JPH02200774A - Production of sputtering target for forming superconducting ceramic film - Google Patents

Production of sputtering target for forming superconducting ceramic film

Info

Publication number
JPH02200774A
JPH02200774A JP1022391A JP2239189A JPH02200774A JP H02200774 A JPH02200774 A JP H02200774A JP 1022391 A JP1022391 A JP 1022391A JP 2239189 A JP2239189 A JP 2239189A JP H02200774 A JPH02200774 A JP H02200774A
Authority
JP
Japan
Prior art keywords
powder
oxide
composite oxide
target
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1022391A
Other languages
Japanese (ja)
Other versions
JP2727622B2 (en
Inventor
Yukihiro Ouchi
大内 幸弘
Tadashi Sugihara
杉原 忠
Takuo Takeshita
武下 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1022391A priority Critical patent/JP2727622B2/en
Publication of JPH02200774A publication Critical patent/JPH02200774A/en
Application granted granted Critical
Publication of JP2727622B2 publication Critical patent/JP2727622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the target for forming a film excellent in superconductivity by mixing Ba carbonate powder and an excess of Cu oxide powder over the specified amt. to be mixed, calcining the mixture under specified conditions, crushing the calcined material and hot-pressing the crushed material. CONSTITUTION:The Ba carbonate powder and Cu oxide powder or the Sr carbonate powder, Ca carbonate powder, and Cu oxide powder or the Ba carbonate powder, Ca carbonate powder and Cu oxide powder are mixed. In this case, an excess of the Cu oxide powder over the carbonate powder by 0.1-10wt.% with respect to the equimolar ratio is added. The obtained mixture is held at 750-980 deg.C for 8-40hr, and calcined. Consequently, the multicomponent oxide of Ba, etc., and Cu free of residual carbonate ion is obtained. The oxide is crushed, and the powder is hot-pressed to obtain a sputtering target. By using this target, a superconducting ceramic film free of C as the impurities and excellent in superconductivity is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導セラミックス膜形成用スパッタリン
グターゲットの製造法に関するものであり、さらに詳し
くは、超電導セラミックス膜を基板表面に形成するため
の多元スパッタリング用ターゲットの製造法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a sputtering target for forming a superconducting ceramic film, and more specifically, a method for manufacturing a sputtering target for forming a superconducting ceramic film on a substrate surface. The present invention relates to a method for manufacturing a target for use.

〔従来の技術〕[Conventional technology]

近年、多元スパッタリング法にて、基板表面に超電導セ
ラミックス膜を形成する試みがなされている。
In recent years, attempts have been made to form a superconducting ceramic film on a substrate surface using a multi-source sputtering method.

上記超電導セラミックスとして、現在のところY−B2
−Cu −0系超電導セラミツクス、BI Sr Ca
 CU−O系超電導セラミックス、およびTl−Ba、
−Ca −Cu −0系超電導セラミツクスが一般的に
知られており、これら超電導セラミックス膜を基板表面
に多元スパッタリング法により形成する方法として、 (1)金属CU製ツタ−ゲットY2O3製ターゲット、
およびBaとCuの複合酸化物製ターゲットを用意し、
これらターゲットを三元スパッタリング装置にl117
時に装入セットし、スパッタリングを実施することによ
り基板表面にY −Ba −CuO系超電導セラミック
ス膜を形成、する方法、(2)金属Cu製ターゲット、
金属B1製ターゲットおよびSrとCaとCuの複合酸
化物製ターゲットを用意し、これらターゲットを三元ス
パッタリング装置に同時に装入セットし、スパッタリン
グを実施することにより基板表面にB1Sr −Ca 
−Cu −0系超電導セラミツクス膜を形成する方法、 (3)金属Cu製ターゲット、およびBaとCaとCu
の複合酸化物製ターゲットを用意し、これらターゲット
を二元スパッタリング装置に161時に装入セットし、
スパッタリングを実施し、スパッタ後の薄膜に対してT
β蒸気を含む雰囲気中に、焼鈍処理をすることにより基
板表面にTJ −Ba −Ca −Cu −0系超電導
セラミツクス膜を形成する方法、 が知られている。
At present, Y-B2 is the superconducting ceramic mentioned above.
-Cu -0-based superconducting ceramics, BI Sr Ca
CU-O superconducting ceramics, and Tl-Ba,
-Ca-Cu-0 system superconducting ceramics are generally known, and methods for forming these superconducting ceramic films on the substrate surface by multi-dimensional sputtering include: (1) metal CU target, Y2O3 target;
and a target made of a complex oxide of Ba and Cu,
These targets are transferred to a ternary sputtering device.
(2) A metal Cu target,
A target made of metal B1 and a target made of a composite oxide of Sr, Ca, and Cu are prepared, these targets are simultaneously charged and set in a ternary sputtering apparatus, and sputtering is performed to form B1Sr -Ca on the substrate surface.
-Cu -0 system superconducting ceramic film forming method, (3) metallic Cu target, and Ba, Ca, and Cu
Prepare composite oxide targets, set these targets in a binary sputtering device at 161 o'clock,
Perform sputtering and apply T to the thin film after sputtering.
A method is known in which a TJ-Ba-Ca-Cu-0 based superconducting ceramic film is formed on a substrate surface by annealing in an atmosphere containing β vapor.

上記BaとCuの複合酸化物製ターゲット・を作製する
には、まず、それぞれ平均粒径:101以FのBa炭酸
塩粉末およびCu酸化物粉末を用意し、。
In order to produce the target made of a composite oxide of Ba and Cu, first, Ba carbonate powder and Cu oxide powder each having an average particle size of 101 F or more are prepared.

これら粉末を、Ba炭酸塩粉末:Cu酸化物粉末−1・
1(モルIt)となるように配合し5、ヘキサンを溶媒
としながらボールミルにて4〜6時間、平均粒径;2〜
3Braになるまで混合粉砕12、乾燥したのち、温度
:750〜980℃、10〜15時間保持の条件にて焼
成し、粉砕する。上記粉砕は、まず乳鉢で解砕し、つい
でボールミルで微粉砕することにより実施される。1−
記焼成および粉砕は4へ5回くり返し実施され、さらに
乾燥して、平均粒径:4〜5mのBaとC[jの複合酸
化物粉末を作製する。
These powders were mixed into Ba carbonate powder:Cu oxide powder-1.
1 (mol It) 5, using a ball mill with hexane as a solvent for 4 to 6 hours, average particle size: 2 to 5.
The mixture is mixed and pulverized 12 times until it reaches 3 Bra, dried, and then fired and pulverized at a temperature of 750 to 980° C. and held for 10 to 15 hours. The above-mentioned pulverization is carried out by first crushing in a mortar and then finely pulverizing in a ball mill. 1-
The calcination and pulverization were repeated 5 times in step 4, and further dried to produce a composite oxide powder of Ba and C[j] with an average particle size of 4 to 5 m.

上記BaとCuの複合酸化物粉末は、温度=750〜8
50℃、プレス圧: 100〜300kg/ cd、2
〜5時間保持の条件で真空ホットプレスすることにより
BaとCuの複合酸化物製ターゲットに形成される。
The above composite oxide powder of Ba and Cu has a temperature of 750 to 8
50℃, press pressure: 100-300kg/cd, 2
A target made of a composite oxide of Ba and Cu is formed by vacuum hot pressing under conditions of holding for ~5 hours.

以IBaと〔:l)の複合酸化物製ターゲットの製造法
について詳述したが、上記SrとCaとCuの複合酸化
物製ターゲットを作製するには、Sr炭酸塩粉末、、C
a炭酸塩粉末、およびC11酸化物扮未を用意し、これ
ら粉末を、Sr炭酸塩粉末:Ca、炭酸塩粉末:CIJ
酸化物粉末−1;1:2(モル比)となるように配合し
、さらに上記BaとCaとCuの複合酸化物製ターゲッ
トを作製するには、Ba炭酸塩粉末、Ca、炭酸塩粉末
およびCu酸化物粉末を用意し、これら粉末をBa炭酸
塩粉末:Ca炭酸塩粉末:Cu酸化物粉末−に1:2(
モル比)となるように配合し2、これら配合粉末をそれ
ぞれ上記BaとCuの複合酸化物製ターゲットの製造法
と同様に17でSrとCaとCuの複合酸化物製ターゲ
・ソトおよびBaとCaとCuの複合酸化物製ターゲッ
トを製造していた。
The method for producing a target made of a composite oxide of IBa and [:l] has been described in detail below, but in order to produce the target made of a composite oxide of Sr, Ca, and Cu, Sr carbonate powder, C
Prepare a carbonate powder and C11 oxide powder, and mix these powders with Sr carbonate powder: Ca, carbonate powder: CIJ
Oxide powder-1: To prepare the Ba, Ca, and Cu composite oxide target, mix Ba carbonate powder, Ca, carbonate powder, and Prepare Cu oxide powder, and mix these powders into Ba carbonate powder: Ca carbonate powder: Cu oxide powder in a ratio of 1:2 (
These blended powders were mixed in the same manner as in the manufacturing method of the Ba and Cu composite oxide target described above in step 17 to prepare a target made of a composite oxide of Sr, Ca, and Cu. A target made of a composite oxide of Ca and Cu was manufactured.

以下、BaとCuの複合酸化物、SrとCaとCuの複
合酸化物、およびBaとCaとCuの複合酸化物を、そ
れぞれ製造するために必要な原料粉末の「所定の配合量
」とは、 Ba炭酸塩粉末:Cu酸化物粉末−1=1 (モル比)
、 Sr炭酸塩粉末+Ca炭酸塩粉末:Cu酸化物粉末−1
81,: 2 (モル比)、 Ba炭酸塩粉末:Ca炭酸塩粉末:Cu酸化物粉末−1
,: 1 : 2 (モル比)、を満足する量を意味す
る。
Hereinafter, what is the "predetermined blending amount" of the raw material powder necessary to produce a composite oxide of Ba and Cu, a composite oxide of Sr, Ca, and Cu, and a composite oxide of Ba, Ca, and Cu, respectively? , Ba carbonate powder: Cu oxide powder -1=1 (molar ratio)
, Sr carbonate powder + Ca carbonate powder: Cu oxide powder-1
81,: 2 (molar ratio), Ba carbonate powder: Ca carbonate powder: Cu oxide powder-1
,: 1:2 (molar ratio).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記BaとCuの複合酸化物製ターゲット、SrとCa
とCuの複合酸化物製ターゲット、およびB、aとCa
とCuの複合酸化物製ターゲットは、いずれも炭酸塩粉
末を原料粉末として用いているが、この炭酸塩の炭酸イ
オン(Co’)が焼成およびポットプレス工程を経ても
未反応のまま炭酸塩として複合酸化物製ターゲット中に
残留2〜 し、この炭酸イオン(Co3 )を含む複合酸化物製タ
ーゲットを用いて多元スパッタリング法により基板表面
に超電導セラミックス膜を形成すると、形成された超電
導セラミックス膜に不純物としてCが混入し、Cの混入
した超電導セラミックス膜は、その超電導特性が大幅に
劣化するという問題点があった。
The above Ba and Cu composite oxide target, Sr and Ca
and Cu composite oxide target, and B, a and Ca
Both targets made of composite oxides of Cu and Cu use carbonate powder as the raw material powder, but the carbonate ions (Co') of this carbonate remain unreacted as carbonate even after the firing and pot pressing process. When a superconducting ceramic film is formed on a substrate surface by a multi-source sputtering method using a composite oxide target containing carbonate ions (Co3) remaining in the composite oxide target, impurities are added to the formed superconducting ceramic film. As a result, C is mixed in, and the superconducting ceramic film containing C has a problem in that its superconducting properties are significantly deteriorated.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、かかる問題点を解決すべく研究
を行った結果、 原料粉末として、所定の炭酸塩粉末に対してCu酸化物
粉末を過剰に配合した混合粉末を用いて焼成し粉砕して
得られた複合酸化物粉末は、不純物としてCが残留する
ことが極めて少なく、この残留Cの極めて少ない複合酸
化物粉末をホットプレスすることにより得られたターゲ
ットのC含有量も極めて少なく、したがっC1このC含
有量の極めて少ない複合酸化物製ターゲ・ノドを用いて
多元スパッタリング法により基板上に形成された超電導
セラミックス膜のC含有量も極めて少なくなり、上記超
電導セラミックス膜の超電導特性を劣化させることがな
いという知見を得たのである。
Therefore, the present inventors conducted research to solve this problem, and found that a mixed powder containing an excess amount of Cu oxide powder with respect to a prescribed carbonate powder was used as a raw material powder, and was then fired and pulverized. The composite oxide powder obtained by this method has extremely little residual C as an impurity, and the C content of the target obtained by hot pressing this composite oxide powder with extremely low residual C is also extremely low. Therefore, the C content of the superconducting ceramic film formed on the substrate by the multi-source sputtering method using a complex oxide target/nod with an extremely low C content is also extremely low, which deteriorates the superconducting properties of the superconducting ceramic film. We have learned that there is no need to do so.

この発明は、かかる知見にもとづいてなされたものであ
って、 炭酸塩粉末に、Cuの酸化物粉末を所定の配合量よりも
0.1〜10重量%過剰に配合し混合した混合粉末を焼
成し粉砕して得られた複合酸化物粉末をホラt・プレス
する超電導セラミックス膜形成用スパッタリングターゲ
ットの製造法に特徴を有するものである。
The present invention was made based on this knowledge, and involves baking a mixed powder in which Cu oxide powder is added to carbonate powder in an amount of 0.1 to 10% by weight in excess of a predetermined amount. The present invention is characterized by a method for manufacturing a sputtering target for forming a superconducting ceramic film, in which a composite oxide powder obtained by grinding and pulverizing is pressed.

上記Cuの酸化物粉末を所定の配合量よりも0゜1〜1
.0ffl瓜%過剰に配合する理由は、Cuの酸化物粉
末が所定の配合量よりも0,1重量%未満の過剰量では
複合酸化物粉末に残留するCの]は減少せず、一方1.
10重二%を越えて過剰に配合しても偏析してしまうの
で好ましくない。したがって、Cu、の酸化物粉末の過
剰配合量は、0.1〜10重量%に定めた。
The above Cu oxide powder is added in an amount of 0°1 to 1
.. The reason for blending the Cu oxide powder in excess of 0ffl% is that if the Cu oxide powder is added in an excess amount of less than 0.1% by weight than the predetermined blending amount, the amount of C remaining in the composite oxide powder will not decrease;
Excessive blending exceeding 10% by weight is also undesirable because segregation will occur. Therefore, the excess amount of Cu oxide powder was set at 0.1 to 10% by weight.

上記口、1〜10重量%過剰のCu酸化物粉末と所定量
の炭酸塩粉末との混合粉末の焼成温度は、750〜98
0℃の範囲内であることが好ましい。上記焼成温度が7
50℃未満では、温度が低いために焼成がほとんど進ま
ず、炭酸塩が残留してしまうので好ましくなく、一方、
980℃を越えると焼成体が部分溶融してしまうので好
ましくない。
The firing temperature of the mixed powder of Cu oxide powder with an excess of 1 to 10% by weight and a predetermined amount of carbonate powder is 750 to 98% by weight.
Preferably, the temperature is within the range of 0°C. The above firing temperature is 7
If the temperature is less than 50°C, calcination will hardly proceed due to the low temperature, and carbonate will remain, which is undesirable.
If the temperature exceeds 980°C, the fired body will partially melt, which is not preferable.

〔実 施 例〕〔Example〕

一つぎに、この発明を実施例にもとづい゛C具体的に説
明する。
First, the present invention will be specifically explained based on examples.

実施例 1 原料粉末として、平均粒径:5μsの炭酸バリウム(以
下、B a COaと記す)粉末および平均粒径:3t
I3の酸化第二銅(以下、CuOと記す)を用意し、こ
れら粉末をそれぞれ第1表に示される所定の配合量より
もCuO過剰の配合組成となるように秤量シ、ボールミ
ルを用い、特級n〜へキサンを溶媒として、それぞれ6
時間混合した(混合粉末に含まれる過剰CuOの割合も
第1表に示しである)。これら混合粉末を乾燥したのち
、アルミ大引の焼成皿に人ね、それらをマツフル炉にて
、大気雰囲気中、第1表に示される焼成温度および焼成
時間にて一次焼成した。この時の昇温速度は、150℃
/時間、また降温は炉冷で行なワた。この焼成体をメノ
ウ製乳鉢で解砕し、さらに湿式ボールミルで6時間粉砕
した後、乾燥し、再びマツフル炉にて第1表に示される
焼成温度および焼成時間にて二次焼成を行なった。この
二次焼成体を再びメノウ製乳鉢で解砕し、湿式ボールミ
ルで8時間粉砕し乾燥して’f5られた生成体は、いず
れもBaとCuの複合酸化物(以下、B a、 Cu 
O2と記す)粉末となっていた。
Example 1 As raw material powder, barium carbonate (hereinafter referred to as B a COa) powder with an average particle size of 5 μs and an average particle size of 3t
Cupric oxide (hereinafter referred to as CuO) of I3 was prepared, and each of these powders was weighed using a ball mill so that the composition had an excess of CuO than the predetermined blending amount shown in Table 1. n~6 each using hexane as a solvent
(The proportion of excess CuO contained in the mixed powder is also shown in Table 1). After drying these mixed powders, they were placed in an aluminum baking dish and were primarily fired in a Matsufuru furnace in an air atmosphere at the firing temperature and firing time shown in Table 1. The temperature increase rate at this time is 150℃
/ hour, and the temperature was lowered by furnace cooling. This fired body was crushed in an agate mortar, further crushed in a wet ball mill for 6 hours, dried, and then secondary fired again in a Matsufuru furnace at the firing temperature and firing time shown in Table 1. This secondary fired body was crushed again in an agate mortar, crushed in a wet ball mill for 8 hours, dried and subjected to f5.
(denoted as O2) powder.

このよう(ニジて得られたB a Cu O2粉末を、
温度:850℃、4時間保持の真空ポットプレスを行な
い、直径=50×厚さ:0.7e+nのホットプレス体
を得た。これを加工し2て第1表の本発明ターゲット1
〜15、比較ターゲット1〜12および従来ターゲット
1を作製した。これらターゲラ!・の表面層を取り除い
た内部から削り出した分析試料を高周波炉燃焼赤外線吸
収法で分析1.7、C含有量を測定し、その結果を第1
表に示した。
In this way, the B a Cu O2 powder obtained by
A vacuum pot press was performed at a temperature of 850° C. for 4 hours to obtain a hot pressed body having a diameter of 50×thickness of 0.7e+n. After processing this, the present invention target 1 in Table 1 is obtained.
-15, comparative targets 1 to 12 and conventional target 1 were produced. These targera!・The analysis sample cut out from the inside after removing the surface layer was analyzed by high-frequency furnace combustion infrared absorption method 1.7, and the C content was measured, and the results were used in the first
Shown in the table.

ついで、上記本発明ターゲット1〜]5、比較ターゲッ
ト1〜2、および従来ターゲット1をそれぞれ金属Cu
製ターゲットおよびY2O3製ターゲットと組合せて巳
元スパッタリング装置に装入セットし、下記の条件でス
パッタリングを行なった。
Next, the above-mentioned targets 1 to 5 of the present invention, comparative targets 1 to 2, and conventional target 1 were each made of metal Cu.
A target made of Y2O3 and a target made of Y2O3 were charged and set in a Mimoto sputtering apparatus, and sputtering was performed under the following conditions.

雰囲気全体圧カニ 10’〜10−’Torr、雰囲気
コArまたは02を5〜・5096含有のAr1供給電
カニ100〜・800 W。
The total pressure of the atmosphere is 10' to 10 Torr, the atmosphere is Ar or 02 containing 5 to 5096, and the power supplied to Ar1 is 100 to 800 W.

基板材質:平面寸法が300−のMgO単結晶、基板加
熱: 050 ’Cまたは加熱せず、基板−ターゲット
間距iv: 50〜130 mm。
Substrate material: MgO single crystal with a planar dimension of 300 mm, substrate heating: 050'C or no heating, substrate-target distance iv: 50 to 130 mm.

L記条件で基板表面に形成されたY−Ba−6口・O糸
紐ホラセラミックス4膜を、大気中、2口度;91O℃
、1時間保持の焼鈍処理を施し、この状態で4端子法に
より臨界温度Te(’K)を測定し、それらの結果も第
1表に示し、た。
The Y-Ba-6-O thread hora ceramics 4 film formed on the substrate surface under the conditions listed below was heated twice in the air at 910°C.
, annealing treatment was performed for 1 hour, and the critical temperature Te ('K) was measured in this state by a four-terminal method, and the results are also shown in Table 1.

第1表の結果から、CuO粉末を所定の配合量よりも0
,1〜10重皿%過剰に配合し、、、焼成し2て得られ
たBaCuO2粉末をホットプレスすることにより作製
されたターゲットは、C含frE1が0.21二%以下
と極めて少なく、したがって、このターゲットを用いて
形成したY  Ba−Cu−O糸紐電導セラミックス膜
の臨界温度は低下しないことがわかる。
From the results in Table 1, it can be seen that the amount of CuO powder
The target prepared by hot pressing the BaCuO2 powder obtained by blending 1 to 10% excess of . It can be seen that the critical temperature of the Y Ba-Cu-O thread conductive ceramic film formed using this target does not decrease.

実施例 2 原料粉末として、それぞれ平均粒径:5虜の炭酸ストロ
ンチウム(以下、S r COaと記す)粉末、炭酸カ
ルシウム(以ド、Ca COaと記す)粉末、およびC
uO粉末を用意し、これら粉末をそれぞれ第2表に示さ
れる所定の配合量よりCu、 O過剰の配合組成となる
ように配合し、ボールミルを用い、特級n−へキサンを
溶媒として、それぞれ6時間混合した(混合粉末に含ま
れる過剰CuQの割合も第1表に示しである)。これら
混合粉末を乾燥したのち、アルミナ製の焼成皿に入れ1
.マツフル炉にて、大慨雰囲気中、第2表に示される焼
成温度および焼成時間にて一次焼成した。この時の昇温
速度および降温速度は実施例1と全く同じに行なった。
Example 2 As raw material powders, strontium carbonate (hereinafter referred to as S r COa) powder, calcium carbonate (hereinafter referred to as Ca COa) powder, and C
UO powder was prepared, and these powders were blended so as to have a composition with an excess of Cu and O compared to the predetermined blending amounts shown in Table 2.Using a ball mill, using special grade n-hexane as a solvent, (The proportion of excess CuQ contained in the mixed powder is also shown in Table 1). After drying these mixed powders, place them in an alumina baking dish.
.. Primary firing was performed in a Matsufuru furnace in a general atmosphere at the firing temperature and firing time shown in Table 2. The temperature increase rate and temperature decrease rate at this time were exactly the same as in Example 1.

このようにして得られた一次焼成体をメノウ製乳鉢で解
砕し、さらに湿式ボールミルで6時間粉砕した後、乾燥
し1、再びマツフル炉にて第2表に示される二次焼成条
件で焼成した。この二次焼成体を再びメノウ製乳鉢で解
砕し、湿式ボールミルで8時間粉砕し、乾燥し、得られ
た生成体はSrとCaとCuの複合酸化物(以下、S 
r Ca Cu 204と記す)粉末となっていた。
The primary fired body thus obtained was crushed in an agate mortar, further crushed in a wet ball mill for 6 hours, dried, and fired again in a Matsufuru furnace under the secondary firing conditions shown in Table 2. did. This secondary fired body is crushed again in an agate mortar, crushed in a wet ball mill for 8 hours, and dried. The resulting product is a composite oxide of Sr, Ca, and Cu (hereinafter referred to as S
r Ca Cu 204) powder.

このようにして得られたS r Ca CLJ 204
粉末を、温度:850℃、4時間保持の真空ポットプレ
スを行ない、直径:5emX厚さ:0.7c+nのホッ
トプレス体を得た。これを加工して第2表の本発明ター
ゲット16〜30、比較ターゲット3〜4および従来タ
ーゲット2を作製し7た。これらターゲットの表面を取
り除いた内部から削り出した分析試料を高周波炉燃焼赤
外線吸収法で分析し、C含kmを測定し、その結果を第
2表に示した。
Thus obtained S r Ca CLJ 204
The powder was vacuum pot-pressed at a temperature of 850° C. for 4 hours to obtain a hot-pressed body having a diameter of 5 em and a thickness of 0.7 c+n. This was processed to produce targets 16 to 30 of the present invention, comparative targets 3 to 4, and conventional target 2 shown in Table 2. Analytical samples cut from the inside of these targets with their surfaces removed were analyzed by high-frequency furnace combustion infrared absorption method to measure the carbon content (km), and the results are shown in Table 2.

ついで、上記本発明ターゲット16〜30.比較ターゲ
ット3〜4、および従来ターゲット2を、それぞれ、金
属Cu製ターゲットおよび金属Bi製ターゲットととも
に三元スパッタリング装置に装入セットし、実施例1で
実施した条件と全く同一スパッタリング条件でスパッタ
リングを実施し、形成されたB1.−3r −Ca −
Cu −0系超電導セラミツクス膜を、大気中、温度=
850℃、30時間保持の条件で焼鈍処理し、この状態
で4端子法により臨界温度Te(’K)を測定して、こ
れらの結果を第2表に示した。
Next, the above-mentioned targets 16 to 30 of the present invention. Comparison targets 3 to 4 and conventional target 2 were charged and set in a ternary sputtering apparatus together with a metal Cu target and a metal Bi target, respectively, and sputtering was performed under exactly the same sputtering conditions as in Example 1. and the formed B1. -3r -Ca -
A Cu-0 based superconducting ceramic film was deposited in the atmosphere at a temperature of
The material was annealed at 850° C. for 30 hours, and the critical temperature Te ('K) was measured in this state by a four-probe method. The results are shown in Table 2.

実施例 3 原料粉末として、それぞれ平均粒径:54のB a C
OCa CO3およびCuOの粉末を用3 ′ 意し、これら粉末をそれぞれ第3表に示される所定の配
合量よりCuO過剰の配合組成となるように配合し、ボ
ールミルを用い、特級n−へキサンを溶媒として、それ
ぞれ6時間混合した(混合粉末に含まれる過剰CuOの
割合も第1表に示しである)。これら混合粉末を乾燥し
たのち、アルミナ製の焼成■旧こ入れ、マツフル炉にて
、大気雰囲気中、第3表に示される条件で一次焼成した
。この時の昇温および降温速度は実施例1と全く同じに
行なった。このようにして得られた一次焼成体をメノウ
製乳鉢で解砕し、さらに湿式ボールミルで6時間粉砕し
た後、乾燥し、再びマツフル炉にて第3表に示される条
件で二次焼成した。この二次焼成体を再びメノウ製乳鉢
で解砕し、湿式ボールミルで8時間粉砕し、乾燥し、得
られた生成体はBaとCaとCuの複合酸化物(以下、
BaCaCu204と記す)粉末となっていた。
Example 3 As raw material powder, B a C with average particle size: 54, respectively
OCa CO3 and CuO powders were prepared, and these powders were blended so as to have a composition with an excess of CuO than the predetermined blending amounts shown in Table 3, and special grade n-hexane was added using a ball mill. Each was mixed as a solvent for 6 hours (the proportion of excess CuO contained in the mixed powder is also shown in Table 1). After drying these mixed powders, they were primarily fired in an alumina firing chamber in a Matsufuru furnace in an atmospheric atmosphere under the conditions shown in Table 3. The temperature increase and temperature decrease rates at this time were exactly the same as in Example 1. The primary fired body thus obtained was crushed in an agate mortar, further crushed in a wet ball mill for 6 hours, dried, and secondary fired again in a Matsufuru furnace under the conditions shown in Table 3. This secondary fired body was crushed again in an agate mortar, crushed in a wet ball mill for 8 hours, and dried. The resulting product was a complex oxide of Ba, Ca, and Cu (hereinafter referred to as
It was powder (denoted as BaCaCu204).

このようにして得られたBaCaCu204粉末を、温
度:850℃、4時間保持の真空ホットプレスを行ない
、直径:5c+nX厚さ:0.7(Jのホットプレス体
を得、これらを加工して第3表の本発明ターゲット31
〜45、比較ターゲット5〜6および従来ターゲット3
を作製した。これらターゲットの表面を取り除いた内部
から削り出した分析試料を高周波炉燃焼赤外線吸収法で
分析し、C含a量を測定し、その結果を第3表に示した
The thus obtained BaCaCu204 powder was vacuum hot-pressed at a temperature of 850°C for 4 hours to obtain a hot-pressed body with a diameter of 5c+n and a thickness of 0.7J. Target 31 of the present invention in Table 3
~45, comparative targets 5-6 and conventional target 3
was created. Analytical samples cut from the inside of these targets with their surfaces removed were analyzed by high-frequency furnace combustion infrared absorption method to measure the C content, and the results are shown in Table 3.

ついで、上記本発明ターゲット31〜45、比較ターゲ
ット3〜4、および従来ターゲット3を、それぞれ、金
属Cu製ターゲットとともに二元スパッタリング装置に
装入セットし、実施例1で実施した条件と全く同一スパ
ッタリング条件でスパッタリングを実施し、スパッタ後
の薄膜に対してTΩ蒸気を含む雰囲気中、温度二840
℃、50時間保持の条件で焼鈍処理し、この状態で4端
子法により臨界温度’1’ e (’K )を測定し、
これらの結果を第3表に示した。
Next, the above-mentioned targets 31 to 45 of the present invention, comparative targets 3 to 4, and conventional target 3 were respectively charged and set together with a metal Cu target into a binary sputtering apparatus, and sputtering was performed under exactly the same conditions as in Example 1. Sputtering was carried out under the following conditions, and the sputtered thin film was heated to 2840℃ in an atmosphere containing TΩ vapor.
℃ and held for 50 hours, and in this state, the critical temperature '1' e ('K) was measured by the four-probe method,
These results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

第1表〜・第3表に示される結果から、CuOを所定の
量より0.1〜10重量%過剰に配合した本発明ターゲ
ット1〜45は、いずれも所定fXtcuo配合の従来
ターゲット1〜3に比べてC含有量が少なく、したがっ
て、このターゲットを用いて形成された超電導セラミッ
クス膜の超電導特性も優れている。また比較ターゲット
1〜6にみられるよ)に、CuO過剰配合量がこの発明
の範囲から低い方に外れると、得られたターゲットのC
含有量が減少せず、一方、その含有量が高い方に外れる
と部分溶融してターゲットを形成することができないこ
とがわかる。
From the results shown in Tables 1 to 3, targets 1 to 45 of the present invention containing CuO in excess of 0.1 to 10% by weight over the predetermined amount were all compared to conventional targets 1 to 3 containing a predetermined fXtcuo content. The C content is lower than that of the target, and therefore, the superconducting ceramic film formed using this target also has excellent superconducting properties. In addition, as seen in Comparative Targets 1 to 6), if the excess CuO content falls outside the range of this invention, the resulting target's C
It can be seen that if the content does not decrease and, on the other hand, the content deviates to the high side, partial melting occurs and a target cannot be formed.

さらに、CuOが適量過剰に配合することにより、複合
酸化物粒子間のバインダー的役割をし、そのため、強度
のすぐれたターゲットを得ることができ、取扱いが容品
になる等の効果もある。
Furthermore, by blending an appropriate amount of excess CuO, it acts as a binder between the composite oxide particles, and therefore a target with excellent strength can be obtained, and there are also effects such as ease of handling.

Claims (1)

【特許請求の範囲】 (1)Ba炭酸塩粉末とCu酸化物粉末を配合し混合し
て得られた混合粉末を、温度:750〜980℃、8〜
40時間保持の条件で焼成してBaとCuの複合酸化物
を形成し、ついでこのBaとCuの複合酸化物を粉砕し
て得られたBaとCuの複合酸化物粉末をホットプレス
することによりBaとCuの複合酸化物からなるスパッ
タリングターゲットを製造する方法において、 上記Cu酸化物粉末を所定の配合量よりも 0.1〜10重量%過剰に加えることを特徴とする超電
導セラミックス膜形成用スパッタリングターゲットの製
造法。 (2)Sr炭酸塩粉末、Ca炭酸塩粉末およびCu酸化
物粉末を配合し混合して得られた混合粉末を、温度:7
50〜980℃、8〜40時間保持の条件で焼成してS
rとCaとCuの複合酸化物を形成し、ついでこのSr
とCaとCuの複合酸化物を粉砕して得られたSrとC
aとCuの複合酸化物粉末をホットプレスすることによ
りSrとCaとCuの複合酸化物からなるスパッタリン
グターゲットを製造する方法において、 上記Cu酸化物粉末を所定の配合量よりも 0.1〜10重量%過剰に加えることを特徴とする超電
導セラミックス膜形成用スパッタリングターゲットの製
造法。 (3)Ba炭酸塩粉末、Ca炭酸塩粉末およびCu酸化
物粉末を配合し混合して得られた混合粉末を、温度:7
50〜980℃、8〜40時間保持の条件で焼成してB
aとCaとCuの複合酸化物を形成し、ついでこのBa
とCaとCuの複合酸化物を粉砕して得られたBaとC
aとCuの複合酸化物粉末をホットプレスすることによ
りSrとCaとCuの複合酸化物からなるスパッタリン
グターゲットを製造する方法において、 上記Cu酸化物粉末を所定の配合量よりも 0.1〜10重量%過剰に加えることを特徴とする超電
導セラミックス膜形成用スパッタリングターゲットの製
造法。
[Claims] (1) Mixed powder obtained by blending and mixing Ba carbonate powder and Cu oxide powder, temperature: 750-980°C, 8-980°C.
By firing under conditions of holding for 40 hours to form a composite oxide of Ba and Cu, and then pulverizing the composite oxide of Ba and Cu and hot pressing the resulting composite oxide powder of Ba and Cu. A method for manufacturing a sputtering target made of a composite oxide of Ba and Cu, characterized in that the Cu oxide powder is added in an amount of 0.1 to 10% by weight in excess of a predetermined blending amount. Target manufacturing method. (2) Mixed powder obtained by blending and mixing Sr carbonate powder, Ca carbonate powder, and Cu oxide powder at a temperature of 7
S is fired under the conditions of 50-980℃ and held for 8-40 hours.
A composite oxide of r, Ca, and Cu is formed, and then this Sr
and Sr and C obtained by pulverizing a composite oxide of Ca and Cu.
In a method for manufacturing a sputtering target made of a composite oxide of Sr, Ca, and Cu by hot pressing a composite oxide powder of a and Cu, the amount of the Cu oxide powder is 0.1 to 10 A method for producing a sputtering target for forming a superconducting ceramic film, characterized by adding an excess amount by weight. (3) Mixed powder obtained by blending and mixing Ba carbonate powder, Ca carbonate powder, and Cu oxide powder at a temperature of 7
B is baked under the conditions of 50-980℃ and held for 8-40 hours.
A, a complex oxide of Ca and Cu is formed, and then this Ba
Ba and C obtained by pulverizing a composite oxide of Ca and Cu
In a method for manufacturing a sputtering target made of a composite oxide of Sr, Ca, and Cu by hot pressing a composite oxide powder of a and Cu, the amount of the Cu oxide powder is 0.1 to 10 A method for producing a sputtering target for forming a superconducting ceramic film, characterized by adding an excess amount by weight.
JP1022391A 1989-01-31 1989-01-31 Manufacturing method of sputtering target for forming superconducting ceramics film Expired - Lifetime JP2727622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1022391A JP2727622B2 (en) 1989-01-31 1989-01-31 Manufacturing method of sputtering target for forming superconducting ceramics film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1022391A JP2727622B2 (en) 1989-01-31 1989-01-31 Manufacturing method of sputtering target for forming superconducting ceramics film

Publications (2)

Publication Number Publication Date
JPH02200774A true JPH02200774A (en) 1990-08-09
JP2727622B2 JP2727622B2 (en) 1998-03-11

Family

ID=12081359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1022391A Expired - Lifetime JP2727622B2 (en) 1989-01-31 1989-01-31 Manufacturing method of sputtering target for forming superconducting ceramics film

Country Status (1)

Country Link
JP (1) JP2727622B2 (en)

Also Published As

Publication number Publication date
JP2727622B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
CN108727022A (en) A kind of ultra-low loss magnesium-niobate lithium system microwave dielectric ceramic materials and preparation method thereof
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
JPH01251512A (en) Dielectric porcelain and manufacture thereof
JPH02212351A (en) Target material for forming superconducting ceramic film
JPH02200774A (en) Production of sputtering target for forming superconducting ceramic film
JPH02225367A (en) Production of dielectric ceramics
US5049452A (en) Target member used for formation of superconducting film
JP2904358B2 (en) Manufacturing method of ITO sintered body
JP3127824B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP3428432B2 (en) Sputtering target material for forming a Bi-Sr-Ta-O-based ferroelectric thin film and a film forming method using the same
JPH01246107A (en) Superconducting thin film
JPH01270581A (en) Production of target material for forming bi-ca-sr-cu-o superconducting film
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
KR950007088B1 (en) Bi-sr-ca-cu-o section target for superconductive thin film
JPH02156079A (en) Target material for forming superconducting film of tl-ba-ca-cu-o system
JP2866484B2 (en) Manufacturing method of oxide superconductor
EP0377073A2 (en) Sputtering target used for forming quinary superconductive oxide
JPH04224162A (en) Ito sintered compact
JPH09235667A (en) Sputtering target for forming ferroelectric film and its production
JP2817181B2 (en) Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density
JPH0891942A (en) Production of powder for ferrite
JPH06264230A (en) Target material for production of thin film having high dielectric and its production
JPH03103321A (en) Raw material for superconductor, production thereof and production of superconductor using same raw material
JPS62252008A (en) Manufacture of microwave dielectric material
JPH01160861A (en) Anisotropic growth of superconducting ceramic