従来の約1/2の蒸気量で、従来の80%回酸
回収を得ることができる。
On the other hand, when Freon R-113 is adsorbed by the apparatus of the present invention, 80% of the conventional acid recovery can be obtained with approximately 1/2 the amount of steam compared to the conventional method.

これらの結果から、従来型に比べ回収溶剤当り脱着蒸気
の使用量が約0.6倍(1/2 x 100/ 80%
)に削減できることがわかる。
From these results, the amount of desorption steam used per recovered solvent is approximately 0.6 times (1/2 x 100/80%) compared to the conventional method.
) can be reduced to

■ 希釈空気を取入れたり、乾燥設備を付帯する等の必
要がないため、シンプルでコンパクトな吸脱着装置の製
作が可能となる。
■ Since there is no need to introduce dilution air or add drying equipment, it is possible to create a simple and compact adsorption/desorption device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の吸脱着装置を示し、第1図の1は該装
置の概要図、第1図の2は正面図、第1図の3は側面図
を示す。 第2図は回転ドラムを配設した吸脱着装置の切欠斜視図
である。 特許出願人  東邦化工!!設)*六会社代理人弁理1
士  土 居 三 部
FIG. 1 shows an adsorption/desorption device of the present invention, 1 in FIG. 1 is a schematic diagram of the device, 2 in FIG. 1 is a front view, and 3 in FIG. 1 is a side view. FIG. 2 is a cutaway perspective view of an adsorption/desorption device equipped with a rotating drum. Patent applicant Toho Kako! ! Establishment) *6 Company Attorney Patent Attorney 1
Shi Doi 3rd part

Claims (1)

【特許請求の範囲】[Claims] (1)活性炭を充填したドラム型吸脱着室が軸動するガ
ス用吸脱着装置において、該ドラムを放射状で3以上の
独立したゾーンに仕切り、ドラムの回転方向に第1ゾー
ンを脱着ゾーンとし、第2、第3ゾーンを吸着ゾーンと
し、且つ、第2ゾーンに供給された被処理ガスを更に第
3ゾーンに供給し、被処理ガスを2以上の吸着ゾーンに
直列に通しつつ処理するように吸脱着室を配設したこと
を特徴とする回転ドラム型吸脱着装置。
(1) In a gas adsorption/desorption device in which a drum-shaped adsorption/desorption chamber filled with activated carbon moves axially, the drum is radially partitioned into three or more independent zones, the first zone being the desorption zone in the rotational direction of the drum, The second and third zones are used as adsorption zones, and the gas to be treated that is supplied to the second zone is further supplied to the third zone, and the gas to be treated is passed through the two or more adsorption zones in series. A rotating drum type adsorption/desorption device characterized by having an adsorption/desorption chamber.
JP1023150A 1989-02-01 1989-02-01 Adsorption / desorption device Expired - Fee Related JPH06104180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023150A JPH06104180B2 (en) 1989-02-01 1989-02-01 Adsorption / desorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023150A JPH06104180B2 (en) 1989-02-01 1989-02-01 Adsorption / desorption device

Publications (2)

Publication Number Publication Date
JPH02203914A true JPH02203914A (en) 1990-08-13
JPH06104180B2 JPH06104180B2 (en) 1994-12-21

Family

ID=12102550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023150A Expired - Fee Related JPH06104180B2 (en) 1989-02-01 1989-02-01 Adsorption / desorption device

Country Status (1)

Country Link
JP (1) JPH06104180B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273938B1 (en) 1999-08-13 2001-08-14 3M Innovative Properties Company Channel flow filter
KR100451281B1 (en) * 2001-05-28 2004-10-06 주식회사 나노테크닉스 A method of recovering solvent with low boiling point
CN107530616A (en) * 2015-05-28 2018-01-02 东洋纺株式会社 Absorbing treatment device
CN109695891A (en) * 2018-05-30 2019-04-30 中电华创(苏州)电力技术研究有限公司 One kind dividing the rotary clarifier in storehouse and flue gas purification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307322A (en) * 2014-10-16 2015-01-28 无锡雪浪环境科技股份有限公司 Flue gas cleaning system for preventing NOx and dioxin from reflowing and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273938B1 (en) 1999-08-13 2001-08-14 3M Innovative Properties Company Channel flow filter
KR100451281B1 (en) * 2001-05-28 2004-10-06 주식회사 나노테크닉스 A method of recovering solvent with low boiling point
CN107530616A (en) * 2015-05-28 2018-01-02 东洋纺株式会社 Absorbing treatment device
CN107530616B (en) * 2015-05-28 2019-08-20 东洋纺株式会社 Absorbing treatment device
CN109695891A (en) * 2018-05-30 2019-04-30 中电华创(苏州)电力技术研究有限公司 One kind dividing the rotary clarifier in storehouse and flue gas purification system

Also Published As

Publication number Publication date
JPH06104180B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
EP0371569B1 (en) Method for the recovery of solvent from a dry cleaning apparatus
JP3841479B2 (en) Organic solvent recovery system and organic solvent recovery method
WO2018101255A1 (en) Organic solvent recovery system and organic solvent recovery method
US5183484A (en) Process for removal of water in raw material mixed gas
JPH02203914A (en) Adsorbing and desorbing apparatus
JPH05200231A (en) Dry dehumidifier
US5195252A (en) Method for dry cleaning as well as a method for recovery of solvent therein
JPH0584417A (en) Method and equipment for recovering solvent
JPS54112378A (en) Continuous adsorber-desorber for harmful gas
JP4530472B2 (en) Organic solvent recovery device and recovery method
JP3183381B2 (en) Method for recovering organic solvent from small air volume gas containing high concentration organic solvent
JP3363986B2 (en) Solvent recovery method
JP2971127B2 (en) Dry cleaning method
JPH0938445A (en) Method for regenerating adsorption tower
JPH08112512A (en) Gas treating device
JPH06320A (en) Dry dehumidifier
JP2001149742A (en) Organic solvent recovering method
JPH0410368B2 (en)
JPH01284298A (en) Solvent recovery method for dry cleaning device
JP3788814B2 (en) Solvent recovery method
JPH07213847A (en) Dehumidifying method
JPH01316693A (en) Method and device for recovering heavy water in which high-concentration tritium coexists
JPS631417A (en) Separation and recovery method for co2
JP2572294B2 (en) Solvent recovery processing method
JPH0663350A (en) Method for recovering solvent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees