JPH0410368B2 - - Google Patents

Info

Publication number
JPH0410368B2
JPH0410368B2 JP59188896A JP18889684A JPH0410368B2 JP H0410368 B2 JPH0410368 B2 JP H0410368B2 JP 59188896 A JP59188896 A JP 59188896A JP 18889684 A JP18889684 A JP 18889684A JP H0410368 B2 JPH0410368 B2 JP H0410368B2
Authority
JP
Japan
Prior art keywords
dmf
acf
exhaust gas
activated carbon
dimethylformamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188896A
Other languages
Japanese (ja)
Other versions
JPS6168122A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59188896A priority Critical patent/JPS6168122A/en
Publication of JPS6168122A publication Critical patent/JPS6168122A/en
Publication of JPH0410368B2 publication Critical patent/JPH0410368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ジメチルホルムアミド(以下DMF
と記す)含有排ガスから特定の比表面積を有する
アクリル系の繊維状活性炭(以下ACFと記す)
を用いてDMFを回収する方法に関するものであ
る。 〔従来の技術及び問題点〕 DMFは、優れた有機溶媒であつて、DMF単独
又はメチルエチルケトン(以下MEKと記す)、ト
ルエンなどの有機溶媒と共に広く用いられてお
り、乾燥機等より発生するこれら有機溶媒含有排
ガスから、これら有機溶媒を捕捉回収することは
環境対策上及び経済上から必要である。 一般に気相系の有機溶媒を回収する方法とし
て、活性炭を利用する方法は広く行われており、
有効な方法の一つである。 しかしながら、DMFを活性炭に吸着させ直接
スチーム再生し、DMFを回収する方法は行われ
ていない。これは、DMFを吸着した活性炭をス
チーム脱着する場合、活性炭の再生可能温度にま
でスチーム温度を高くするとDMFが分解して、
安定回収できず、反面DMFが分解しない温度で
は、活性炭の再生ができないためである。環境対
策上の問題からDMFを活性炭に吸着させた場合
には再生時DMFは分解廃棄されていた。 最近、開発され、実用化されたACFは、排ガ
ス中の低濃度有機溶媒の好適な吸着材として広く
用いられている。このACFに排ガス中のDMFを
吸着させた場合、上記活性炭の場合と同様な問題
が懸念され、しかも、ACFが活性炭に較べ高価
であることと相俟つて、ACFにDMFを直接吸着
させることは行わず、予め活性炭にて吸着捕捉
し、次いで、他の有機溶媒はACFへの吸着及び
脱着によつて回収され、活性炭に吸着したDMF
は、活性炭の再賦活の際廃棄されているのが現状
である。 〔発明の目的と構成〕 本発明は、このような問題を解決し、排ガス中
のDMFを効率よく回収する方法を提供しようと
するものである。 本発明は下記のとおりである。 ジメチルホルムアミドを含む排ガス中からジメ
チルホルムアミドを回収するに当り、該排ガスを
比表面積300〜3000m2/gのアクリル系繊維状活
性炭からなる吸着層に通じてジメチルホルムアミ
ドを吸着除去し、清浄空気として放出すると共
に、ジメチルホルムアミドを吸着した繊維状活性
炭を160〜200℃のスチームにて脱着することを特
徴とするジメチルホルムアミドの回収方法。 本発明によると、ACFを用いてDMFの脱着と
しては考えられない高温において脱着することに
よつて、排ガス中から効率よくDMFの回収が可
能であると共に、ACFの吸着性能を低下させる
ことなく再生することができるものである。 本発明において処理の対象とされる排ガスは、
DMFの外にMEK、トルエン、酢酸エチルなどの
有機溶媒ガスを含む混合ガスであることもでき
る。 本発明において用いられるACFは比表面積300
〜3000m2/gのアクリル系ACFである。これは、
DMFがアミド系であるため、このACFがDMF
に対し、特に高い吸着能を示し、また、このもの
を使用するとACF吸着缶の容積が小さくなり、
その結果速かな脱着が行われ高い回収率がDMF
を回収できるからである。 本発明においては、ACFによつてDMFを吸着
除去された排ガス清浄空気として放出されると共
に、DMFを吸着したACFは160〜200℃のスチー
ムで脱着処理される。温度が160℃未満の場合に
は、繰返し使用によつて徐々にACFの吸着能
(比表面積により評価される)が低下し、また、
200℃超の場合はDMFの回収率が低下する(後掲
第1表参照)。 ACF吸着層の構造としては、ACFのフエルト、
織物、または繊維状のまま支持体にて円筒状に固
定された構造とし、使用するのがよい。 このようなACF吸着層を装着したACF吸着缶
としては第1図に示された装置とするのがよい。 第1図は、ACF吸着缶の断面図を示すもので
ある。第1図においては1排ガスの供給口であ
り、弁機構を有する入口部2から、吸着缶3内に
供給される。吸着缶3内には円筒状ACF吸着層
4が配されており、缶内に供給された排ガスは、
この円筒状ACF吸着層を通り、清浄ガスとして
排出口5を経て缶外に排出される。図中矢印6は
ガスの流動方向を示す。 一方、脱着用水蒸気はスチーム供給管7から缶
内に供給噴出され、ACF吸着層4を通り、吸着
されている有機溶媒を脱着後、弁機構2を経て脱
着蒸気8として取出され、ACF吸着層4は再生
される。脱着蒸気8は凝縮工程を経て、既知の方
法にて、各含有成分毎に分離される。 以上の如き脱着一脱着装置によると、ACF吸
着層の下部から高温のスチームが供給されること
となるため、ACF吸着層の有効な活用が可能と
なる。 本発明において、供給される排ガスはDMFを
含むガスであつて、その濃度は特に制限されない
が、DMF濃度が特に高い場合、あるいは排ガス
中に繊維屑などの固形物、高分子物質などが含ま
れる場合は、予めスクラバー水洗処理してのち
ACF吸着層に供給するのがよく、スクラバー水
洗処理によつて水に溶解したDMFは既知の方法
によつて回収される。 本発明の実施に際して、例えば混合有機溶媒含
有排ガスで、DMF比が低い場合、これら混合有
機溶媒を吸着したACFの脱着は、毎回本発明方
法を適用する必要はなく、DMFの吸着量が蓄積
し、ACFの吸着能力が低下したときに適用すれ
ばよい。 例えばMEKが含まれる場合、120℃のスチーム
での脱着が充分可能であり、その方がエネルギー
コスト的にも好ましい。 〔発明の効果〕 本発明方法によると、160〜200℃特に170〜190
℃の水蒸気を用い、ACFに吸着したDMFを脱着
することによつて、第1表に示したとおり、繰返
し使用によつても、ACFの吸着能は低下せず、
しかも、高い収率でDMFを回収することができ
る。
[Industrial Application Field] The present invention relates to dimethylformamide (hereinafter referred to as DMF).
Acrylic fibrous activated carbon (hereinafter referred to as ACF) having a specific specific surface area from the contained exhaust gas (hereinafter referred to as ACF)
The present invention relates to a method for recovering DMF using the method. [Prior art and problems] DMF is an excellent organic solvent and is widely used alone or together with organic solvents such as methyl ethyl ketone (hereinafter referred to as MEK) and toluene. Capturing and recovering these organic solvents from solvent-containing exhaust gas is necessary from an environmental and economic standpoint. Generally, the use of activated carbon is a widely used method for recovering gaseous organic solvents.
This is one of the effective methods. However, no method has been used to recover DMF by adsorbing DMF onto activated carbon and directly steam regenerating it. This is because when steam desorbing activated carbon that has adsorbed DMF, if the steam temperature is raised to the temperature at which activated carbon can be regenerated, DMF decomposes.
This is because activated carbon cannot be regenerated at temperatures where stable recovery is not possible and DMF does not decompose. Due to environmental concerns, when DMF is adsorbed onto activated carbon, it is decomposed and disposed of during regeneration. ACF, which was recently developed and put into practical use, is widely used as a suitable adsorbent for low concentration organic solvents in exhaust gas. If this ACF were to adsorb DMF in exhaust gas, there would be concerns about the same problems as in the case of activated carbon mentioned above.Moreover, ACF is more expensive than activated carbon, so it is difficult to directly adsorb DMF to ACF. DMF adsorbed on the activated carbon
Currently, activated carbon is discarded during reactivation. [Object and Structure of the Invention] The present invention aims to solve these problems and provide a method for efficiently recovering DMF in exhaust gas. The present invention is as follows. When recovering dimethylformamide from exhaust gas containing dimethylformamide, the exhaust gas is passed through an adsorption layer made of acrylic fibrous activated carbon with a specific surface area of 300 to 3000 m 2 /g to adsorb and remove dimethylformamide, and then released as clean air. A method for recovering dimethylformamide, characterized in that fibrous activated carbon adsorbed with dimethylformamide is desorbed with steam at 160 to 200°C. According to the present invention, by desorbing DMF using ACF at a high temperature that is unthinkable for desorption of DMF, DMF can be efficiently recovered from exhaust gas and regenerated without reducing the adsorption performance of ACF. It is something that can be done. The exhaust gas to be treated in the present invention is
It can also be a mixed gas containing organic solvent gas such as MEK, toluene, and ethyl acetate in addition to DMF. The ACF used in the present invention has a specific surface area of 300
~3000m 2 /g of acrylic ACF. this is,
Since DMF is amide-based, this ACF is
In contrast, it shows particularly high adsorption capacity, and when used, the volume of the ACF adsorption can becomes small.
As a result, fast desorption and high recovery rate of DMF
This is because it is possible to recover In the present invention, the exhaust gas from which DMF has been adsorbed and removed by ACF is released as clean air, and the ACF which has adsorbed DMF is desorbed with steam at 160 to 200°C. When the temperature is below 160℃, the adsorption capacity of ACF (evaluated by specific surface area) gradually decreases with repeated use, and
If the temperature exceeds 200℃, the DMF recovery rate will decrease (see Table 1 below). The structure of the ACF adsorption layer is ACF felt,
It is preferable to use a structure in which the fabric or fibers are fixed in a cylindrical shape with a support. As an ACF adsorption can equipped with such an ACF adsorption layer, the apparatus shown in FIG. 1 is preferable. FIG. 1 shows a cross-sectional view of the ACF adsorption can. In FIG. 1, this is a supply port for exhaust gas, and the exhaust gas is supplied into the adsorption canister 3 from an inlet portion 2 having a valve mechanism. A cylindrical ACF adsorption layer 4 is placed inside the adsorption can 3, and the exhaust gas supplied into the can is
The gas passes through this cylindrical ACF adsorption layer and is discharged as clean gas to the outside of the can via the outlet 5. Arrow 6 in the figure indicates the direction of gas flow. On the other hand, water vapor for desorption is supplied and ejected into the can from the steam supply pipe 7, passes through the ACF adsorption layer 4, desorbs the adsorbed organic solvent, passes through the valve mechanism 2, and is taken out as desorption vapor 8. 4 is played. The desorbed vapor 8 undergoes a condensation step and is separated into each component by a known method. According to the desorption/desorption device as described above, high temperature steam is supplied from the lower part of the ACF adsorption layer, so that the ACF adsorption layer can be effectively utilized. In the present invention, the supplied exhaust gas is a gas containing DMF, and its concentration is not particularly limited, but if the DMF concentration is particularly high, or the exhaust gas contains solids such as fiber waste, polymeric substances, etc. If so, please wash the scrubber with water beforehand.
DMF is preferably fed to an ACF adsorption bed, and the DMF dissolved in water by a scrubber wash process is recovered by known methods. When implementing the present invention, for example, when the exhaust gas contains mixed organic solvents and the DMF ratio is low, it is not necessary to apply the method of the present invention every time to desorb ACF that has adsorbed these mixed organic solvents, and the amount of DMF adsorbed will accumulate. , it can be applied when the adsorption capacity of ACF decreases. For example, if MEK is included, desorption using steam at 120°C is sufficient, which is preferable in terms of energy cost. [Effects of the Invention] According to the method of the present invention, temperatures of 160 to 200°C, particularly 170 to 190°C
By desorbing DMF adsorbed on ACF using water vapor at ℃, the adsorption capacity of ACF does not decrease even after repeated use, as shown in Table 1.
Furthermore, DMF can be recovered with high yield.

〔実施例〕〔Example〕

実施例 1 DMF1200ppm、MEK2800ppm、トルエン
1000ppm、酢酸エチル130ppmを含むモデル排ガ
スを、比表面積1200m2/gのアクリル系ACFフ
エルト3Kgを円筒状に充填した第1図に示す
ACF吸着缶に5m3/分にて供給した。このとき、
ACF吸着缶から排出されるガス中の各成分の含
有量は何れも10ppm以下であつたのでこのまま大
気中に放出した。排出されるガス中のMEK含有
量が10ppmを超える直前にモデル排ガスの供給を
止め、180℃のスチームを供給した脱着した。 脱着スチームを凝縮し、更に分離器にて水層と
非水層とに分離し、水層はDMFを約3重量%含
む水溶液であり、活性炭に通してDMFを吸着さ
せ、塩化メチレンにて脱着及び蒸留し、DMFを
回収した。その結果、DMFの回収率は約92%で
あつた。また、MEK、トルエン及酢酸エチルの
回収率は何れも90%を超えた。
Example 1 DMF1200ppm, MEK2800ppm, toluene
Figure 1 shows a model exhaust gas containing 1000 ppm and 130 ppm of ethyl acetate, filled with 3 kg of acrylic ACF felt with a specific surface area of 1200 m 2 /g in a cylindrical shape.
It was supplied to the ACF adsorption can at a rate of 5 m 3 /min. At this time,
Since the content of each component in the gas discharged from the ACF adsorption can was 10 ppm or less, it was released into the atmosphere as is. Immediately before the MEK content in the emitted gas exceeded 10 ppm, the supply of model exhaust gas was stopped, and 180°C steam was supplied for desorption. The desorption steam is condensed and further separated into an aqueous layer and a non-aqueous layer in a separator. The aqueous layer is an aqueous solution containing about 3% by weight of DMF, which is passed through activated carbon to adsorb DMF, and then desorbed with methylene chloride. and distillation to recover DMF. As a result, the recovery rate of DMF was approximately 92%. Furthermore, the recovery rates of MEK, toluene, and ethyl acetate all exceeded 90%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いられるACF吸着缶の
1例を示す断面図である。
FIG. 1 is a sectional view showing an example of an ACF adsorption can used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ジメチルホルムアミドを含む排ガス中からジ
メチルホルムアミドを回収するに当り、該排ガス
を比表面積300〜3000m2/gのアクリル系繊維状
活性炭からなる吸着層に通してジメチルホルムア
ミドを吸着除去し、清浄空気として放出すると共
に、ジメチルホルムアミドを吸着した繊維状活性
炭を160〜200℃のスチームにて脱着することを特
徴とするジメチルホルムアミドの回収方法。
1. When recovering dimethylformamide from exhaust gas containing dimethylformamide, the exhaust gas is passed through an adsorption layer made of acrylic fibrous activated carbon with a specific surface area of 300 to 3000 m 2 /g to adsorb and remove dimethylformamide and use it as clean air. A method for recovering dimethylformamide, which comprises releasing and desorbing fibrous activated carbon that has adsorbed dimethylformamide using steam at 160 to 200°C.
JP59188896A 1984-09-11 1984-09-11 Recovering method of dimethylformamide Granted JPS6168122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188896A JPS6168122A (en) 1984-09-11 1984-09-11 Recovering method of dimethylformamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188896A JPS6168122A (en) 1984-09-11 1984-09-11 Recovering method of dimethylformamide

Publications (2)

Publication Number Publication Date
JPS6168122A JPS6168122A (en) 1986-04-08
JPH0410368B2 true JPH0410368B2 (en) 1992-02-25

Family

ID=16231774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188896A Granted JPS6168122A (en) 1984-09-11 1984-09-11 Recovering method of dimethylformamide

Country Status (1)

Country Link
JP (1) JPS6168122A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685854B2 (en) * 1986-08-08 1994-11-02 株式会社クボタ How to remove odorous gas
JP3841479B2 (en) * 1996-05-20 2006-11-01 東邦化工建設株式会社 Organic solvent recovery system and organic solvent recovery method
CN103570576B (en) * 2012-07-20 2016-06-15 中国石油化工集团公司 A kind of cracking c_5 tripping device circulating solvent regeneration system rapidly and method
CN108976144B (en) * 2018-08-31 2021-04-02 潍坊中汇化工有限公司 Method for purifying waste liquid of biological medicine DMF production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035067A (en) * 1973-07-24 1975-04-03
JPS5148769A (en) * 1974-10-24 1976-04-27 Ota Toshuki

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035067A (en) * 1973-07-24 1975-04-03
JPS5148769A (en) * 1974-10-24 1976-04-27 Ota Toshuki

Also Published As

Publication number Publication date
JPS6168122A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
US5908490A (en) Organic solvent recovering system and organic solvent recovering method
EP0901807A3 (en) Purification of gases using solid adsorbents
EP0484121A1 (en) Process for removal of water from a CO2 containing raw material mixed gas and apparatus therefor
DE69406979D1 (en) Air separation
US5312477A (en) Adsorption/regeneration process
JPS6320020A (en) Adsorbing and desorbing method by activated carbon
JPH0410368B2 (en)
JP4548891B2 (en) Organic solvent recovery method
JPS61200837A (en) Treatment of exhaust gas
JPH035845B2 (en)
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JP2775789B2 (en) Wastewater treatment method
JPS5775121A (en) Method and apparatus for treating waste gas at coating
JPH1199314A (en) Operation of hydrocarbon vapor recovery
JPH0938445A (en) Method for regenerating adsorption tower
JP3788814B2 (en) Solvent recovery method
US5163980A (en) Water removal from humid gases laden with organic contaminants by series adsorption
JP2013071115A (en) Organic solvent recovery system
JPS6022918A (en) Method and apparatus for separating component of mixed gas
JP3354648B2 (en) Carbon dioxide separation method
JP2572294B2 (en) Solvent recovery processing method
JP3439065B2 (en) Gas processing method and apparatus
JPS6174621A (en) Recovering apparatus of solvent having low boiling point
JPH04102623U (en) Adsorption treatment equipment for gas containing low concentration solvent
KR100451281B1 (en) A method of recovering solvent with low boiling point

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term